1 | //! Bit-oriented Algorithms (BITALG) |
2 | //! |
3 | //! The intrinsics here correspond to those in the `immintrin.h` C header. |
4 | //! |
5 | //! The reference is [Intel 64 and IA-32 Architectures Software Developer's |
6 | //! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref]. |
7 | //! |
8 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
9 | |
10 | use crate::core_arch::simd::i16x16; |
11 | use crate::core_arch::simd::i16x32; |
12 | use crate::core_arch::simd::i16x8; |
13 | use crate::core_arch::simd::i8x16; |
14 | use crate::core_arch::simd::i8x32; |
15 | use crate::core_arch::simd::i8x64; |
16 | use crate::core_arch::simd_llvm::simd_select_bitmask; |
17 | use crate::core_arch::x86::__m128i; |
18 | use crate::core_arch::x86::__m256i; |
19 | use crate::core_arch::x86::__m512i; |
20 | use crate::core_arch::x86::__mmask16; |
21 | use crate::core_arch::x86::__mmask32; |
22 | use crate::core_arch::x86::__mmask64; |
23 | use crate::core_arch::x86::__mmask8; |
24 | use crate::core_arch::x86::_mm256_setzero_si256; |
25 | use crate::core_arch::x86::_mm512_setzero_si512; |
26 | use crate::core_arch::x86::_mm_setzero_si128; |
27 | use crate::core_arch::x86::m128iExt; |
28 | use crate::core_arch::x86::m256iExt; |
29 | use crate::core_arch::x86::m512iExt; |
30 | use crate::mem::transmute; |
31 | |
32 | #[cfg (test)] |
33 | use stdarch_test::assert_instr; |
34 | |
35 | #[allow (improper_ctypes)] |
36 | extern "C" { |
37 | #[link_name = "llvm.ctpop.v32i16" ] |
38 | fn popcnt_v32i16(x: i16x32) -> i16x32; |
39 | #[link_name = "llvm.ctpop.v16i16" ] |
40 | fn popcnt_v16i16(x: i16x16) -> i16x16; |
41 | #[link_name = "llvm.ctpop.v8i16" ] |
42 | fn popcnt_v8i16(x: i16x8) -> i16x8; |
43 | |
44 | #[link_name = "llvm.ctpop.v64i8" ] |
45 | fn popcnt_v64i8(x: i8x64) -> i8x64; |
46 | #[link_name = "llvm.ctpop.v32i8" ] |
47 | fn popcnt_v32i8(x: i8x32) -> i8x32; |
48 | #[link_name = "llvm.ctpop.v16i8" ] |
49 | fn popcnt_v16i8(x: i8x16) -> i8x16; |
50 | |
51 | #[link_name = "llvm.x86.avx512.mask.vpshufbitqmb.512" ] |
52 | fn bitshuffle_512(data: i8x64, indices: i8x64, mask: __mmask64) -> __mmask64; |
53 | #[link_name = "llvm.x86.avx512.mask.vpshufbitqmb.256" ] |
54 | fn bitshuffle_256(data: i8x32, indices: i8x32, mask: __mmask32) -> __mmask32; |
55 | #[link_name = "llvm.x86.avx512.mask.vpshufbitqmb.128" ] |
56 | fn bitshuffle_128(data: i8x16, indices: i8x16, mask: __mmask16) -> __mmask16; |
57 | } |
58 | |
59 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
60 | /// |
61 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_popcnt_epi16) |
62 | #[inline ] |
63 | #[target_feature (enable = "avx512bitalg" )] |
64 | #[cfg_attr (test, assert_instr(vpopcntw))] |
65 | pub unsafe fn _mm512_popcnt_epi16(a: __m512i) -> __m512i { |
66 | transmute(src:popcnt_v32i16(a.as_i16x32())) |
67 | } |
68 | |
69 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
70 | /// |
71 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
72 | /// Otherwise the computation result is written into the result. |
73 | /// |
74 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_popcnt_epi16) |
75 | #[inline ] |
76 | #[target_feature (enable = "avx512bitalg" )] |
77 | #[cfg_attr (test, assert_instr(vpopcntw))] |
78 | pub unsafe fn _mm512_maskz_popcnt_epi16(k: __mmask32, a: __m512i) -> __m512i { |
79 | let zero: i16x32 = _mm512_setzero_si512().as_i16x32(); |
80 | transmute(src:simd_select_bitmask(m:k, a:popcnt_v32i16(a.as_i16x32()), b:zero)) |
81 | } |
82 | |
83 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
84 | /// |
85 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
86 | /// Otherwise the computation result is written into the result. |
87 | /// |
88 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_popcnt_epi16) |
89 | #[inline ] |
90 | #[target_feature (enable = "avx512bitalg" )] |
91 | #[cfg_attr (test, assert_instr(vpopcntw))] |
92 | pub unsafe fn _mm512_mask_popcnt_epi16(src: __m512i, k: __mmask32, a: __m512i) -> __m512i { |
93 | transmute(src:simd_select_bitmask( |
94 | m:k, |
95 | a:popcnt_v32i16(a.as_i16x32()), |
96 | b:src.as_i16x32(), |
97 | )) |
98 | } |
99 | |
100 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
101 | /// |
102 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_popcnt_epi16) |
103 | #[inline ] |
104 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
105 | #[cfg_attr (test, assert_instr(vpopcntw))] |
106 | pub unsafe fn _mm256_popcnt_epi16(a: __m256i) -> __m256i { |
107 | transmute(src:popcnt_v16i16(a.as_i16x16())) |
108 | } |
109 | |
110 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
111 | /// |
112 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
113 | /// Otherwise the computation result is written into the result. |
114 | /// |
115 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_popcnt_epi16) |
116 | #[inline ] |
117 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
118 | #[cfg_attr (test, assert_instr(vpopcntw))] |
119 | pub unsafe fn _mm256_maskz_popcnt_epi16(k: __mmask16, a: __m256i) -> __m256i { |
120 | let zero: i16x16 = _mm256_setzero_si256().as_i16x16(); |
121 | transmute(src:simd_select_bitmask(m:k, a:popcnt_v16i16(a.as_i16x16()), b:zero)) |
122 | } |
123 | |
124 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
125 | /// |
126 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
127 | /// Otherwise the computation result is written into the result. |
128 | /// |
129 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_popcnt_epi16) |
130 | #[inline ] |
131 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
132 | #[cfg_attr (test, assert_instr(vpopcntw))] |
133 | pub unsafe fn _mm256_mask_popcnt_epi16(src: __m256i, k: __mmask16, a: __m256i) -> __m256i { |
134 | transmute(src:simd_select_bitmask( |
135 | m:k, |
136 | a:popcnt_v16i16(a.as_i16x16()), |
137 | b:src.as_i16x16(), |
138 | )) |
139 | } |
140 | |
141 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
142 | /// |
143 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_epi16) |
144 | #[inline ] |
145 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
146 | #[cfg_attr (test, assert_instr(vpopcntw))] |
147 | pub unsafe fn _mm_popcnt_epi16(a: __m128i) -> __m128i { |
148 | transmute(src:popcnt_v8i16(a.as_i16x8())) |
149 | } |
150 | |
151 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
152 | /// |
153 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
154 | /// Otherwise the computation result is written into the result. |
155 | /// |
156 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_popcnt_epi16) |
157 | #[inline ] |
158 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
159 | #[cfg_attr (test, assert_instr(vpopcntw))] |
160 | pub unsafe fn _mm_maskz_popcnt_epi16(k: __mmask8, a: __m128i) -> __m128i { |
161 | let zero: i16x8 = _mm_setzero_si128().as_i16x8(); |
162 | transmute(src:simd_select_bitmask(m:k, a:popcnt_v8i16(a.as_i16x8()), b:zero)) |
163 | } |
164 | |
165 | /// For each packed 16-bit integer maps the value to the number of logical 1 bits. |
166 | /// |
167 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
168 | /// Otherwise the computation result is written into the result. |
169 | /// |
170 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_popcnt_epi16) |
171 | #[inline ] |
172 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
173 | #[cfg_attr (test, assert_instr(vpopcntw))] |
174 | pub unsafe fn _mm_mask_popcnt_epi16(src: __m128i, k: __mmask8, a: __m128i) -> __m128i { |
175 | transmute(src:simd_select_bitmask( |
176 | m:k, |
177 | a:popcnt_v8i16(a.as_i16x8()), |
178 | b:src.as_i16x8(), |
179 | )) |
180 | } |
181 | |
182 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
183 | /// |
184 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_popcnt_epi8) |
185 | #[inline ] |
186 | #[target_feature (enable = "avx512bitalg" )] |
187 | #[cfg_attr (test, assert_instr(vpopcntb))] |
188 | pub unsafe fn _mm512_popcnt_epi8(a: __m512i) -> __m512i { |
189 | transmute(src:popcnt_v64i8(a.as_i8x64())) |
190 | } |
191 | |
192 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
193 | /// |
194 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
195 | /// Otherwise the computation result is written into the result. |
196 | /// |
197 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_popcnt_epi8) |
198 | #[inline ] |
199 | #[target_feature (enable = "avx512bitalg" )] |
200 | #[cfg_attr (test, assert_instr(vpopcntb))] |
201 | pub unsafe fn _mm512_maskz_popcnt_epi8(k: __mmask64, a: __m512i) -> __m512i { |
202 | let zero: i8x64 = _mm512_setzero_si512().as_i8x64(); |
203 | transmute(src:simd_select_bitmask(m:k, a:popcnt_v64i8(a.as_i8x64()), b:zero)) |
204 | } |
205 | |
206 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
207 | /// |
208 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
209 | /// Otherwise the computation result is written into the result. |
210 | /// |
211 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_popcnt_epi8) |
212 | #[inline ] |
213 | #[target_feature (enable = "avx512bitalg" )] |
214 | #[cfg_attr (test, assert_instr(vpopcntb))] |
215 | pub unsafe fn _mm512_mask_popcnt_epi8(src: __m512i, k: __mmask64, a: __m512i) -> __m512i { |
216 | transmute(src:simd_select_bitmask( |
217 | m:k, |
218 | a:popcnt_v64i8(a.as_i8x64()), |
219 | b:src.as_i8x64(), |
220 | )) |
221 | } |
222 | |
223 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
224 | /// |
225 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_popcnt_epi8) |
226 | #[inline ] |
227 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
228 | #[cfg_attr (test, assert_instr(vpopcntb))] |
229 | pub unsafe fn _mm256_popcnt_epi8(a: __m256i) -> __m256i { |
230 | transmute(src:popcnt_v32i8(a.as_i8x32())) |
231 | } |
232 | |
233 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
234 | /// |
235 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
236 | /// Otherwise the computation result is written into the result. |
237 | /// |
238 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_popcnt_epi8) |
239 | #[inline ] |
240 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
241 | #[cfg_attr (test, assert_instr(vpopcntb))] |
242 | pub unsafe fn _mm256_maskz_popcnt_epi8(k: __mmask32, a: __m256i) -> __m256i { |
243 | let zero: i8x32 = _mm256_setzero_si256().as_i8x32(); |
244 | transmute(src:simd_select_bitmask(m:k, a:popcnt_v32i8(a.as_i8x32()), b:zero)) |
245 | } |
246 | |
247 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
248 | /// |
249 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
250 | /// Otherwise the computation result is written into the result. |
251 | /// |
252 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_popcnt_epi8) |
253 | #[inline ] |
254 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
255 | #[cfg_attr (test, assert_instr(vpopcntb))] |
256 | pub unsafe fn _mm256_mask_popcnt_epi8(src: __m256i, k: __mmask32, a: __m256i) -> __m256i { |
257 | transmute(src:simd_select_bitmask( |
258 | m:k, |
259 | a:popcnt_v32i8(a.as_i8x32()), |
260 | b:src.as_i8x32(), |
261 | )) |
262 | } |
263 | |
264 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
265 | /// |
266 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_epi8) |
267 | #[inline ] |
268 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
269 | #[cfg_attr (test, assert_instr(vpopcntb))] |
270 | pub unsafe fn _mm_popcnt_epi8(a: __m128i) -> __m128i { |
271 | transmute(src:popcnt_v16i8(a.as_i8x16())) |
272 | } |
273 | |
274 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
275 | /// |
276 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
277 | /// Otherwise the computation result is written into the result. |
278 | /// |
279 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_popcnt_epi8) |
280 | #[inline ] |
281 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
282 | #[cfg_attr (test, assert_instr(vpopcntb))] |
283 | pub unsafe fn _mm_maskz_popcnt_epi8(k: __mmask16, a: __m128i) -> __m128i { |
284 | let zero: i8x16 = _mm_setzero_si128().as_i8x16(); |
285 | transmute(src:simd_select_bitmask(m:k, a:popcnt_v16i8(a.as_i8x16()), b:zero)) |
286 | } |
287 | |
288 | /// For each packed 8-bit integer maps the value to the number of logical 1 bits. |
289 | /// |
290 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
291 | /// Otherwise the computation result is written into the result. |
292 | /// |
293 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_popcnt_epi8) |
294 | #[inline ] |
295 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
296 | #[cfg_attr (test, assert_instr(vpopcntb))] |
297 | pub unsafe fn _mm_mask_popcnt_epi8(src: __m128i, k: __mmask16, a: __m128i) -> __m128i { |
298 | transmute(src:simd_select_bitmask( |
299 | m:k, |
300 | a:popcnt_v16i8(a.as_i8x16()), |
301 | b:src.as_i8x16(), |
302 | )) |
303 | } |
304 | |
305 | /// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers. |
306 | /// Then groups 8 8-bit values from `c`as indices into the bits of the corresponding 64-bit integer. |
307 | /// It then selects these bits and packs them into the output. |
308 | /// |
309 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_bitshuffle_epi64_mask) |
310 | #[inline ] |
311 | #[target_feature (enable = "avx512bitalg" )] |
312 | #[cfg_attr (test, assert_instr(vpshufbitqmb))] |
313 | pub unsafe fn _mm512_bitshuffle_epi64_mask(b: __m512i, c: __m512i) -> __mmask64 { |
314 | bitshuffle_512(data:b.as_i8x64(), indices:c.as_i8x64(), !0) |
315 | } |
316 | |
317 | /// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers. |
318 | /// Then groups 8 8-bit values from `c`as indices into the bits of the corresponding 64-bit integer. |
319 | /// It then selects these bits and packs them into the output. |
320 | /// |
321 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
322 | /// Otherwise the computation result is written into the result. |
323 | /// |
324 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_bitshuffle_epi64_mask) |
325 | #[inline ] |
326 | #[target_feature (enable = "avx512bitalg" )] |
327 | #[cfg_attr (test, assert_instr(vpshufbitqmb))] |
328 | pub unsafe fn _mm512_mask_bitshuffle_epi64_mask(k: __mmask64, b: __m512i, c: __m512i) -> __mmask64 { |
329 | bitshuffle_512(data:b.as_i8x64(), indices:c.as_i8x64(), mask:k) |
330 | } |
331 | |
332 | /// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers. |
333 | /// Then groups 8 8-bit values from `c`as indices into the bits of the corresponding 64-bit integer. |
334 | /// It then selects these bits and packs them into the output. |
335 | /// |
336 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_bitshuffle_epi64_mask) |
337 | #[inline ] |
338 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
339 | #[cfg_attr (test, assert_instr(vpshufbitqmb))] |
340 | pub unsafe fn _mm256_bitshuffle_epi64_mask(b: __m256i, c: __m256i) -> __mmask32 { |
341 | bitshuffle_256(data:b.as_i8x32(), indices:c.as_i8x32(), !0) |
342 | } |
343 | |
344 | /// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers. |
345 | /// Then groups 8 8-bit values from `c`as indices into the bits of the corresponding 64-bit integer. |
346 | /// It then selects these bits and packs them into the output. |
347 | /// |
348 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
349 | /// Otherwise the computation result is written into the result. |
350 | /// |
351 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_bitshuffle_epi64_mask) |
352 | #[inline ] |
353 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
354 | #[cfg_attr (test, assert_instr(vpshufbitqmb))] |
355 | pub unsafe fn _mm256_mask_bitshuffle_epi64_mask(k: __mmask32, b: __m256i, c: __m256i) -> __mmask32 { |
356 | bitshuffle_256(data:b.as_i8x32(), indices:c.as_i8x32(), mask:k) |
357 | } |
358 | |
359 | /// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers. |
360 | /// Then groups 8 8-bit values from `c`as indices into the bits of the corresponding 64-bit integer. |
361 | /// It then selects these bits and packs them into the output. |
362 | /// |
363 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bitshuffle_epi64_mask) |
364 | #[inline ] |
365 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
366 | #[cfg_attr (test, assert_instr(vpshufbitqmb))] |
367 | pub unsafe fn _mm_bitshuffle_epi64_mask(b: __m128i, c: __m128i) -> __mmask16 { |
368 | bitshuffle_128(data:b.as_i8x16(), indices:c.as_i8x16(), !0) |
369 | } |
370 | |
371 | /// Considers the input `b` as packed 64-bit integers and `c` as packed 8-bit integers. |
372 | /// Then groups 8 8-bit values from `c`as indices into the bits of the corresponding 64-bit integer. |
373 | /// It then selects these bits and packs them into the output. |
374 | /// |
375 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
376 | /// Otherwise the computation result is written into the result. |
377 | /// |
378 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_bitshuffle_epi64_mask) |
379 | #[inline ] |
380 | #[target_feature (enable = "avx512bitalg,avx512vl" )] |
381 | #[cfg_attr (test, assert_instr(vpshufbitqmb))] |
382 | pub unsafe fn _mm_mask_bitshuffle_epi64_mask(k: __mmask16, b: __m128i, c: __m128i) -> __mmask16 { |
383 | bitshuffle_128(data:b.as_i8x16(), indices:c.as_i8x16(), mask:k) |
384 | } |
385 | |
386 | #[cfg (test)] |
387 | mod tests { |
388 | // Some of the constants in the tests below are just bit patterns. They should not |
389 | // be interpreted as integers; signedness does not make sense for them, but |
390 | // __mXXXi happens to be defined in terms of signed integers. |
391 | #![allow (overflowing_literals)] |
392 | |
393 | use stdarch_test::simd_test; |
394 | |
395 | use crate::core_arch::x86::*; |
396 | |
397 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
398 | unsafe fn test_mm512_popcnt_epi16() { |
399 | let test_data = _mm512_set_epi16( |
400 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, |
401 | 0x3F_FF, 0x7F_FF, 0xFF_FF, -1, -100, 255, 256, 2, 4, 8, 16, 32, 64, 128, 256, 512, |
402 | 1024, 2048, |
403 | ); |
404 | let actual_result = _mm512_popcnt_epi16(test_data); |
405 | let reference_result = _mm512_set_epi16( |
406 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 12, 8, 1, 1, 1, 1, 1, 1, |
407 | 1, 1, 1, 1, 1, 1, |
408 | ); |
409 | assert_eq_m512i(actual_result, reference_result); |
410 | } |
411 | |
412 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
413 | unsafe fn test_mm512_maskz_popcnt_epi16() { |
414 | let test_data = _mm512_set_epi16( |
415 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, |
416 | 0x3F_FF, 0x7F_FF, 0xFF_FF, -1, -100, 255, 256, 2, 4, 8, 16, 32, 64, 128, 256, 512, |
417 | 1024, 2048, |
418 | ); |
419 | let mask = 0xFF_FF_00_00; |
420 | let actual_result = _mm512_maskz_popcnt_epi16(mask, test_data); |
421 | let reference_result = _mm512_set_epi16( |
422 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
423 | 0, 0, 0, 0, 0, |
424 | ); |
425 | assert_eq_m512i(actual_result, reference_result); |
426 | } |
427 | |
428 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
429 | unsafe fn test_mm512_mask_popcnt_epi16() { |
430 | let test_data = _mm512_set_epi16( |
431 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, |
432 | 0x3F_FF, 0x7F_FF, 0xFF_FF, -1, -100, 255, 256, 2, 4, 8, 16, 32, 64, 128, 256, 512, |
433 | 1024, 2048, |
434 | ); |
435 | let mask = 0xFF_FF_00_00; |
436 | let actual_result = _mm512_mask_popcnt_epi16(test_data, mask, test_data); |
437 | let reference_result = _mm512_set_epi16( |
438 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF_FF, -1, -100, 255, 256, 2, |
439 | 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, |
440 | ); |
441 | assert_eq_m512i(actual_result, reference_result); |
442 | } |
443 | |
444 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
445 | unsafe fn test_mm256_popcnt_epi16() { |
446 | let test_data = _mm256_set_epi16( |
447 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, |
448 | 0x3F_FF, 0x7F_FF, |
449 | ); |
450 | let actual_result = _mm256_popcnt_epi16(test_data); |
451 | let reference_result = |
452 | _mm256_set_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
453 | assert_eq_m256i(actual_result, reference_result); |
454 | } |
455 | |
456 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
457 | unsafe fn test_mm256_maskz_popcnt_epi16() { |
458 | let test_data = _mm256_set_epi16( |
459 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, |
460 | 0x3F_FF, 0x7F_FF, |
461 | ); |
462 | let mask = 0xFF_00; |
463 | let actual_result = _mm256_maskz_popcnt_epi16(mask, test_data); |
464 | let reference_result = _mm256_set_epi16(0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0); |
465 | assert_eq_m256i(actual_result, reference_result); |
466 | } |
467 | |
468 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
469 | unsafe fn test_mm256_mask_popcnt_epi16() { |
470 | let test_data = _mm256_set_epi16( |
471 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, |
472 | 0x3F_FF, 0x7F_FF, |
473 | ); |
474 | let mask = 0xFF_00; |
475 | let actual_result = _mm256_mask_popcnt_epi16(test_data, mask, test_data); |
476 | let reference_result = _mm256_set_epi16( |
477 | 0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0x1_FF, 0x3_FF, 0x7_FF, 0xF_FF, 0x1F_FF, 0x3F_FF, 0x7F_FF, |
478 | ); |
479 | assert_eq_m256i(actual_result, reference_result); |
480 | } |
481 | |
482 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
483 | unsafe fn test_mm_popcnt_epi16() { |
484 | let test_data = _mm_set_epi16(0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F); |
485 | let actual_result = _mm_popcnt_epi16(test_data); |
486 | let reference_result = _mm_set_epi16(0, 1, 2, 3, 4, 5, 6, 7); |
487 | assert_eq_m128i(actual_result, reference_result); |
488 | } |
489 | |
490 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
491 | unsafe fn test_mm_maskz_popcnt_epi16() { |
492 | let test_data = _mm_set_epi16(0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F); |
493 | let mask = 0xF0; |
494 | let actual_result = _mm_maskz_popcnt_epi16(mask, test_data); |
495 | let reference_result = _mm_set_epi16(0, 1, 2, 3, 0, 0, 0, 0); |
496 | assert_eq_m128i(actual_result, reference_result); |
497 | } |
498 | |
499 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
500 | unsafe fn test_mm_mask_popcnt_epi16() { |
501 | let test_data = _mm_set_epi16(0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F); |
502 | let mask = 0xF0; |
503 | let actual_result = _mm_mask_popcnt_epi16(test_data, mask, test_data); |
504 | let reference_result = _mm_set_epi16(0, 1, 2, 3, 0xF, 0x1F, 0x3F, 0x7F); |
505 | assert_eq_m128i(actual_result, reference_result); |
506 | } |
507 | |
508 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
509 | unsafe fn test_mm512_popcnt_epi8() { |
510 | let test_data = _mm512_set_epi8( |
511 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100, |
512 | 217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, 183, 154, 84, 56, 227, 189, |
513 | 140, 35, 117, 219, 169, 226, 170, 13, 22, 159, 251, 73, 121, 143, 145, 85, 91, 137, 90, |
514 | 225, 21, 249, 211, 155, 228, 70, |
515 | ); |
516 | let actual_result = _mm512_popcnt_epi8(test_data); |
517 | let reference_result = _mm512_set_epi8( |
518 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5, |
519 | 2, 4, 4, 6, 4, 3, 3, 5, 6, 3, 3, 5, 6, 4, 4, 4, 3, 3, 6, 7, 3, 5, 5, 3, 4, 5, 3, 4, 4, |
520 | 3, 6, 5, 5, 4, 3, |
521 | ); |
522 | assert_eq_m512i(actual_result, reference_result); |
523 | } |
524 | |
525 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
526 | unsafe fn test_mm512_maskz_popcnt_epi8() { |
527 | let test_data = _mm512_set_epi8( |
528 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100, |
529 | 217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, 183, 154, 84, 56, 227, 189, |
530 | 140, 35, 117, 219, 169, 226, 170, 13, 22, 159, 251, 73, 121, 143, 145, 85, 91, 137, 90, |
531 | 225, 21, 249, 211, 155, 228, 70, |
532 | ); |
533 | let mask = 0xFF_FF_FF_FF_00_00_00_00; |
534 | let actual_result = _mm512_maskz_popcnt_epi8(mask, test_data); |
535 | let reference_result = _mm512_set_epi8( |
536 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5, |
537 | 2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
538 | 0, 0, 0, 0, 0, 0, |
539 | ); |
540 | assert_eq_m512i(actual_result, reference_result); |
541 | } |
542 | |
543 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
544 | unsafe fn test_mm512_mask_popcnt_epi8() { |
545 | let test_data = _mm512_set_epi8( |
546 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100, |
547 | 217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, 183, 154, 84, 56, 227, 189, |
548 | 140, 35, 117, 219, 169, 226, 170, 13, 22, 159, 251, 73, 121, 143, 145, 85, 91, 137, 90, |
549 | 225, 21, 249, 211, 155, 228, 70, |
550 | ); |
551 | let mask = 0xFF_FF_FF_FF_00_00_00_00; |
552 | let actual_result = _mm512_mask_popcnt_epi8(test_data, mask, test_data); |
553 | let reference_result = _mm512_set_epi8( |
554 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5, |
555 | 2, 4, 4, 183, 154, 84, 56, 227, 189, 140, 35, 117, 219, 169, 226, 170, 13, 22, 159, |
556 | 251, 73, 121, 143, 145, 85, 91, 137, 90, 225, 21, 249, 211, 155, 228, 70, |
557 | ); |
558 | assert_eq_m512i(actual_result, reference_result); |
559 | } |
560 | |
561 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
562 | unsafe fn test_mm256_popcnt_epi8() { |
563 | let test_data = _mm256_set_epi8( |
564 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 128, 171, 206, 100, |
565 | 217, 109, 253, 190, 177, 254, 179, 215, 230, 68, 201, 172, |
566 | ); |
567 | let actual_result = _mm256_popcnt_epi8(test_data); |
568 | let reference_result = _mm256_set_epi8( |
569 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 5, 5, 7, 6, 4, 7, 5, 6, 5, |
570 | 2, 4, 4, |
571 | ); |
572 | assert_eq_m256i(actual_result, reference_result); |
573 | } |
574 | |
575 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
576 | unsafe fn test_mm256_maskz_popcnt_epi8() { |
577 | let test_data = _mm256_set_epi8( |
578 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 251, 73, 121, 143, |
579 | 145, 85, 91, 137, 90, 225, 21, 249, 211, 155, 228, 70, |
580 | ); |
581 | let mask = 0xFF_FF_00_00; |
582 | let actual_result = _mm256_maskz_popcnt_epi8(mask, test_data); |
583 | let reference_result = _mm256_set_epi8( |
584 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
585 | 0, 0, 0, |
586 | ); |
587 | assert_eq_m256i(actual_result, reference_result); |
588 | } |
589 | |
590 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
591 | unsafe fn test_mm256_mask_popcnt_epi8() { |
592 | let test_data = _mm256_set_epi8( |
593 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, 251, 73, 121, 143, |
594 | 145, 85, 91, 137, 90, 225, 21, 249, 211, 155, 228, 70, |
595 | ); |
596 | let mask = 0xFF_FF_00_00; |
597 | let actual_result = _mm256_mask_popcnt_epi8(test_data, mask, test_data); |
598 | let reference_result = _mm256_set_epi8( |
599 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1, 251, 73, 121, 143, 145, 85, 91, 137, |
600 | 90, 225, 21, 249, 211, 155, 228, 70, |
601 | ); |
602 | assert_eq_m256i(actual_result, reference_result); |
603 | } |
604 | |
605 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
606 | unsafe fn test_mm_popcnt_epi8() { |
607 | let test_data = _mm_set_epi8( |
608 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, -1, 2, 4, 8, 16, 32, 64, |
609 | ); |
610 | let actual_result = _mm_popcnt_epi8(test_data); |
611 | let reference_result = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 1, 1, 1, 1, 1, 1); |
612 | assert_eq_m128i(actual_result, reference_result); |
613 | } |
614 | |
615 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
616 | unsafe fn test_mm_maskz_popcnt_epi8() { |
617 | let test_data = _mm_set_epi8( |
618 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 90, 225, 21, 249, 211, 155, 228, 70, |
619 | ); |
620 | let mask = 0xFF_00; |
621 | let actual_result = _mm_maskz_popcnt_epi8(mask, test_data); |
622 | let reference_result = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0); |
623 | assert_eq_m128i(actual_result, reference_result); |
624 | } |
625 | |
626 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
627 | unsafe fn test_mm_mask_popcnt_epi8() { |
628 | let test_data = _mm_set_epi8( |
629 | 0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 90, 225, 21, 249, 211, 155, 228, 70, |
630 | ); |
631 | let mask = 0xFF_00; |
632 | let actual_result = _mm_mask_popcnt_epi8(test_data, mask, test_data); |
633 | let reference_result = |
634 | _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 90, 225, 21, 249, 211, 155, 228, 70); |
635 | assert_eq_m128i(actual_result, reference_result); |
636 | } |
637 | |
638 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
639 | unsafe fn test_mm512_bitshuffle_epi64_mask() { |
640 | let test_indices = _mm512_set_epi8( |
641 | 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0, |
642 | 8, 8, 56, 48, 40, 32, 24, 16, 8, 0, 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, |
643 | 58, 57, 56, 32, 32, 16, 16, 0, 0, 8, 8, 56, 48, 40, 32, 24, 16, 8, 0, |
644 | ); |
645 | let test_data = _mm512_setr_epi64( |
646 | 0xFF_FF_FF_FF_00_00_00_00, |
647 | 0xFF_00_FF_00_FF_00_FF_00, |
648 | 0xFF_00_00_00_00_00_00_00, |
649 | 0xAC_00_00_00_00_00_00_00, |
650 | 0xFF_FF_FF_FF_00_00_00_00, |
651 | 0xFF_00_FF_00_FF_00_FF_00, |
652 | 0xFF_00_00_00_00_00_00_00, |
653 | 0xAC_00_00_00_00_00_00_00, |
654 | ); |
655 | let actual_result = _mm512_bitshuffle_epi64_mask(test_data, test_indices); |
656 | let reference_result = 0xF0 << 0 |
657 | | 0x03 << 8 |
658 | | 0xFF << 16 |
659 | | 0xAC << 24 |
660 | | 0xF0 << 32 |
661 | | 0x03 << 40 |
662 | | 0xFF << 48 |
663 | | 0xAC << 56; |
664 | |
665 | assert_eq!(actual_result, reference_result); |
666 | } |
667 | |
668 | #[simd_test(enable = "avx512bitalg,avx512f" )] |
669 | unsafe fn test_mm512_mask_bitshuffle_epi64_mask() { |
670 | let test_indices = _mm512_set_epi8( |
671 | 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0, |
672 | 8, 8, 56, 48, 40, 32, 24, 16, 8, 0, 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, |
673 | 58, 57, 56, 32, 32, 16, 16, 0, 0, 8, 8, 56, 48, 40, 32, 24, 16, 8, 0, |
674 | ); |
675 | let test_data = _mm512_setr_epi64( |
676 | 0xFF_FF_FF_FF_00_00_00_00, |
677 | 0xFF_00_FF_00_FF_00_FF_00, |
678 | 0xFF_00_00_00_00_00_00_00, |
679 | 0xAC_00_00_00_00_00_00_00, |
680 | 0xFF_FF_FF_FF_00_00_00_00, |
681 | 0xFF_00_FF_00_FF_00_FF_00, |
682 | 0xFF_00_00_00_00_00_00_00, |
683 | 0xAC_00_00_00_00_00_00_00, |
684 | ); |
685 | let mask = 0xFF_FF_FF_FF_00_00_00_00; |
686 | let actual_result = _mm512_mask_bitshuffle_epi64_mask(mask, test_data, test_indices); |
687 | let reference_result = 0x00 << 0 |
688 | | 0x00 << 8 |
689 | | 0x00 << 16 |
690 | | 0x00 << 24 |
691 | | 0xF0 << 32 |
692 | | 0x03 << 40 |
693 | | 0xFF << 48 |
694 | | 0xAC << 56; |
695 | |
696 | assert_eq!(actual_result, reference_result); |
697 | } |
698 | |
699 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
700 | unsafe fn test_mm256_bitshuffle_epi64_mask() { |
701 | let test_indices = _mm256_set_epi8( |
702 | 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0, |
703 | 8, 8, 56, 48, 40, 32, 24, 16, 8, 0, |
704 | ); |
705 | let test_data = _mm256_setr_epi64x( |
706 | 0xFF_FF_FF_FF_00_00_00_00, |
707 | 0xFF_00_FF_00_FF_00_FF_00, |
708 | 0xFF_00_00_00_00_00_00_00, |
709 | 0xAC_00_00_00_00_00_00_00, |
710 | ); |
711 | let actual_result = _mm256_bitshuffle_epi64_mask(test_data, test_indices); |
712 | let reference_result = 0xF0 << 0 | 0x03 << 8 | 0xFF << 16 | 0xAC << 24; |
713 | |
714 | assert_eq!(actual_result, reference_result); |
715 | } |
716 | |
717 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
718 | unsafe fn test_mm256_mask_bitshuffle_epi64_mask() { |
719 | let test_indices = _mm256_set_epi8( |
720 | 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, 32, 32, 16, 16, 0, 0, |
721 | 8, 8, 56, 48, 40, 32, 24, 16, 8, 0, |
722 | ); |
723 | let test_data = _mm256_setr_epi64x( |
724 | 0xFF_FF_FF_FF_00_00_00_00, |
725 | 0xFF_00_FF_00_FF_00_FF_00, |
726 | 0xFF_00_00_00_00_00_00_00, |
727 | 0xAC_00_00_00_00_00_00_00, |
728 | ); |
729 | let mask = 0xFF_FF_00_00; |
730 | let actual_result = _mm256_mask_bitshuffle_epi64_mask(mask, test_data, test_indices); |
731 | let reference_result = 0x00 << 0 | 0x00 << 8 | 0xFF << 16 | 0xAC << 24; |
732 | |
733 | assert_eq!(actual_result, reference_result); |
734 | } |
735 | |
736 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
737 | unsafe fn test_mm_bitshuffle_epi64_mask() { |
738 | let test_indices = _mm_set_epi8( |
739 | 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, |
740 | ); |
741 | let test_data = _mm_setr_epi64x(0xFF_00_00_00_00_00_00_00, 0xAC_00_00_00_00_00_00_00); |
742 | let actual_result = _mm_bitshuffle_epi64_mask(test_data, test_indices); |
743 | let reference_result = 0xFF << 0 | 0xAC << 8; |
744 | |
745 | assert_eq!(actual_result, reference_result); |
746 | } |
747 | |
748 | #[simd_test(enable = "avx512bitalg,avx512f,avx512vl" )] |
749 | unsafe fn test_mm_mask_bitshuffle_epi64_mask() { |
750 | let test_indices = _mm_set_epi8( |
751 | 63, 62, 61, 60, 59, 58, 57, 56, 63, 62, 61, 60, 59, 58, 57, 56, |
752 | ); |
753 | let test_data = _mm_setr_epi64x(0xFF_00_00_00_00_00_00_00, 0xAC_00_00_00_00_00_00_00); |
754 | let mask = 0xFF_00; |
755 | let actual_result = _mm_mask_bitshuffle_epi64_mask(mask, test_data, test_indices); |
756 | let reference_result = 0x00 << 0 | 0xAC << 8; |
757 | |
758 | assert_eq!(actual_result, reference_result); |
759 | } |
760 | } |
761 | |