1 | use crate::{engine::Engine, DecodeError, DecodeSliceError, PAD_BYTE}; |
2 | use std::{cmp, fmt, io}; |
3 | |
4 | // This should be large, but it has to fit on the stack. |
5 | pub(crate) const BUF_SIZE: usize = 1024; |
6 | |
7 | // 4 bytes of base64 data encode 3 bytes of raw data (modulo padding). |
8 | const BASE64_CHUNK_SIZE: usize = 4; |
9 | const DECODED_CHUNK_SIZE: usize = 3; |
10 | |
11 | /// A `Read` implementation that decodes base64 data read from an underlying reader. |
12 | /// |
13 | /// # Examples |
14 | /// |
15 | /// ``` |
16 | /// use std::io::Read; |
17 | /// use std::io::Cursor; |
18 | /// use base64::engine::general_purpose; |
19 | /// |
20 | /// // use a cursor as the simplest possible `Read` -- in real code this is probably a file, etc. |
21 | /// let mut wrapped_reader = Cursor::new(b"YXNkZg==" ); |
22 | /// let mut decoder = base64::read::DecoderReader::new( |
23 | /// &mut wrapped_reader, |
24 | /// &general_purpose::STANDARD); |
25 | /// |
26 | /// // handle errors as you normally would |
27 | /// let mut result = Vec::new(); |
28 | /// decoder.read_to_end(&mut result).unwrap(); |
29 | /// |
30 | /// assert_eq!(b"asdf" , &result[..]); |
31 | /// |
32 | /// ``` |
33 | pub struct DecoderReader<'e, E: Engine, R: io::Read> { |
34 | engine: &'e E, |
35 | /// Where b64 data is read from |
36 | inner: R, |
37 | |
38 | /// Holds b64 data read from the delegate reader. |
39 | b64_buffer: [u8; BUF_SIZE], |
40 | /// The start of the pending buffered data in `b64_buffer`. |
41 | b64_offset: usize, |
42 | /// The amount of buffered b64 data after `b64_offset` in `b64_len`. |
43 | b64_len: usize, |
44 | /// Since the caller may provide us with a buffer of size 1 or 2 that's too small to copy a |
45 | /// decoded chunk in to, we have to be able to hang on to a few decoded bytes. |
46 | /// Technically we only need to hold 2 bytes, but then we'd need a separate temporary buffer to |
47 | /// decode 3 bytes into and then juggle copying one byte into the provided read buf and the rest |
48 | /// into here, which seems like a lot of complexity for 1 extra byte of storage. |
49 | decoded_chunk_buffer: [u8; DECODED_CHUNK_SIZE], |
50 | /// Index of start of decoded data in `decoded_chunk_buffer` |
51 | decoded_offset: usize, |
52 | /// Length of decoded data after `decoded_offset` in `decoded_chunk_buffer` |
53 | decoded_len: usize, |
54 | /// Input length consumed so far. |
55 | /// Used to provide accurate offsets in errors |
56 | input_consumed_len: usize, |
57 | /// offset of previously seen padding, if any |
58 | padding_offset: Option<usize>, |
59 | } |
60 | |
61 | // exclude b64_buffer as it's uselessly large |
62 | impl<'e, E: Engine, R: io::Read> fmt::Debug for DecoderReader<'e, E, R> { |
63 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
64 | f&mut DebugStruct<'_, '_>.debug_struct("DecoderReader" ) |
65 | .field("b64_offset" , &self.b64_offset) |
66 | .field("b64_len" , &self.b64_len) |
67 | .field("decoded_chunk_buffer" , &self.decoded_chunk_buffer) |
68 | .field("decoded_offset" , &self.decoded_offset) |
69 | .field("decoded_len" , &self.decoded_len) |
70 | .field("input_consumed_len" , &self.input_consumed_len) |
71 | .field(name:"padding_offset" , &self.padding_offset) |
72 | .finish() |
73 | } |
74 | } |
75 | |
76 | impl<'e, E: Engine, R: io::Read> DecoderReader<'e, E, R> { |
77 | /// Create a new decoder that will read from the provided reader `r`. |
78 | pub fn new(reader: R, engine: &'e E) -> Self { |
79 | DecoderReader { |
80 | engine, |
81 | inner: reader, |
82 | b64_buffer: [0; BUF_SIZE], |
83 | b64_offset: 0, |
84 | b64_len: 0, |
85 | decoded_chunk_buffer: [0; DECODED_CHUNK_SIZE], |
86 | decoded_offset: 0, |
87 | decoded_len: 0, |
88 | input_consumed_len: 0, |
89 | padding_offset: None, |
90 | } |
91 | } |
92 | |
93 | /// Write as much as possible of the decoded buffer into the target buffer. |
94 | /// Must only be called when there is something to write and space to write into. |
95 | /// Returns a Result with the number of (decoded) bytes copied. |
96 | fn flush_decoded_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
97 | debug_assert!(self.decoded_len > 0); |
98 | debug_assert!(!buf.is_empty()); |
99 | |
100 | let copy_len = cmp::min(self.decoded_len, buf.len()); |
101 | debug_assert!(copy_len > 0); |
102 | debug_assert!(copy_len <= self.decoded_len); |
103 | |
104 | buf[..copy_len].copy_from_slice( |
105 | &self.decoded_chunk_buffer[self.decoded_offset..self.decoded_offset + copy_len], |
106 | ); |
107 | |
108 | self.decoded_offset += copy_len; |
109 | self.decoded_len -= copy_len; |
110 | |
111 | debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE); |
112 | |
113 | Ok(copy_len) |
114 | } |
115 | |
116 | /// Read into the remaining space in the buffer after the current contents. |
117 | /// Must only be called when there is space to read into in the buffer. |
118 | /// Returns the number of bytes read. |
119 | fn read_from_delegate(&mut self) -> io::Result<usize> { |
120 | debug_assert!(self.b64_offset + self.b64_len < BUF_SIZE); |
121 | |
122 | let read = self |
123 | .inner |
124 | .read(&mut self.b64_buffer[self.b64_offset + self.b64_len..])?; |
125 | self.b64_len += read; |
126 | |
127 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
128 | |
129 | Ok(read) |
130 | } |
131 | |
132 | /// Decode the requested number of bytes from the b64 buffer into the provided buffer. It's the |
133 | /// caller's responsibility to choose the number of b64 bytes to decode correctly. |
134 | /// |
135 | /// Returns a Result with the number of decoded bytes written to `buf`. |
136 | /// |
137 | /// # Panics |
138 | /// |
139 | /// panics if `buf` is too small |
140 | fn decode_to_buf(&mut self, b64_len_to_decode: usize, buf: &mut [u8]) -> io::Result<usize> { |
141 | debug_assert!(self.b64_len >= b64_len_to_decode); |
142 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
143 | debug_assert!(!buf.is_empty()); |
144 | |
145 | let b64_to_decode = &self.b64_buffer[self.b64_offset..self.b64_offset + b64_len_to_decode]; |
146 | let decode_metadata = self |
147 | .engine |
148 | .internal_decode( |
149 | b64_to_decode, |
150 | buf, |
151 | self.engine.internal_decoded_len_estimate(b64_len_to_decode), |
152 | ) |
153 | .map_err(|dse| match dse { |
154 | DecodeSliceError::DecodeError(de) => { |
155 | match de { |
156 | DecodeError::InvalidByte(offset, byte) => { |
157 | match (byte, self.padding_offset) { |
158 | // if there was padding in a previous block of decoding that happened to |
159 | // be correct, and we now find more padding that happens to be incorrect, |
160 | // to be consistent with non-reader decodes, record the error at the first |
161 | // padding |
162 | (PAD_BYTE, Some(first_pad_offset)) => { |
163 | DecodeError::InvalidByte(first_pad_offset, PAD_BYTE) |
164 | } |
165 | _ => { |
166 | DecodeError::InvalidByte(self.input_consumed_len + offset, byte) |
167 | } |
168 | } |
169 | } |
170 | DecodeError::InvalidLength(len) => { |
171 | DecodeError::InvalidLength(self.input_consumed_len + len) |
172 | } |
173 | DecodeError::InvalidLastSymbol(offset, byte) => { |
174 | DecodeError::InvalidLastSymbol(self.input_consumed_len + offset, byte) |
175 | } |
176 | DecodeError::InvalidPadding => DecodeError::InvalidPadding, |
177 | } |
178 | } |
179 | DecodeSliceError::OutputSliceTooSmall => { |
180 | unreachable!("buf is sized correctly in calling code" ) |
181 | } |
182 | }) |
183 | .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?; |
184 | |
185 | if let Some(offset) = self.padding_offset { |
186 | // we've already seen padding |
187 | if decode_metadata.decoded_len > 0 { |
188 | // we read more after already finding padding; report error at first padding byte |
189 | return Err(io::Error::new( |
190 | io::ErrorKind::InvalidData, |
191 | DecodeError::InvalidByte(offset, PAD_BYTE), |
192 | )); |
193 | } |
194 | } |
195 | |
196 | self.padding_offset = self.padding_offset.or(decode_metadata |
197 | .padding_offset |
198 | .map(|offset| self.input_consumed_len + offset)); |
199 | self.input_consumed_len += b64_len_to_decode; |
200 | self.b64_offset += b64_len_to_decode; |
201 | self.b64_len -= b64_len_to_decode; |
202 | |
203 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
204 | |
205 | Ok(decode_metadata.decoded_len) |
206 | } |
207 | |
208 | /// Unwraps this `DecoderReader`, returning the base reader which it reads base64 encoded |
209 | /// input from. |
210 | /// |
211 | /// Because `DecoderReader` performs internal buffering, the state of the inner reader is |
212 | /// unspecified. This function is mainly provided because the inner reader type may provide |
213 | /// additional functionality beyond the `Read` implementation which may still be useful. |
214 | pub fn into_inner(self) -> R { |
215 | self.inner |
216 | } |
217 | } |
218 | |
219 | impl<'e, E: Engine, R: io::Read> io::Read for DecoderReader<'e, E, R> { |
220 | /// Decode input from the wrapped reader. |
221 | /// |
222 | /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes |
223 | /// written in `buf`. |
224 | /// |
225 | /// Where possible, this function buffers base64 to minimize the number of read() calls to the |
226 | /// delegate reader. |
227 | /// |
228 | /// # Errors |
229 | /// |
230 | /// Any errors emitted by the delegate reader are returned. Decoding errors due to invalid |
231 | /// base64 are also possible, and will have `io::ErrorKind::InvalidData`. |
232 | fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
233 | if buf.is_empty() { |
234 | return Ok(0); |
235 | } |
236 | |
237 | // offset == BUF_SIZE when we copied it all last time |
238 | debug_assert!(self.b64_offset <= BUF_SIZE); |
239 | debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE); |
240 | debug_assert!(if self.b64_offset == BUF_SIZE { |
241 | self.b64_len == 0 |
242 | } else { |
243 | self.b64_len <= BUF_SIZE |
244 | }); |
245 | |
246 | debug_assert!(if self.decoded_len == 0 { |
247 | // can be = when we were able to copy the complete chunk |
248 | self.decoded_offset <= DECODED_CHUNK_SIZE |
249 | } else { |
250 | self.decoded_offset < DECODED_CHUNK_SIZE |
251 | }); |
252 | |
253 | // We shouldn't ever decode into decoded_buffer when we can't immediately write at least one |
254 | // byte into the provided buf, so the effective length should only be 3 momentarily between |
255 | // when we decode and when we copy into the target buffer. |
256 | debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE); |
257 | debug_assert!(self.decoded_len + self.decoded_offset <= DECODED_CHUNK_SIZE); |
258 | |
259 | if self.decoded_len > 0 { |
260 | // we have a few leftover decoded bytes; flush that rather than pull in more b64 |
261 | self.flush_decoded_buf(buf) |
262 | } else { |
263 | let mut at_eof = false; |
264 | while self.b64_len < BASE64_CHUNK_SIZE { |
265 | // Copy any bytes we have to the start of the buffer. |
266 | self.b64_buffer |
267 | .copy_within(self.b64_offset..self.b64_offset + self.b64_len, 0); |
268 | self.b64_offset = 0; |
269 | |
270 | // then fill in more data |
271 | let read = self.read_from_delegate()?; |
272 | if read == 0 { |
273 | // we never read into an empty buf, so 0 => we've hit EOF |
274 | at_eof = true; |
275 | break; |
276 | } |
277 | } |
278 | |
279 | if self.b64_len == 0 { |
280 | debug_assert!(at_eof); |
281 | // we must be at EOF, and we have no data left to decode |
282 | return Ok(0); |
283 | }; |
284 | |
285 | debug_assert!(if at_eof { |
286 | // if we are at eof, we may not have a complete chunk |
287 | self.b64_len > 0 |
288 | } else { |
289 | // otherwise, we must have at least one chunk |
290 | self.b64_len >= BASE64_CHUNK_SIZE |
291 | }); |
292 | |
293 | debug_assert_eq!(0, self.decoded_len); |
294 | |
295 | if buf.len() < DECODED_CHUNK_SIZE { |
296 | // caller requested an annoyingly short read |
297 | // have to write to a tmp buf first to avoid double mutable borrow |
298 | let mut decoded_chunk = [0_u8; DECODED_CHUNK_SIZE]; |
299 | // if we are at eof, could have less than BASE64_CHUNK_SIZE, in which case we have |
300 | // to assume that these last few tokens are, in fact, valid (i.e. must be 2-4 b64 |
301 | // tokens, not 1, since 1 token can't decode to 1 byte). |
302 | let to_decode = cmp::min(self.b64_len, BASE64_CHUNK_SIZE); |
303 | |
304 | let decoded = self.decode_to_buf(to_decode, &mut decoded_chunk[..])?; |
305 | self.decoded_chunk_buffer[..decoded].copy_from_slice(&decoded_chunk[..decoded]); |
306 | |
307 | self.decoded_offset = 0; |
308 | self.decoded_len = decoded; |
309 | |
310 | // can be less than 3 on last block due to padding |
311 | debug_assert!(decoded <= 3); |
312 | |
313 | self.flush_decoded_buf(buf) |
314 | } else { |
315 | let b64_bytes_that_can_decode_into_buf = (buf.len() / DECODED_CHUNK_SIZE) |
316 | .checked_mul(BASE64_CHUNK_SIZE) |
317 | .expect("too many chunks" ); |
318 | debug_assert!(b64_bytes_that_can_decode_into_buf >= BASE64_CHUNK_SIZE); |
319 | |
320 | let b64_bytes_available_to_decode = if at_eof { |
321 | self.b64_len |
322 | } else { |
323 | // only use complete chunks |
324 | self.b64_len - self.b64_len % 4 |
325 | }; |
326 | |
327 | let actual_decode_len = cmp::min( |
328 | b64_bytes_that_can_decode_into_buf, |
329 | b64_bytes_available_to_decode, |
330 | ); |
331 | self.decode_to_buf(actual_decode_len, buf) |
332 | } |
333 | } |
334 | } |
335 | } |
336 | |