1 | /* SPDX-License-Identifier: MIT */ |
2 | /* origin: musl src/math/sqrt.c. Ported to generic Rust algorithm in 2025, TG. */ |
3 | |
4 | //! Generic square root algorithm. |
5 | //! |
6 | //! This routine operates around `m_u2`, a U.2 (fixed point with two integral bits) mantissa |
7 | //! within the range [1, 4). A table lookup provides an initial estimate, then goldschmidt |
8 | //! iterations at various widths are used to approach the real values. |
9 | //! |
10 | //! For the iterations, `r` is a U0 number that approaches `1/sqrt(m_u2)`, and `s` is a U2 number |
11 | //! that approaches `sqrt(m_u2)`. Recall that m_u2 ∈ [1, 4). |
12 | //! |
13 | //! With Newton-Raphson iterations, this would be: |
14 | //! |
15 | //! - `w = r * r w ~ 1 / m` |
16 | //! - `u = 3 - m * w u ~ 3 - m * w = 3 - m / m = 2` |
17 | //! - `r = r * u / 2 r ~ r` |
18 | //! |
19 | //! (Note that the righthand column does not show anything analytically meaningful (i.e. r ~ r), |
20 | //! since the value of performing one iteration is in reducing the error representable by `~`). |
21 | //! |
22 | //! Instead of Newton-Raphson iterations, Goldschmidt iterations are used to calculate |
23 | //! `s = m * r`: |
24 | //! |
25 | //! - `s = m * r s ~ m / sqrt(m)` |
26 | //! - `u = 3 - s * r u ~ 3 - (m / sqrt(m)) * (1 / sqrt(m)) = 3 - m / m = 2` |
27 | //! - `r = r * u / 2 r ~ r` |
28 | //! - `s = s * u / 2 s ~ s` |
29 | //! |
30 | //! The above is precise because it uses the original value `m`. There is also a faster version |
31 | //! that performs fewer steps but does not use `m`: |
32 | //! |
33 | //! - `u = 3 - s * r u ~ 3 - 1` |
34 | //! - `r = r * u / 2 r ~ r` |
35 | //! - `s = s * u / 2 s ~ s` |
36 | //! |
37 | //! Rounding errors accumulate faster with the second version, so it is only used for subsequent |
38 | //! iterations within the same width integer. The first version is always used for the first |
39 | //! iteration at a new width in order to avoid this accumulation. |
40 | //! |
41 | //! Goldschmidt has the advantage over Newton-Raphson that `sqrt(x)` and `1/sqrt(x)` are |
42 | //! computed at the same time, i.e. there is no need to calculate `1/sqrt(x)` and invert it. |
43 | |
44 | use super::super::support::{FpResult, IntTy, Round, Status, cold_path}; |
45 | use super::super::{CastFrom, CastInto, DInt, Float, HInt, Int, MinInt}; |
46 | |
47 | pub fn sqrt<F>(x: F) -> F |
48 | where |
49 | F: Float + SqrtHelper, |
50 | F::Int: HInt, |
51 | F::Int: From<u8>, |
52 | F::Int: From<F::ISet2>, |
53 | F::Int: CastInto<F::ISet1>, |
54 | F::Int: CastInto<F::ISet2>, |
55 | u32: CastInto<F::Int>, |
56 | { |
57 | sqrt_round(x, Round::Nearest).val |
58 | } |
59 | |
60 | pub fn sqrt_round<F>(x: F, _round: Round) -> FpResult<F> |
61 | where |
62 | F: Float + SqrtHelper, |
63 | F::Int: HInt, |
64 | F::Int: From<u8>, |
65 | F::Int: From<F::ISet2>, |
66 | F::Int: CastInto<F::ISet1>, |
67 | F::Int: CastInto<F::ISet2>, |
68 | u32: CastInto<F::Int>, |
69 | { |
70 | let zero = IntTy::<F>::ZERO; |
71 | let one = IntTy::<F>::ONE; |
72 | |
73 | let mut ix = x.to_bits(); |
74 | |
75 | // Top is the exponent and sign, which may or may not be shifted. If the float fits into a |
76 | // `u32`, we can get by without paying shifting costs. |
77 | let noshift = F::BITS <= u32::BITS; |
78 | let (mut top, special_case) = if noshift { |
79 | let exp_lsb = one << F::SIG_BITS; |
80 | let special_case = ix.wrapping_sub(exp_lsb) >= F::EXP_MASK - exp_lsb; |
81 | (Exp::NoShift(()), special_case) |
82 | } else { |
83 | let top = u32::cast_from(ix >> F::SIG_BITS); |
84 | let special_case = top.wrapping_sub(1) >= F::EXP_SAT - 1; |
85 | (Exp::Shifted(top), special_case) |
86 | }; |
87 | |
88 | // Handle NaN, zero, and out of domain (<= 0) |
89 | if special_case { |
90 | cold_path(); |
91 | |
92 | // +/-0 |
93 | if ix << 1 == zero { |
94 | return FpResult::ok(x); |
95 | } |
96 | |
97 | // Positive infinity |
98 | if ix == F::EXP_MASK { |
99 | return FpResult::ok(x); |
100 | } |
101 | |
102 | // NaN or negative |
103 | if ix > F::EXP_MASK { |
104 | return FpResult::new(F::NAN, Status::INVALID); |
105 | } |
106 | |
107 | // Normalize subnormals by multiplying by 1.0 << SIG_BITS (e.g. 0x1p52 for doubles). |
108 | let scaled = x * F::from_parts(false, F::SIG_BITS + F::EXP_BIAS, zero); |
109 | ix = scaled.to_bits(); |
110 | match top { |
111 | Exp::Shifted(ref mut v) => { |
112 | *v = scaled.ex(); |
113 | *v = (*v).wrapping_sub(F::SIG_BITS); |
114 | } |
115 | Exp::NoShift(()) => { |
116 | ix = ix.wrapping_sub((F::SIG_BITS << F::SIG_BITS).cast()); |
117 | } |
118 | } |
119 | } |
120 | |
121 | // Reduce arguments such that `x = 4^e * m`: |
122 | // |
123 | // - m_u2 ∈ [1, 4), a fixed point U2.BITS number |
124 | // - 2^e is the exponent part of the result |
125 | let (m_u2, exp) = match top { |
126 | Exp::Shifted(top) => { |
127 | // We now know `x` is positive, so `top` is just its (biased) exponent |
128 | let mut e = top; |
129 | // Construct a fixed point representation of the mantissa. |
130 | let mut m_u2 = (ix | F::IMPLICIT_BIT) << F::EXP_BITS; |
131 | let even = (e & 1) != 0; |
132 | if even { |
133 | m_u2 >>= 1; |
134 | } |
135 | e = (e.wrapping_add(F::EXP_SAT >> 1)) >> 1; |
136 | (m_u2, Exp::Shifted(e)) |
137 | } |
138 | Exp::NoShift(()) => { |
139 | let even = ix & (one << F::SIG_BITS) != zero; |
140 | |
141 | // Exponent part of the return value |
142 | let mut e_noshift = ix >> 1; |
143 | // ey &= (F::EXP_MASK << 2) >> 2; // clear the top exponent bit (result = 1.0) |
144 | e_noshift += (F::EXP_MASK ^ (F::SIGN_MASK >> 1)) >> 1; |
145 | e_noshift &= F::EXP_MASK; |
146 | |
147 | let m1 = (ix << F::EXP_BITS) | F::SIGN_MASK; |
148 | let m0 = (ix << (F::EXP_BITS - 1)) & !F::SIGN_MASK; |
149 | let m_u2 = if even { m0 } else { m1 }; |
150 | |
151 | (m_u2, Exp::NoShift(e_noshift)) |
152 | } |
153 | }; |
154 | |
155 | // Extract the top 6 bits of the significand with the lowest bit of the exponent. |
156 | let i = usize::cast_from(ix >> (F::SIG_BITS - 6)) & 0b1111111; |
157 | |
158 | // Start with an initial guess for `r = 1 / sqrt(m)` from the table, and shift `m` as an |
159 | // initial value for `s = sqrt(m)`. See the module documentation for details. |
160 | let r1_u0: F::ISet1 = F::ISet1::cast_from(RSQRT_TAB[i]) << (F::ISet1::BITS - 16); |
161 | let s1_u2: F::ISet1 = ((m_u2) >> (F::BITS - F::ISet1::BITS)).cast(); |
162 | |
163 | // Perform iterations, if any, at quarter width (used for `f128`). |
164 | let (r1_u0, _s1_u2) = goldschmidt::<F, F::ISet1>(r1_u0, s1_u2, F::SET1_ROUNDS, false); |
165 | |
166 | // Widen values and perform iterations at half width (used for `f64` and `f128`). |
167 | let r2_u0: F::ISet2 = F::ISet2::from(r1_u0) << (F::ISet2::BITS - F::ISet1::BITS); |
168 | let s2_u2: F::ISet2 = ((m_u2) >> (F::BITS - F::ISet2::BITS)).cast(); |
169 | let (r2_u0, _s2_u2) = goldschmidt::<F, F::ISet2>(r2_u0, s2_u2, F::SET2_ROUNDS, false); |
170 | |
171 | // Perform final iterations at full width (used for all float types). |
172 | let r_u0: F::Int = F::Int::from(r2_u0) << (F::BITS - F::ISet2::BITS); |
173 | let s_u2: F::Int = m_u2; |
174 | let (_r_u0, s_u2) = goldschmidt::<F, F::Int>(r_u0, s_u2, F::FINAL_ROUNDS, true); |
175 | |
176 | // Shift back to mantissa position. |
177 | let mut m = s_u2 >> (F::EXP_BITS - 2); |
178 | |
179 | // The musl source includes the following comment (with literals replaced): |
180 | // |
181 | // > s < sqrt(m) < s + 0x1.09p-SIG_BITS |
182 | // > compute nearest rounded result: the nearest result to SIG_BITS bits is either s or |
183 | // > s+0x1p-SIG_BITS, we can decide by comparing (2^SIG_BITS s + 0.5)^2 to 2^(2*SIG_BITS) m. |
184 | // |
185 | // Expanding this with , with `SIG_BITS = p` and adjusting based on the operations done to |
186 | // `d0` and `d1`: |
187 | // |
188 | // - `2^(2p)m ≟ ((2^p)m + 0.5)^2` |
189 | // - `2^(2p)m ≟ 2^(2p)m^2 + (2^p)m + 0.25` |
190 | // - `2^(2p)m - m^2 ≟ (2^(2p) - 1)m^2 + (2^p)m + 0.25` |
191 | // - `(1 - 2^(2p))m + m^2 ≟ (1 - 2^(2p))m^2 + (1 - 2^p)m + 0.25` (?) |
192 | // |
193 | // I do not follow how the rounding bit is extracted from this comparison with the below |
194 | // operations. In any case, the algorithm is well tested. |
195 | |
196 | // The value needed to shift `m_u2` by to create `m*2^(2p)`. `2p = 2 * F::SIG_BITS`, |
197 | // `F::BITS - 2` accounts for the offset that `m_u2` already has. |
198 | let shift = 2 * F::SIG_BITS - (F::BITS - 2); |
199 | |
200 | // `2^(2p)m - m^2` |
201 | let d0 = (m_u2 << shift).wrapping_sub(m.wrapping_mul(m)); |
202 | // `m - 2^(2p)m + m^2` |
203 | let d1 = m.wrapping_sub(d0); |
204 | m += d1 >> (F::BITS - 1); |
205 | m &= F::SIG_MASK; |
206 | |
207 | match exp { |
208 | Exp::Shifted(e) => m |= IntTy::<F>::cast_from(e) << F::SIG_BITS, |
209 | Exp::NoShift(e) => m |= e, |
210 | }; |
211 | |
212 | let mut y = F::from_bits(m); |
213 | |
214 | // FIXME(f16): the fenv math does not work for `f16` |
215 | if F::BITS > 16 { |
216 | // Handle rounding and inexact. `(m + 1)^2 == 2^shift m` is exact; for all other cases, add |
217 | // a tiny value to cause fenv effects. |
218 | let d2 = d1.wrapping_add(m).wrapping_add(one); |
219 | let mut tiny = if d2 == zero { |
220 | cold_path(); |
221 | zero |
222 | } else { |
223 | F::IMPLICIT_BIT |
224 | }; |
225 | |
226 | tiny |= (d1 ^ d2) & F::SIGN_MASK; |
227 | let t = F::from_bits(tiny); |
228 | y = y + t; |
229 | } |
230 | |
231 | FpResult::ok(y) |
232 | } |
233 | |
234 | /// Multiply at the wider integer size, returning the high half. |
235 | fn wmulh<I: HInt>(a: I, b: I) -> I { |
236 | a.widen_mul(b).hi() |
237 | } |
238 | |
239 | /// Perform `count` goldschmidt iterations, returning `(r_u0, s_u?)`. |
240 | /// |
241 | /// - `r_u0` is the reciprocal `r ~ 1 / sqrt(m)`, as U0. |
242 | /// - `s_u2` is the square root, `s ~ sqrt(m)`, as U2. |
243 | /// - `count` is the number of iterations to perform. |
244 | /// - `final_set` should be true if this is the last round (same-sized integer). If so, the |
245 | /// returned `s` will be U3, for later shifting. Otherwise, the returned `s` is U2. |
246 | /// |
247 | /// Note that performance relies on the optimizer being able to unroll these loops (reasonably |
248 | /// trivial, `count` is a constant when called). |
249 | #[inline ] |
250 | fn goldschmidt<F, I>(mut r_u0: I, mut s_u2: I, count: u32, final_set: bool) -> (I, I) |
251 | where |
252 | F: SqrtHelper, |
253 | I: HInt + From<u8>, |
254 | { |
255 | let three_u2 = I::from(0b11u8) << (I::BITS - 2); |
256 | let mut u_u0 = r_u0; |
257 | |
258 | for i in 0..count { |
259 | // First iteration: `s = m*r` (`u_u0 = r_u0` set above) |
260 | // Subsequent iterations: `s=s*u/2` |
261 | s_u2 = wmulh(s_u2, u_u0); |
262 | |
263 | // Perform `s /= 2` if: |
264 | // |
265 | // 1. This is not the first iteration (the first iteration is `s = m*r`)... |
266 | // 2. ... and this is not the last set of iterations |
267 | // 3. ... or, if this is the last set, it is not the last iteration |
268 | // |
269 | // This step is not performed for the final iteration because the shift is combined with |
270 | // a later shift (moving `s` into the mantissa). |
271 | if i > 0 && (!final_set || i + 1 < count) { |
272 | s_u2 <<= 1; |
273 | } |
274 | |
275 | // u = 3 - s*r |
276 | let d_u2 = wmulh(s_u2, r_u0); |
277 | u_u0 = three_u2.wrapping_sub(d_u2); |
278 | |
279 | // r = r*u/2 |
280 | r_u0 = wmulh(r_u0, u_u0) << 1; |
281 | } |
282 | |
283 | (r_u0, s_u2) |
284 | } |
285 | |
286 | /// Representation of whether we shift the exponent into a `u32`, or modify it in place to save |
287 | /// the shift operations. |
288 | enum Exp<T> { |
289 | /// The exponent has been shifted to a `u32` and is LSB-aligned. |
290 | Shifted(u32), |
291 | /// The exponent is in its natural position in integer repr. |
292 | NoShift(T), |
293 | } |
294 | |
295 | /// Size-specific constants related to the square root routine. |
296 | pub trait SqrtHelper: Float { |
297 | /// Integer for the first set of rounds. If unused, set to the same type as the next set. |
298 | type ISet1: HInt + Into<Self::ISet2> + CastFrom<Self::Int> + From<u8>; |
299 | /// Integer for the second set of rounds. If unused, set to the same type as the next set. |
300 | type ISet2: HInt + From<Self::ISet1> + From<u8>; |
301 | |
302 | /// Number of rounds at `ISet1`. |
303 | const SET1_ROUNDS: u32 = 0; |
304 | /// Number of rounds at `ISet2`. |
305 | const SET2_ROUNDS: u32 = 0; |
306 | /// Number of rounds at `Self::Int`. |
307 | const FINAL_ROUNDS: u32; |
308 | } |
309 | |
310 | #[cfg (f16_enabled)] |
311 | impl SqrtHelper for f16 { |
312 | type ISet1 = u16; // unused |
313 | type ISet2 = u16; // unused |
314 | |
315 | const FINAL_ROUNDS: u32 = 2; |
316 | } |
317 | |
318 | impl SqrtHelper for f32 { |
319 | type ISet1 = u32; // unused |
320 | type ISet2 = u32; // unused |
321 | |
322 | const FINAL_ROUNDS: u32 = 3; |
323 | } |
324 | |
325 | impl SqrtHelper for f64 { |
326 | type ISet1 = u32; // unused |
327 | type ISet2 = u32; |
328 | |
329 | const SET2_ROUNDS: u32 = 2; |
330 | const FINAL_ROUNDS: u32 = 2; |
331 | } |
332 | |
333 | #[cfg (f128_enabled)] |
334 | impl SqrtHelper for f128 { |
335 | type ISet1 = u32; |
336 | type ISet2 = u64; |
337 | |
338 | const SET1_ROUNDS: u32 = 1; |
339 | const SET2_ROUNDS: u32 = 2; |
340 | const FINAL_ROUNDS: u32 = 2; |
341 | } |
342 | |
343 | /// A U0.16 representation of `1/sqrt(x)`. |
344 | /// |
345 | /// The index is a 7-bit number consisting of a single exponent bit and 6 bits of significand. |
346 | #[rustfmt::skip] |
347 | static RSQRT_TAB: [u16; 128] = [ |
348 | 0xb451, 0xb2f0, 0xb196, 0xb044, 0xaef9, 0xadb6, 0xac79, 0xab43, |
349 | 0xaa14, 0xa8eb, 0xa7c8, 0xa6aa, 0xa592, 0xa480, 0xa373, 0xa26b, |
350 | 0xa168, 0xa06a, 0x9f70, 0x9e7b, 0x9d8a, 0x9c9d, 0x9bb5, 0x9ad1, |
351 | 0x99f0, 0x9913, 0x983a, 0x9765, 0x9693, 0x95c4, 0x94f8, 0x9430, |
352 | 0x936b, 0x92a9, 0x91ea, 0x912e, 0x9075, 0x8fbe, 0x8f0a, 0x8e59, |
353 | 0x8daa, 0x8cfe, 0x8c54, 0x8bac, 0x8b07, 0x8a64, 0x89c4, 0x8925, |
354 | 0x8889, 0x87ee, 0x8756, 0x86c0, 0x862b, 0x8599, 0x8508, 0x8479, |
355 | 0x83ec, 0x8361, 0x82d8, 0x8250, 0x81c9, 0x8145, 0x80c2, 0x8040, |
356 | 0xff02, 0xfd0e, 0xfb25, 0xf947, 0xf773, 0xf5aa, 0xf3ea, 0xf234, |
357 | 0xf087, 0xeee3, 0xed47, 0xebb3, 0xea27, 0xe8a3, 0xe727, 0xe5b2, |
358 | 0xe443, 0xe2dc, 0xe17a, 0xe020, 0xdecb, 0xdd7d, 0xdc34, 0xdaf1, |
359 | 0xd9b3, 0xd87b, 0xd748, 0xd61a, 0xd4f1, 0xd3cd, 0xd2ad, 0xd192, |
360 | 0xd07b, 0xcf69, 0xce5b, 0xcd51, 0xcc4a, 0xcb48, 0xca4a, 0xc94f, |
361 | 0xc858, 0xc764, 0xc674, 0xc587, 0xc49d, 0xc3b7, 0xc2d4, 0xc1f4, |
362 | 0xc116, 0xc03c, 0xbf65, 0xbe90, 0xbdbe, 0xbcef, 0xbc23, 0xbb59, |
363 | 0xba91, 0xb9cc, 0xb90a, 0xb84a, 0xb78c, 0xb6d0, 0xb617, 0xb560, |
364 | ]; |
365 | |
366 | #[cfg (test)] |
367 | mod tests { |
368 | use super::*; |
369 | |
370 | /// Test behavior specified in IEEE 754 `squareRoot`. |
371 | fn spec_test<F>() |
372 | where |
373 | F: Float + SqrtHelper, |
374 | F::Int: HInt, |
375 | F::Int: From<u8>, |
376 | F::Int: From<F::ISet2>, |
377 | F::Int: CastInto<F::ISet1>, |
378 | F::Int: CastInto<F::ISet2>, |
379 | u32: CastInto<F::Int>, |
380 | { |
381 | // Values that should return a NaN and raise invalid |
382 | let nan = [F::NEG_INFINITY, F::NEG_ONE, F::NAN, F::MIN]; |
383 | |
384 | // Values that return unaltered |
385 | let roundtrip = [F::ZERO, F::NEG_ZERO, F::INFINITY]; |
386 | |
387 | for x in nan { |
388 | let FpResult { val, status } = sqrt_round(x, Round::Nearest); |
389 | assert!(val.is_nan()); |
390 | assert!(status == Status::INVALID); |
391 | } |
392 | |
393 | for x in roundtrip { |
394 | let FpResult { val, status } = sqrt_round(x, Round::Nearest); |
395 | assert_biteq!(val, x); |
396 | assert!(status == Status::OK); |
397 | } |
398 | } |
399 | |
400 | #[test ] |
401 | #[cfg (f16_enabled)] |
402 | fn sanity_check_f16() { |
403 | assert_biteq!(sqrt(100.0f16), 10.0); |
404 | assert_biteq!(sqrt(4.0f16), 2.0); |
405 | } |
406 | |
407 | #[test ] |
408 | #[cfg (f16_enabled)] |
409 | fn spec_tests_f16() { |
410 | spec_test::<f16>(); |
411 | } |
412 | |
413 | #[test ] |
414 | #[cfg (f16_enabled)] |
415 | #[allow (clippy::approx_constant)] |
416 | fn conformance_tests_f16() { |
417 | let cases = [ |
418 | (f16::PI, 0x3f17_u16), |
419 | // 10_000.0, using a hex literal for MSRV hack (Rust < 1.67 checks literal widths as |
420 | // part of the AST, so the `cfg` is irrelevant here). |
421 | (f16::from_bits(0x70e2), 0x5640_u16), |
422 | (f16::from_bits(0x0000000f), 0x13bf_u16), |
423 | (f16::INFINITY, f16::INFINITY.to_bits()), |
424 | ]; |
425 | |
426 | for (input, output) in cases { |
427 | assert_biteq!( |
428 | sqrt(input), |
429 | f16::from_bits(output), |
430 | "input: {input:?} ({:#018x})" , |
431 | input.to_bits() |
432 | ); |
433 | } |
434 | } |
435 | |
436 | #[test ] |
437 | fn sanity_check_f32() { |
438 | assert_biteq!(sqrt(100.0f32), 10.0); |
439 | assert_biteq!(sqrt(4.0f32), 2.0); |
440 | } |
441 | |
442 | #[test ] |
443 | fn spec_tests_f32() { |
444 | spec_test::<f32>(); |
445 | } |
446 | |
447 | #[test ] |
448 | #[allow (clippy::approx_constant)] |
449 | fn conformance_tests_f32() { |
450 | let cases = [ |
451 | (f32::PI, 0x3fe2dfc5_u32), |
452 | (10000.0f32, 0x42c80000_u32), |
453 | (f32::from_bits(0x0000000f), 0x1b2f456f_u32), |
454 | (f32::INFINITY, f32::INFINITY.to_bits()), |
455 | ]; |
456 | |
457 | for (input, output) in cases { |
458 | assert_biteq!( |
459 | sqrt(input), |
460 | f32::from_bits(output), |
461 | "input: {input:?} ({:#018x})" , |
462 | input.to_bits() |
463 | ); |
464 | } |
465 | } |
466 | |
467 | #[test ] |
468 | fn sanity_check_f64() { |
469 | assert_biteq!(sqrt(100.0f64), 10.0); |
470 | assert_biteq!(sqrt(4.0f64), 2.0); |
471 | } |
472 | |
473 | #[test ] |
474 | fn spec_tests_f64() { |
475 | spec_test::<f64>(); |
476 | } |
477 | |
478 | #[test ] |
479 | #[allow (clippy::approx_constant)] |
480 | fn conformance_tests_f64() { |
481 | let cases = [ |
482 | (f64::PI, 0x3ffc5bf891b4ef6a_u64), |
483 | (10000.0, 0x4059000000000000_u64), |
484 | (f64::from_bits(0x0000000f), 0x1e7efbdeb14f4eda_u64), |
485 | (f64::INFINITY, f64::INFINITY.to_bits()), |
486 | ]; |
487 | |
488 | for (input, output) in cases { |
489 | assert_biteq!( |
490 | sqrt(input), |
491 | f64::from_bits(output), |
492 | "input: {input:?} ({:#018x})" , |
493 | input.to_bits() |
494 | ); |
495 | } |
496 | } |
497 | |
498 | #[test ] |
499 | #[cfg (f128_enabled)] |
500 | fn sanity_check_f128() { |
501 | assert_biteq!(sqrt(100.0f128), 10.0); |
502 | assert_biteq!(sqrt(4.0f128), 2.0); |
503 | } |
504 | |
505 | #[test ] |
506 | #[cfg (f128_enabled)] |
507 | fn spec_tests_f128() { |
508 | spec_test::<f128>(); |
509 | } |
510 | |
511 | #[test ] |
512 | #[cfg (f128_enabled)] |
513 | #[allow (clippy::approx_constant)] |
514 | fn conformance_tests_f128() { |
515 | let cases = [ |
516 | (f128::PI, 0x3fffc5bf891b4ef6aa79c3b0520d5db9_u128), |
517 | // 10_000.0, see `f16` for reasoning. |
518 | ( |
519 | f128::from_bits(0x400c3880000000000000000000000000), |
520 | 0x40059000000000000000000000000000_u128, |
521 | ), |
522 | (f128::from_bits(0x0000000f), 0x1fc9efbdeb14f4ed9b17ae807907e1e9_u128), |
523 | (f128::INFINITY, f128::INFINITY.to_bits()), |
524 | ]; |
525 | |
526 | for (input, output) in cases { |
527 | assert_biteq!( |
528 | sqrt(input), |
529 | f128::from_bits(output), |
530 | "input: {input:?} ({:#018x})" , |
531 | input.to_bits() |
532 | ); |
533 | } |
534 | } |
535 | } |
536 | |