| 1 | use core::{fmt, mem, ops}; |
| 2 | |
| 3 | use super::int_traits::{CastFrom, Int, MinInt}; |
| 4 | |
| 5 | /// Trait for some basic operations on floats |
| 6 | // #[allow(dead_code)] |
| 7 | pub trait Float: |
| 8 | Copy |
| 9 | + fmt::Debug |
| 10 | + PartialEq |
| 11 | + PartialOrd |
| 12 | + ops::AddAssign |
| 13 | + ops::MulAssign |
| 14 | + ops::Add<Output = Self> |
| 15 | + ops::Sub<Output = Self> |
| 16 | + ops::Mul<Output = Self> |
| 17 | + ops::Div<Output = Self> |
| 18 | + ops::Rem<Output = Self> |
| 19 | + ops::Neg<Output = Self> |
| 20 | + 'static |
| 21 | { |
| 22 | /// A uint of the same width as the float |
| 23 | type Int: Int<OtherSign = Self::SignedInt, Unsigned = Self::Int>; |
| 24 | |
| 25 | /// A int of the same width as the float |
| 26 | type SignedInt: Int |
| 27 | + MinInt<OtherSign = Self::Int, Unsigned = Self::Int> |
| 28 | + ops::Neg<Output = Self::SignedInt>; |
| 29 | |
| 30 | const ZERO: Self; |
| 31 | const NEG_ZERO: Self; |
| 32 | const ONE: Self; |
| 33 | const NEG_ONE: Self; |
| 34 | const INFINITY: Self; |
| 35 | const NEG_INFINITY: Self; |
| 36 | const NAN: Self; |
| 37 | const MAX: Self; |
| 38 | const MIN: Self; |
| 39 | const EPSILON: Self; |
| 40 | const PI: Self; |
| 41 | const NEG_PI: Self; |
| 42 | const FRAC_PI_2: Self; |
| 43 | |
| 44 | const MIN_POSITIVE_NORMAL: Self; |
| 45 | |
| 46 | /// The bitwidth of the float type |
| 47 | const BITS: u32; |
| 48 | |
| 49 | /// The bitwidth of the significand |
| 50 | const SIG_BITS: u32; |
| 51 | |
| 52 | /// The bitwidth of the exponent |
| 53 | const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1; |
| 54 | |
| 55 | /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite |
| 56 | /// representation. |
| 57 | /// |
| 58 | /// This shifted fully right, use `EXP_MASK` for the shifted value. |
| 59 | const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1; |
| 60 | |
| 61 | /// The exponent bias value |
| 62 | const EXP_BIAS: u32 = Self::EXP_SAT >> 1; |
| 63 | |
| 64 | /// Maximum unbiased exponent value. |
| 65 | const EXP_MAX: i32 = Self::EXP_BIAS as i32; |
| 66 | |
| 67 | /// Minimum *NORMAL* unbiased exponent value. |
| 68 | const EXP_MIN: i32 = -(Self::EXP_MAX - 1); |
| 69 | |
| 70 | /// Minimum subnormal exponent value. |
| 71 | const EXP_MIN_SUBNORM: i32 = Self::EXP_MIN - Self::SIG_BITS as i32; |
| 72 | |
| 73 | /// A mask for the sign bit |
| 74 | const SIGN_MASK: Self::Int; |
| 75 | |
| 76 | /// A mask for the significand |
| 77 | const SIG_MASK: Self::Int; |
| 78 | |
| 79 | /// A mask for the exponent |
| 80 | const EXP_MASK: Self::Int; |
| 81 | |
| 82 | /// The implicit bit of the float format |
| 83 | const IMPLICIT_BIT: Self::Int; |
| 84 | |
| 85 | /// Returns `self` transmuted to `Self::Int` |
| 86 | fn to_bits(self) -> Self::Int; |
| 87 | |
| 88 | /// Returns `self` transmuted to `Self::SignedInt` |
| 89 | #[allow (dead_code)] |
| 90 | fn to_bits_signed(self) -> Self::SignedInt { |
| 91 | self.to_bits().signed() |
| 92 | } |
| 93 | |
| 94 | /// Check bitwise equality. |
| 95 | #[allow (dead_code)] |
| 96 | fn biteq(self, rhs: Self) -> bool { |
| 97 | self.to_bits() == rhs.to_bits() |
| 98 | } |
| 99 | |
| 100 | /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be |
| 101 | /// represented in multiple different ways. |
| 102 | /// |
| 103 | /// This method returns `true` if two NaNs are compared. Use [`biteq`](Self::biteq) instead |
| 104 | /// if `NaN` should not be treated separately. |
| 105 | #[allow (dead_code)] |
| 106 | fn eq_repr(self, rhs: Self) -> bool { |
| 107 | if self.is_nan() && rhs.is_nan() { true } else { self.biteq(rhs) } |
| 108 | } |
| 109 | |
| 110 | /// Returns true if the value is NaN. |
| 111 | fn is_nan(self) -> bool; |
| 112 | |
| 113 | /// Returns true if the value is +inf or -inf. |
| 114 | fn is_infinite(self) -> bool; |
| 115 | |
| 116 | /// Returns true if the sign is negative. Extracts the sign bit regardless of zero or NaN. |
| 117 | fn is_sign_negative(self) -> bool; |
| 118 | |
| 119 | /// Returns true if the sign is positive. Extracts the sign bit regardless of zero or NaN. |
| 120 | fn is_sign_positive(self) -> bool { |
| 121 | !self.is_sign_negative() |
| 122 | } |
| 123 | |
| 124 | /// Returns if `self` is subnormal. |
| 125 | #[allow (dead_code)] |
| 126 | fn is_subnormal(self) -> bool { |
| 127 | (self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO |
| 128 | } |
| 129 | |
| 130 | /// Returns the exponent, not adjusting for bias, not accounting for subnormals or zero. |
| 131 | fn ex(self) -> u32 { |
| 132 | u32::cast_from(self.to_bits() >> Self::SIG_BITS) & Self::EXP_SAT |
| 133 | } |
| 134 | |
| 135 | /// Extract the exponent and adjust it for bias, not accounting for subnormals or zero. |
| 136 | fn exp_unbiased(self) -> i32 { |
| 137 | self.ex().signed() - (Self::EXP_BIAS as i32) |
| 138 | } |
| 139 | |
| 140 | /// Returns the significand with no implicit bit (or the "fractional" part) |
| 141 | #[allow (dead_code)] |
| 142 | fn frac(self) -> Self::Int { |
| 143 | self.to_bits() & Self::SIG_MASK |
| 144 | } |
| 145 | |
| 146 | /// Returns a `Self::Int` transmuted back to `Self` |
| 147 | fn from_bits(a: Self::Int) -> Self; |
| 148 | |
| 149 | /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position. |
| 150 | fn from_parts(negative: bool, exponent: u32, significand: Self::Int) -> Self { |
| 151 | let sign = if negative { Self::Int::ONE } else { Self::Int::ZERO }; |
| 152 | Self::from_bits( |
| 153 | (sign << (Self::BITS - 1)) |
| 154 | | (Self::Int::cast_from(exponent & Self::EXP_SAT) << Self::SIG_BITS) |
| 155 | | (significand & Self::SIG_MASK), |
| 156 | ) |
| 157 | } |
| 158 | |
| 159 | #[allow (dead_code)] |
| 160 | fn abs(self) -> Self; |
| 161 | |
| 162 | /// Returns a number composed of the magnitude of self and the sign of sign. |
| 163 | fn copysign(self, other: Self) -> Self; |
| 164 | |
| 165 | /// Fused multiply add, rounding once. |
| 166 | fn fma(self, y: Self, z: Self) -> Self; |
| 167 | |
| 168 | /// Returns (normalized exponent, normalized significand) |
| 169 | #[allow (dead_code)] |
| 170 | fn normalize(significand: Self::Int) -> (i32, Self::Int); |
| 171 | |
| 172 | /// Returns a number that represents the sign of self. |
| 173 | #[allow (dead_code)] |
| 174 | fn signum(self) -> Self { |
| 175 | if self.is_nan() { self } else { Self::ONE.copysign(self) } |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /// Access the associated `Int` type from a float (helper to avoid ambiguous associated types). |
| 180 | pub type IntTy<F> = <F as Float>::Int; |
| 181 | |
| 182 | macro_rules! float_impl { |
| 183 | ( |
| 184 | $ty:ident, |
| 185 | $ity:ident, |
| 186 | $sity:ident, |
| 187 | $bits:expr, |
| 188 | $significand_bits:expr, |
| 189 | $from_bits:path, |
| 190 | $fma_fn:ident, |
| 191 | $fma_intrinsic:ident |
| 192 | ) => { |
| 193 | impl Float for $ty { |
| 194 | type Int = $ity; |
| 195 | type SignedInt = $sity; |
| 196 | |
| 197 | const ZERO: Self = 0.0; |
| 198 | const NEG_ZERO: Self = -0.0; |
| 199 | const ONE: Self = 1.0; |
| 200 | const NEG_ONE: Self = -1.0; |
| 201 | const INFINITY: Self = Self::INFINITY; |
| 202 | const NEG_INFINITY: Self = Self::NEG_INFINITY; |
| 203 | const NAN: Self = Self::NAN; |
| 204 | const MAX: Self = -Self::MIN; |
| 205 | // Sign bit set, saturated mantissa, saturated exponent with last bit zeroed |
| 206 | const MIN: Self = $from_bits(Self::Int::MAX & !(1 << Self::SIG_BITS)); |
| 207 | const EPSILON: Self = <$ty>::EPSILON; |
| 208 | |
| 209 | // Exponent is a 1 in the LSB |
| 210 | const MIN_POSITIVE_NORMAL: Self = $from_bits(1 << Self::SIG_BITS); |
| 211 | |
| 212 | const PI: Self = core::$ty::consts::PI; |
| 213 | const NEG_PI: Self = -Self::PI; |
| 214 | const FRAC_PI_2: Self = core::$ty::consts::FRAC_PI_2; |
| 215 | |
| 216 | const BITS: u32 = $bits; |
| 217 | const SIG_BITS: u32 = $significand_bits; |
| 218 | |
| 219 | const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1); |
| 220 | const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1; |
| 221 | const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK); |
| 222 | const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS; |
| 223 | |
| 224 | fn to_bits(self) -> Self::Int { |
| 225 | self.to_bits() |
| 226 | } |
| 227 | fn is_nan(self) -> bool { |
| 228 | self.is_nan() |
| 229 | } |
| 230 | fn is_infinite(self) -> bool { |
| 231 | self.is_infinite() |
| 232 | } |
| 233 | fn is_sign_negative(self) -> bool { |
| 234 | self.is_sign_negative() |
| 235 | } |
| 236 | fn from_bits(a: Self::Int) -> Self { |
| 237 | Self::from_bits(a) |
| 238 | } |
| 239 | fn abs(self) -> Self { |
| 240 | cfg_if! { |
| 241 | // FIXME(msrv): `abs` is available in `core` starting with 1.85. |
| 242 | if #[cfg(intrinsics_enabled)] { |
| 243 | self.abs() |
| 244 | } else { |
| 245 | super::super::generic::fabs(self) |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | fn copysign(self, other: Self) -> Self { |
| 250 | cfg_if! { |
| 251 | // FIXME(msrv): `copysign` is available in `core` starting with 1.85. |
| 252 | if #[cfg(intrinsics_enabled)] { |
| 253 | self.copysign(other) |
| 254 | } else { |
| 255 | super::super::generic::copysign(self, other) |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | fn fma(self, y: Self, z: Self) -> Self { |
| 260 | cfg_if! { |
| 261 | // fma is not yet available in `core` |
| 262 | if #[cfg(intrinsics_enabled)] { |
| 263 | unsafe{ core::intrinsics::$fma_intrinsic(self, y, z) } |
| 264 | } else { |
| 265 | super::super::$fma_fn(self, y, z) |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | fn normalize(significand: Self::Int) -> (i32, Self::Int) { |
| 270 | let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS); |
| 271 | (1i32.wrapping_sub(shift as i32), significand << shift as Self::Int) |
| 272 | } |
| 273 | } |
| 274 | }; |
| 275 | } |
| 276 | |
| 277 | #[cfg (f16_enabled)] |
| 278 | float_impl!(f16, u16, i16, 16, 10, f16::from_bits, fmaf16, fmaf16); |
| 279 | float_impl!(f32, u32, i32, 32, 23, f32_from_bits, fmaf, fmaf32); |
| 280 | float_impl!(f64, u64, i64, 64, 52, f64_from_bits, fma, fmaf64); |
| 281 | #[cfg (f128_enabled)] |
| 282 | float_impl!(f128, u128, i128, 128, 112, f128::from_bits, fmaf128, fmaf128); |
| 283 | |
| 284 | /* FIXME(msrv): vendor some things that are not const stable at our MSRV */ |
| 285 | |
| 286 | /// `f32::from_bits` |
| 287 | pub const fn f32_from_bits(bits: u32) -> f32 { |
| 288 | // SAFETY: POD cast with no preconditions |
| 289 | unsafe { mem::transmute::<u32, f32>(src:bits) } |
| 290 | } |
| 291 | |
| 292 | /// `f64::from_bits` |
| 293 | pub const fn f64_from_bits(bits: u64) -> f64 { |
| 294 | // SAFETY: POD cast with no preconditions |
| 295 | unsafe { mem::transmute::<u64, f64>(src:bits) } |
| 296 | } |
| 297 | |
| 298 | /// Trait for floats twice the bit width of another integer. |
| 299 | pub trait DFloat: Float { |
| 300 | /// Float that is half the bit width of the floatthis trait is implemented for. |
| 301 | type H: HFloat<D = Self>; |
| 302 | |
| 303 | /// Narrow the float type. |
| 304 | fn narrow(self) -> Self::H; |
| 305 | } |
| 306 | |
| 307 | /// Trait for floats half the bit width of another float. |
| 308 | pub trait HFloat: Float { |
| 309 | /// Float that is double the bit width of the float this trait is implemented for. |
| 310 | type D: DFloat<H = Self>; |
| 311 | |
| 312 | /// Widen the float type. |
| 313 | fn widen(self) -> Self::D; |
| 314 | } |
| 315 | |
| 316 | macro_rules! impl_d_float { |
| 317 | ($($X:ident $D:ident),*) => { |
| 318 | $( |
| 319 | impl DFloat for $D { |
| 320 | type H = $X; |
| 321 | |
| 322 | fn narrow(self) -> Self::H { |
| 323 | self as $X |
| 324 | } |
| 325 | } |
| 326 | )* |
| 327 | }; |
| 328 | } |
| 329 | |
| 330 | macro_rules! impl_h_float { |
| 331 | ($($H:ident $X:ident),*) => { |
| 332 | $( |
| 333 | impl HFloat for $H { |
| 334 | type D = $X; |
| 335 | |
| 336 | fn widen(self) -> Self::D { |
| 337 | self as $X |
| 338 | } |
| 339 | } |
| 340 | )* |
| 341 | }; |
| 342 | } |
| 343 | |
| 344 | impl_d_float!(f32 f64); |
| 345 | #[cfg (f16_enabled)] |
| 346 | impl_d_float!(f16 f32); |
| 347 | #[cfg (f128_enabled)] |
| 348 | impl_d_float!(f64 f128); |
| 349 | |
| 350 | impl_h_float!(f32 f64); |
| 351 | #[cfg (f16_enabled)] |
| 352 | impl_h_float!(f16 f32); |
| 353 | #[cfg (f128_enabled)] |
| 354 | impl_h_float!(f64 f128); |
| 355 | |
| 356 | #[cfg (test)] |
| 357 | mod tests { |
| 358 | use super::*; |
| 359 | |
| 360 | #[test ] |
| 361 | #[cfg (f16_enabled)] |
| 362 | fn check_f16() { |
| 363 | // Constants |
| 364 | assert_eq!(f16::EXP_SAT, 0b11111); |
| 365 | assert_eq!(f16::EXP_BIAS, 15); |
| 366 | assert_eq!(f16::EXP_MAX, 15); |
| 367 | assert_eq!(f16::EXP_MIN, -14); |
| 368 | assert_eq!(f16::EXP_MIN_SUBNORM, -24); |
| 369 | |
| 370 | // `exp_unbiased` |
| 371 | assert_eq!(f16::FRAC_PI_2.exp_unbiased(), 0); |
| 372 | assert_eq!((1.0f16 / 2.0).exp_unbiased(), -1); |
| 373 | assert_eq!(f16::MAX.exp_unbiased(), 15); |
| 374 | assert_eq!(f16::MIN.exp_unbiased(), 15); |
| 375 | assert_eq!(f16::MIN_POSITIVE.exp_unbiased(), -14); |
| 376 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 377 | // results for zero and subnormals. |
| 378 | assert_eq!(f16::ZERO.exp_unbiased(), -15); |
| 379 | assert_eq!(f16::from_bits(0x1).exp_unbiased(), -15); |
| 380 | assert_eq!(f16::MIN_POSITIVE, f16::MIN_POSITIVE_NORMAL); |
| 381 | |
| 382 | // `from_parts` |
| 383 | assert_biteq!(f16::from_parts(true, f16::EXP_BIAS, 0), -1.0f16); |
| 384 | assert_biteq!(f16::from_parts(false, 0, 1), f16::from_bits(0x1)); |
| 385 | } |
| 386 | |
| 387 | #[test ] |
| 388 | fn check_f32() { |
| 389 | // Constants |
| 390 | assert_eq!(f32::EXP_SAT, 0b11111111); |
| 391 | assert_eq!(f32::EXP_BIAS, 127); |
| 392 | assert_eq!(f32::EXP_MAX, 127); |
| 393 | assert_eq!(f32::EXP_MIN, -126); |
| 394 | assert_eq!(f32::EXP_MIN_SUBNORM, -149); |
| 395 | |
| 396 | // `exp_unbiased` |
| 397 | assert_eq!(f32::FRAC_PI_2.exp_unbiased(), 0); |
| 398 | assert_eq!((1.0f32 / 2.0).exp_unbiased(), -1); |
| 399 | assert_eq!(f32::MAX.exp_unbiased(), 127); |
| 400 | assert_eq!(f32::MIN.exp_unbiased(), 127); |
| 401 | assert_eq!(f32::MIN_POSITIVE.exp_unbiased(), -126); |
| 402 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 403 | // results for zero and subnormals. |
| 404 | assert_eq!(f32::ZERO.exp_unbiased(), -127); |
| 405 | assert_eq!(f32::from_bits(0x1).exp_unbiased(), -127); |
| 406 | assert_eq!(f32::MIN_POSITIVE, f32::MIN_POSITIVE_NORMAL); |
| 407 | |
| 408 | // `from_parts` |
| 409 | assert_biteq!(f32::from_parts(true, f32::EXP_BIAS, 0), -1.0f32); |
| 410 | assert_biteq!(f32::from_parts(false, 10 + f32::EXP_BIAS, 0), hf32!("0x1p10" )); |
| 411 | assert_biteq!(f32::from_parts(false, 0, 1), f32::from_bits(0x1)); |
| 412 | } |
| 413 | |
| 414 | #[test ] |
| 415 | fn check_f64() { |
| 416 | // Constants |
| 417 | assert_eq!(f64::EXP_SAT, 0b11111111111); |
| 418 | assert_eq!(f64::EXP_BIAS, 1023); |
| 419 | assert_eq!(f64::EXP_MAX, 1023); |
| 420 | assert_eq!(f64::EXP_MIN, -1022); |
| 421 | assert_eq!(f64::EXP_MIN_SUBNORM, -1074); |
| 422 | |
| 423 | // `exp_unbiased` |
| 424 | assert_eq!(f64::FRAC_PI_2.exp_unbiased(), 0); |
| 425 | assert_eq!((1.0f64 / 2.0).exp_unbiased(), -1); |
| 426 | assert_eq!(f64::MAX.exp_unbiased(), 1023); |
| 427 | assert_eq!(f64::MIN.exp_unbiased(), 1023); |
| 428 | assert_eq!(f64::MIN_POSITIVE.exp_unbiased(), -1022); |
| 429 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 430 | // results for zero and subnormals. |
| 431 | assert_eq!(f64::ZERO.exp_unbiased(), -1023); |
| 432 | assert_eq!(f64::from_bits(0x1).exp_unbiased(), -1023); |
| 433 | assert_eq!(f64::MIN_POSITIVE, f64::MIN_POSITIVE_NORMAL); |
| 434 | |
| 435 | // `from_parts` |
| 436 | assert_biteq!(f64::from_parts(true, f64::EXP_BIAS, 0), -1.0f64); |
| 437 | assert_biteq!(f64::from_parts(false, 10 + f64::EXP_BIAS, 0), hf64!("0x1p10" )); |
| 438 | assert_biteq!(f64::from_parts(false, 0, 1), f64::from_bits(0x1)); |
| 439 | } |
| 440 | |
| 441 | #[test ] |
| 442 | #[cfg (f128_enabled)] |
| 443 | fn check_f128() { |
| 444 | // Constants |
| 445 | assert_eq!(f128::EXP_SAT, 0b111111111111111); |
| 446 | assert_eq!(f128::EXP_BIAS, 16383); |
| 447 | assert_eq!(f128::EXP_MAX, 16383); |
| 448 | assert_eq!(f128::EXP_MIN, -16382); |
| 449 | assert_eq!(f128::EXP_MIN_SUBNORM, -16494); |
| 450 | |
| 451 | // `exp_unbiased` |
| 452 | assert_eq!(f128::FRAC_PI_2.exp_unbiased(), 0); |
| 453 | assert_eq!((1.0f128 / 2.0).exp_unbiased(), -1); |
| 454 | assert_eq!(f128::MAX.exp_unbiased(), 16383); |
| 455 | assert_eq!(f128::MIN.exp_unbiased(), 16383); |
| 456 | assert_eq!(f128::MIN_POSITIVE.exp_unbiased(), -16382); |
| 457 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 458 | // results for zero and subnormals. |
| 459 | assert_eq!(f128::ZERO.exp_unbiased(), -16383); |
| 460 | assert_eq!(f128::from_bits(0x1).exp_unbiased(), -16383); |
| 461 | assert_eq!(f128::MIN_POSITIVE, f128::MIN_POSITIVE_NORMAL); |
| 462 | |
| 463 | // `from_parts` |
| 464 | assert_biteq!(f128::from_parts(true, f128::EXP_BIAS, 0), -1.0f128); |
| 465 | assert_biteq!(f128::from_parts(false, 0, 1), f128::from_bits(0x1)); |
| 466 | } |
| 467 | } |
| 468 | |