1 | /* SPDX-License-Identifier: MIT */ |
2 | /* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */ |
3 | |
4 | use super::support::{DInt, FpResult, HInt, IntTy, Round, Status}; |
5 | use super::{CastFrom, CastInto, Float, Int, MinInt}; |
6 | |
7 | /// Fused multiply add (f64) |
8 | /// |
9 | /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). |
10 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
11 | pub fn fma(x: f64, y: f64, z: f64) -> f64 { |
12 | fma_round(x, y, z, Round::Nearest).val |
13 | } |
14 | |
15 | /// Fused multiply add (f128) |
16 | /// |
17 | /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). |
18 | #[cfg (f128_enabled)] |
19 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
20 | pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 { |
21 | fma_round(x, y, z, Round::Nearest).val |
22 | } |
23 | |
24 | /// Fused multiply-add that works when there is not a larger float size available. Computes |
25 | /// `(x * y) + z`. |
26 | pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F> |
27 | where |
28 | F: Float, |
29 | F: CastFrom<F::SignedInt>, |
30 | F: CastFrom<i8>, |
31 | F::Int: HInt, |
32 | u32: CastInto<F::Int>, |
33 | { |
34 | let one = IntTy::<F>::ONE; |
35 | let zero = IntTy::<F>::ZERO; |
36 | |
37 | // Normalize such that the top of the mantissa is zero and we have a guard bit. |
38 | let nx = Norm::from_float(x); |
39 | let ny = Norm::from_float(y); |
40 | let nz = Norm::from_float(z); |
41 | |
42 | if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() { |
43 | // Value will overflow, defer to non-fused operations. |
44 | return FpResult::ok(x * y + z); |
45 | } |
46 | |
47 | if nz.is_zero_nan_inf() { |
48 | if nz.is_zero() { |
49 | // Empty add component means we only need to multiply. |
50 | return FpResult::ok(x * y); |
51 | } |
52 | // `z` is NaN or infinity, which sets the result. |
53 | return FpResult::ok(z); |
54 | } |
55 | |
56 | // multiply: r = x * y |
57 | let zhi: F::Int; |
58 | let zlo: F::Int; |
59 | let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi(); |
60 | |
61 | // Exponent result of multiplication |
62 | let mut e: i32 = nx.e + ny.e; |
63 | // Needed shift to align `z` to the multiplication result |
64 | let mut d: i32 = nz.e - e; |
65 | let sbits = F::BITS as i32; |
66 | |
67 | // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz) |
68 | if d > 0 { |
69 | // The magnitude of `z` is larger than `x * y` |
70 | if d < sbits { |
71 | // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift |
72 | // it into `(zhi, zlo)`. No exponent adjustment necessary. |
73 | zlo = nz.m << d; |
74 | zhi = nz.m >> (sbits - d); |
75 | } else { |
76 | // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts |
77 | // as a shift by `sbits`). |
78 | zlo = zero; |
79 | zhi = nz.m; |
80 | d -= sbits; |
81 | |
82 | // `z`'s exponent is large enough that it now needs to be taken into account. |
83 | e = nz.e - sbits; |
84 | |
85 | if d == 0 { |
86 | // Exactly `sbits`, nothing to do |
87 | } else if d < sbits { |
88 | // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y` |
89 | rlo = (rhi << (sbits - d)) | (rlo >> d); |
90 | // Set the sticky bit |
91 | rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero); |
92 | rhi = rhi >> d; |
93 | } else { |
94 | // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set |
95 | // the sticky bit. |
96 | rlo = one; |
97 | rhi = zero; |
98 | } |
99 | } |
100 | } else { |
101 | // `z`'s magnitude once shifted fits entirely within `zlo` |
102 | zhi = zero; |
103 | d = -d; |
104 | if d == 0 { |
105 | // No shift needed |
106 | zlo = nz.m; |
107 | } else if d < sbits { |
108 | // Shift s.t. `nz.m` fits into `zlo` |
109 | let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero); |
110 | zlo = (nz.m >> d) | sticky; |
111 | } else { |
112 | // Would be entirely shifted out, only set the sticky bit |
113 | zlo = one; |
114 | } |
115 | } |
116 | |
117 | /* addition */ |
118 | |
119 | let mut neg = nx.neg ^ ny.neg; |
120 | let samesign: bool = !neg ^ nz.neg; |
121 | let mut rhi_nonzero = true; |
122 | |
123 | if samesign { |
124 | // r += z |
125 | rlo = rlo.wrapping_add(zlo); |
126 | rhi += zhi + IntTy::<F>::from(rlo < zlo); |
127 | } else { |
128 | // r -= z |
129 | let (res, borrow) = rlo.overflowing_sub(zlo); |
130 | rlo = res; |
131 | rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow))); |
132 | if (rhi >> (F::BITS - 1)) != zero { |
133 | rlo = rlo.signed().wrapping_neg().unsigned(); |
134 | rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero); |
135 | neg = !neg; |
136 | } |
137 | rhi_nonzero = rhi != zero; |
138 | } |
139 | |
140 | /* Construct result */ |
141 | |
142 | // Shift result into `rhi`, left-aligned. Last bit is sticky |
143 | if rhi_nonzero { |
144 | // `d` > 0, need to shift both `rhi` and `rlo` into result |
145 | e += sbits; |
146 | d = rhi.leading_zeros() as i32 - 1; |
147 | rhi = (rhi << d) | (rlo >> (sbits - d)); |
148 | // Update sticky |
149 | rhi |= IntTy::<F>::from((rlo << d) != zero); |
150 | } else if rlo != zero { |
151 | // `rhi` is zero, `rlo` is the entire result and needs to be shifted |
152 | d = rlo.leading_zeros() as i32 - 1; |
153 | if d < 0 { |
154 | // Shift and set sticky |
155 | rhi = (rlo >> 1) | (rlo & one); |
156 | } else { |
157 | rhi = rlo << d; |
158 | } |
159 | } else { |
160 | // exact +/- 0.0 |
161 | return FpResult::ok(x * y + z); |
162 | } |
163 | |
164 | e -= d; |
165 | |
166 | // Use int->float conversion to populate the significand. |
167 | // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1] |
168 | let mut i: F::SignedInt = rhi.signed(); |
169 | |
170 | if neg { |
171 | i = -i; |
172 | } |
173 | |
174 | // `|r|` is in `[0x1p62,0x1p63]` for `f64` |
175 | let mut r: F = F::cast_from_lossy(i); |
176 | |
177 | /* Account for subnormal and rounding */ |
178 | |
179 | // Unbiased exponent for the maximum value of `r` |
180 | let max_pow = F::BITS - 1 + F::EXP_BIAS; |
181 | |
182 | let mut status = Status::OK; |
183 | |
184 | if e < -(max_pow as i32 - 2) { |
185 | // Result is subnormal before rounding |
186 | if e == -(max_pow as i32 - 1) { |
187 | let mut c = F::from_parts(false, max_pow, zero); |
188 | if neg { |
189 | c = -c; |
190 | } |
191 | |
192 | if r == c { |
193 | // Min normal after rounding, |
194 | status.set_underflow(true); |
195 | r = F::MIN_POSITIVE_NORMAL.copysign(r); |
196 | return FpResult::new(r, status); |
197 | } |
198 | |
199 | if (rhi << (F::SIG_BITS + 1)) != zero { |
200 | // Account for truncated bits. One bit will be lost in the `scalbn` call, add |
201 | // another top bit to avoid double rounding if inexact. |
202 | let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2)); |
203 | i = iu.signed(); |
204 | |
205 | if neg { |
206 | i = -i; |
207 | } |
208 | |
209 | r = F::cast_from_lossy(i); |
210 | |
211 | // Remove the top bit |
212 | r = F::cast_from(2i8) * r - c; |
213 | status.set_underflow(true); |
214 | } |
215 | } else { |
216 | // Only round once when scaled |
217 | d = F::EXP_BITS as i32 - 1; |
218 | let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero); |
219 | i = (((rhi >> d) | sticky) << d).signed(); |
220 | |
221 | if neg { |
222 | i = -i; |
223 | } |
224 | |
225 | r = F::cast_from_lossy(i); |
226 | } |
227 | } |
228 | |
229 | // Use our exponent to scale the final value. |
230 | FpResult::new(super::generic::scalbn(r, e), status) |
231 | } |
232 | |
233 | /// Representation of `F` that has handled subnormals. |
234 | #[derive (Clone, Copy, Debug)] |
235 | struct Norm<F: Float> { |
236 | /// Normalized significand with one guard bit, unsigned. |
237 | m: F::Int, |
238 | /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa |
239 | /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`. |
240 | e: i32, |
241 | neg: bool, |
242 | } |
243 | |
244 | impl<F: Float> Norm<F> { |
245 | /// Unbias the exponent and account for the mantissa's precision, including the guard bit. |
246 | const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1; |
247 | |
248 | /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we |
249 | /// adjusted the exponent such that it exceeds this threashold. |
250 | const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS; |
251 | |
252 | fn from_float(x: F) -> Self { |
253 | let mut ix = x.to_bits(); |
254 | let mut e = x.ex() as i32; |
255 | let neg = x.is_sign_negative(); |
256 | if e == 0 { |
257 | // Normalize subnormals by multiplication |
258 | let scale_i = F::BITS - 1; |
259 | let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO); |
260 | let scaled = x * scale_f; |
261 | ix = scaled.to_bits(); |
262 | e = scaled.ex() as i32; |
263 | e = if e == 0 { |
264 | // If the exponent is still zero, the input was zero. Artifically set this value |
265 | // such that the final `e` will exceed `ZERO_INF_NAN`. |
266 | 1 << F::EXP_BITS |
267 | } else { |
268 | // Otherwise, account for the scaling we just did. |
269 | e - scale_i as i32 |
270 | }; |
271 | } |
272 | |
273 | e -= Self::EXP_UNBIAS as i32; |
274 | |
275 | // Absolute value, set the implicit bit, and shift to create a guard bit |
276 | ix &= F::SIG_MASK; |
277 | ix |= F::IMPLICIT_BIT; |
278 | ix <<= 1; |
279 | |
280 | Self { m: ix, e, neg } |
281 | } |
282 | |
283 | /// True if the value was zero, infinity, or NaN. |
284 | fn is_zero_nan_inf(self) -> bool { |
285 | self.e >= Self::ZERO_INF_NAN as i32 |
286 | } |
287 | |
288 | /// The only value we have |
289 | fn is_zero(self) -> bool { |
290 | // The only exponent that strictly exceeds this value is our sentinel value for zero. |
291 | self.e > Self::ZERO_INF_NAN as i32 |
292 | } |
293 | } |
294 | |
295 | #[cfg (test)] |
296 | mod tests { |
297 | use super::*; |
298 | |
299 | /// Test the generic `fma_round` algorithm for a given float. |
300 | fn spec_test<F>() |
301 | where |
302 | F: Float, |
303 | F: CastFrom<F::SignedInt>, |
304 | F: CastFrom<i8>, |
305 | F::Int: HInt, |
306 | u32: CastInto<F::Int>, |
307 | { |
308 | let x = F::from_bits(F::Int::ONE); |
309 | let y = F::from_bits(F::Int::ONE); |
310 | let z = F::ZERO; |
311 | |
312 | let fma = |x, y, z| fma_round(x, y, z, Round::Nearest).val; |
313 | |
314 | // 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of |
315 | // fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the |
316 | // exact result" |
317 | assert_biteq!(fma(x, y, z), F::ZERO); |
318 | assert_biteq!(fma(x, -y, z), F::NEG_ZERO); |
319 | assert_biteq!(fma(-x, y, z), F::NEG_ZERO); |
320 | assert_biteq!(fma(-x, -y, z), F::ZERO); |
321 | } |
322 | |
323 | #[test ] |
324 | fn spec_test_f32() { |
325 | spec_test::<f32>(); |
326 | } |
327 | |
328 | #[test ] |
329 | fn spec_test_f64() { |
330 | spec_test::<f64>(); |
331 | |
332 | let expect_underflow = [ |
333 | ( |
334 | hf64!("0x1.0p-1070" ), |
335 | hf64!("0x1.0p-1070" ), |
336 | hf64!("0x1.ffffffffffffp-1023" ), |
337 | hf64!("0x0.ffffffffffff8p-1022" ), |
338 | ), |
339 | ( |
340 | // FIXME: we raise underflow but this should only be inexact (based on C and |
341 | // `rustc_apfloat`). |
342 | hf64!("0x1.0p-1070" ), |
343 | hf64!("0x1.0p-1070" ), |
344 | hf64!("-0x1.0p-1022" ), |
345 | hf64!("-0x1.0p-1022" ), |
346 | ), |
347 | ]; |
348 | |
349 | for (x, y, z, res) in expect_underflow { |
350 | let FpResult { val, status } = fma_round(x, y, z, Round::Nearest); |
351 | assert_biteq!(val, res); |
352 | assert_eq!(status, Status::UNDERFLOW); |
353 | } |
354 | } |
355 | |
356 | #[test ] |
357 | #[cfg (f128_enabled)] |
358 | fn spec_test_f128() { |
359 | spec_test::<f128>(); |
360 | } |
361 | |
362 | #[test ] |
363 | fn fma_segfault() { |
364 | // These two inputs cause fma to segfault on release due to overflow: |
365 | assert_eq!( |
366 | fma( |
367 | -0.0000000000000002220446049250313, |
368 | -0.0000000000000002220446049250313, |
369 | -0.0000000000000002220446049250313 |
370 | ), |
371 | -0.00000000000000022204460492503126, |
372 | ); |
373 | |
374 | let result = fma(-0.992, -0.992, -0.992); |
375 | //force rounding to storage format on x87 to prevent superious errors. |
376 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
377 | let result = force_eval!(result); |
378 | assert_eq!(result, -0.007936000000000007,); |
379 | } |
380 | |
381 | #[test ] |
382 | fn fma_sbb() { |
383 | assert_eq!(fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), -3991680619069439e277); |
384 | } |
385 | |
386 | #[test ] |
387 | fn fma_underflow() { |
388 | assert_eq!(fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), 0.0,); |
389 | } |
390 | } |
391 | |