1 | //! Galois Field New Instructions (GFNI) |
2 | //! |
3 | //! The intrinsics here correspond to those in the `immintrin.h` C header. |
4 | //! |
5 | //! The reference is [Intel 64 and IA-32 Architectures Software Developer's |
6 | //! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref]. |
7 | //! |
8 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
9 | |
10 | use crate::core_arch::simd::i8x16; |
11 | use crate::core_arch::simd::i8x32; |
12 | use crate::core_arch::simd::i8x64; |
13 | use crate::core_arch::x86::__m128i; |
14 | use crate::core_arch::x86::__m256i; |
15 | use crate::core_arch::x86::__m512i; |
16 | use crate::core_arch::x86::__mmask16; |
17 | use crate::core_arch::x86::__mmask32; |
18 | use crate::core_arch::x86::__mmask64; |
19 | use crate::intrinsics::simd::simd_select_bitmask; |
20 | use crate::mem::transmute; |
21 | |
22 | #[cfg (test)] |
23 | use stdarch_test::assert_instr; |
24 | |
25 | #[allow (improper_ctypes)] |
26 | unsafe extern "C" { |
27 | #[link_name = "llvm.x86.vgf2p8affineinvqb.512" ] |
28 | unsafefn vgf2p8affineinvqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; |
29 | #[link_name = "llvm.x86.vgf2p8affineinvqb.256" ] |
30 | unsafefn vgf2p8affineinvqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; |
31 | #[link_name = "llvm.x86.vgf2p8affineinvqb.128" ] |
32 | unsafefn vgf2p8affineinvqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; |
33 | #[link_name = "llvm.x86.vgf2p8affineqb.512" ] |
34 | unsafefn vgf2p8affineqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; |
35 | #[link_name = "llvm.x86.vgf2p8affineqb.256" ] |
36 | unsafefn vgf2p8affineqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; |
37 | #[link_name = "llvm.x86.vgf2p8affineqb.128" ] |
38 | unsafefn vgf2p8affineqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; |
39 | #[link_name = "llvm.x86.vgf2p8mulb.512" ] |
40 | unsafefn vgf2p8mulb_512(a: i8x64, b: i8x64) -> i8x64; |
41 | #[link_name = "llvm.x86.vgf2p8mulb.256" ] |
42 | unsafefn vgf2p8mulb_256(a: i8x32, b: i8x32) -> i8x32; |
43 | #[link_name = "llvm.x86.vgf2p8mulb.128" ] |
44 | unsafefn vgf2p8mulb_128(a: i8x16, b: i8x16) -> i8x16; |
45 | } |
46 | |
47 | // LLVM requires AVX512BW for a lot of these instructions, see |
48 | // https://github.com/llvm/llvm-project/blob/release/9.x/clang/include/clang/Basic/BuiltinsX86.def#L457 |
49 | // however our tests also require the target feature list to match Intel's |
50 | // which *doesn't* require AVX512BW but only AVX512F, so we added the redundant AVX512F |
51 | // requirement (for now) |
52 | // also see |
53 | // https://github.com/llvm/llvm-project/blob/release/9.x/clang/lib/Headers/gfniintrin.h |
54 | // for forcing GFNI, BW and optionally VL extension |
55 | |
56 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
57 | /// The field is in polynomial representation with the reduction polynomial |
58 | /// x^8 + x^4 + x^3 + x + 1. |
59 | /// |
60 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8) |
61 | #[inline ] |
62 | #[target_feature (enable = "gfni,avx512f" )] |
63 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
64 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
65 | pub unsafe fn _mm512_gf2p8mul_epi8(a: __m512i, b: __m512i) -> __m512i { |
66 | transmute(src:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64())) |
67 | } |
68 | |
69 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
70 | /// The field is in polynomial representation with the reduction polynomial |
71 | /// x^8 + x^4 + x^3 + x + 1. |
72 | /// |
73 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
74 | /// Otherwise the computation result is written into the result. |
75 | /// |
76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8mul_epi8) |
77 | #[inline ] |
78 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
79 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
80 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
81 | pub unsafe fn _mm512_mask_gf2p8mul_epi8( |
82 | src: __m512i, |
83 | k: __mmask64, |
84 | a: __m512i, |
85 | b: __m512i, |
86 | ) -> __m512i { |
87 | transmute(src:simd_select_bitmask( |
88 | m:k, |
89 | yes:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), |
90 | no:src.as_i8x64(), |
91 | )) |
92 | } |
93 | |
94 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
95 | /// The field is in polynomial representation with the reduction polynomial |
96 | /// x^8 + x^4 + x^3 + x + 1. |
97 | /// |
98 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
99 | /// Otherwise the computation result is written into the result. |
100 | /// |
101 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8mul_epi8) |
102 | #[inline ] |
103 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
104 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
105 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
106 | pub unsafe fn _mm512_maskz_gf2p8mul_epi8(k: __mmask64, a: __m512i, b: __m512i) -> __m512i { |
107 | let zero: i8x64 = i8x64::ZERO; |
108 | transmute(src:simd_select_bitmask( |
109 | m:k, |
110 | yes:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), |
111 | no:zero, |
112 | )) |
113 | } |
114 | |
115 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
116 | /// The field is in polynomial representation with the reduction polynomial |
117 | /// x^8 + x^4 + x^3 + x + 1. |
118 | /// |
119 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8mul_epi8) |
120 | #[inline ] |
121 | #[target_feature (enable = "gfni,avx" )] |
122 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
123 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
124 | pub unsafe fn _mm256_gf2p8mul_epi8(a: __m256i, b: __m256i) -> __m256i { |
125 | transmute(src:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32())) |
126 | } |
127 | |
128 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
129 | /// The field is in polynomial representation with the reduction polynomial |
130 | /// x^8 + x^4 + x^3 + x + 1. |
131 | /// |
132 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
133 | /// Otherwise the computation result is written into the result. |
134 | /// |
135 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8mul_epi8) |
136 | #[inline ] |
137 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
138 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
139 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
140 | pub unsafe fn _mm256_mask_gf2p8mul_epi8( |
141 | src: __m256i, |
142 | k: __mmask32, |
143 | a: __m256i, |
144 | b: __m256i, |
145 | ) -> __m256i { |
146 | transmute(src:simd_select_bitmask( |
147 | m:k, |
148 | yes:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), |
149 | no:src.as_i8x32(), |
150 | )) |
151 | } |
152 | |
153 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
154 | /// The field is in polynomial representation with the reduction polynomial |
155 | /// x^8 + x^4 + x^3 + x + 1. |
156 | /// |
157 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
158 | /// Otherwise the computation result is written into the result. |
159 | /// |
160 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8mul_epi8) |
161 | #[inline ] |
162 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
163 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
164 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
165 | pub unsafe fn _mm256_maskz_gf2p8mul_epi8(k: __mmask32, a: __m256i, b: __m256i) -> __m256i { |
166 | let zero: i8x32 = i8x32::ZERO; |
167 | transmute(src:simd_select_bitmask( |
168 | m:k, |
169 | yes:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), |
170 | no:zero, |
171 | )) |
172 | } |
173 | |
174 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
175 | /// The field is in polynomial representation with the reduction polynomial |
176 | /// x^8 + x^4 + x^3 + x + 1. |
177 | /// |
178 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8mul_epi8) |
179 | #[inline ] |
180 | #[target_feature (enable = "gfni" )] |
181 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
182 | #[cfg_attr (test, assert_instr(gf2p8mulb))] |
183 | pub unsafe fn _mm_gf2p8mul_epi8(a: __m128i, b: __m128i) -> __m128i { |
184 | transmute(src:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16())) |
185 | } |
186 | |
187 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
188 | /// The field is in polynomial representation with the reduction polynomial |
189 | /// x^8 + x^4 + x^3 + x + 1. |
190 | /// |
191 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
192 | /// Otherwise the computation result is written into the result. |
193 | /// |
194 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8mul_epi8) |
195 | #[inline ] |
196 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
197 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
198 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
199 | pub unsafe fn _mm_mask_gf2p8mul_epi8( |
200 | src: __m128i, |
201 | k: __mmask16, |
202 | a: __m128i, |
203 | b: __m128i, |
204 | ) -> __m128i { |
205 | transmute(src:simd_select_bitmask( |
206 | m:k, |
207 | yes:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), |
208 | no:src.as_i8x16(), |
209 | )) |
210 | } |
211 | |
212 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
213 | /// The field is in polynomial representation with the reduction polynomial |
214 | /// x^8 + x^4 + x^3 + x + 1. |
215 | /// |
216 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
217 | /// Otherwise the computation result is written into the result. |
218 | /// |
219 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8mul_epi8) |
220 | #[inline ] |
221 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
222 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
223 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
224 | pub unsafe fn _mm_maskz_gf2p8mul_epi8(k: __mmask16, a: __m128i, b: __m128i) -> __m128i { |
225 | let zero: i8x16 = i8x16::ZERO; |
226 | transmute(src:simd_select_bitmask( |
227 | m:k, |
228 | yes:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), |
229 | no:zero, |
230 | )) |
231 | } |
232 | |
233 | /// Performs an affine transformation on the packed bytes in x. |
234 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
235 | /// and b being a constant 8-bit immediate value. |
236 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
237 | /// |
238 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8affine_epi64_epi8) |
239 | #[inline ] |
240 | #[target_feature (enable = "gfni,avx512f" )] |
241 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
242 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
243 | #[rustc_legacy_const_generics (2)] |
244 | pub unsafe fn _mm512_gf2p8affine_epi64_epi8<const B: i32>(x: __m512i, a: __m512i) -> __m512i { |
245 | static_assert_uimm_bits!(B, 8); |
246 | let b: u8 = B as u8; |
247 | let x: i8x64 = x.as_i8x64(); |
248 | let a: i8x64 = a.as_i8x64(); |
249 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
250 | transmute(src:r) |
251 | } |
252 | |
253 | /// Performs an affine transformation on the packed bytes in x. |
254 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
255 | /// and b being a constant 8-bit immediate value. |
256 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
257 | /// |
258 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
259 | /// Otherwise the computation result is written into the result. |
260 | /// |
261 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8affine_epi64_epi8) |
262 | #[inline ] |
263 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
264 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
265 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
266 | #[rustc_legacy_const_generics (3)] |
267 | pub unsafe fn _mm512_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
268 | k: __mmask64, |
269 | x: __m512i, |
270 | a: __m512i, |
271 | ) -> __m512i { |
272 | static_assert_uimm_bits!(B, 8); |
273 | let b: u8 = B as u8; |
274 | let zero: i8x64 = i8x64::ZERO; |
275 | let x: i8x64 = x.as_i8x64(); |
276 | let a: i8x64 = a.as_i8x64(); |
277 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
278 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
279 | } |
280 | |
281 | /// Performs an affine transformation on the packed bytes in x. |
282 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
283 | /// and b being a constant 8-bit immediate value. |
284 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
285 | /// |
286 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
287 | /// Otherwise the computation result is written into the result. |
288 | /// |
289 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8affine_epi64_epi8) |
290 | #[inline ] |
291 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
292 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
293 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
294 | #[rustc_legacy_const_generics (4)] |
295 | pub unsafe fn _mm512_mask_gf2p8affine_epi64_epi8<const B: i32>( |
296 | src: __m512i, |
297 | k: __mmask64, |
298 | x: __m512i, |
299 | a: __m512i, |
300 | ) -> __m512i { |
301 | static_assert_uimm_bits!(B, 8); |
302 | let b: u8 = B as u8; |
303 | let x: i8x64 = x.as_i8x64(); |
304 | let a: i8x64 = a.as_i8x64(); |
305 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
306 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x64())) |
307 | } |
308 | |
309 | /// Performs an affine transformation on the packed bytes in x. |
310 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
311 | /// and b being a constant 8-bit immediate value. |
312 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
313 | /// |
314 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8affine_epi64_epi8) |
315 | #[inline ] |
316 | #[target_feature (enable = "gfni,avx" )] |
317 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
318 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
319 | #[rustc_legacy_const_generics (2)] |
320 | pub unsafe fn _mm256_gf2p8affine_epi64_epi8<const B: i32>(x: __m256i, a: __m256i) -> __m256i { |
321 | static_assert_uimm_bits!(B, 8); |
322 | let b: u8 = B as u8; |
323 | let x: i8x32 = x.as_i8x32(); |
324 | let a: i8x32 = a.as_i8x32(); |
325 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
326 | transmute(src:r) |
327 | } |
328 | |
329 | /// Performs an affine transformation on the packed bytes in x. |
330 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
331 | /// and b being a constant 8-bit immediate value. |
332 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
333 | /// |
334 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
335 | /// Otherwise the computation result is written into the result. |
336 | /// |
337 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8affine_epi64_epi8) |
338 | #[inline ] |
339 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
340 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
341 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
342 | #[rustc_legacy_const_generics (3)] |
343 | pub unsafe fn _mm256_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
344 | k: __mmask32, |
345 | x: __m256i, |
346 | a: __m256i, |
347 | ) -> __m256i { |
348 | static_assert_uimm_bits!(B, 8); |
349 | let b: u8 = B as u8; |
350 | let zero: i8x32 = i8x32::ZERO; |
351 | let x: i8x32 = x.as_i8x32(); |
352 | let a: i8x32 = a.as_i8x32(); |
353 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
354 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
355 | } |
356 | |
357 | /// Performs an affine transformation on the packed bytes in x. |
358 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
359 | /// and b being a constant 8-bit immediate value. |
360 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
361 | /// |
362 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
363 | /// Otherwise the computation result is written into the result. |
364 | /// |
365 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8affine_epi64_epi8) |
366 | #[inline ] |
367 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
368 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
369 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
370 | #[rustc_legacy_const_generics (4)] |
371 | pub unsafe fn _mm256_mask_gf2p8affine_epi64_epi8<const B: i32>( |
372 | src: __m256i, |
373 | k: __mmask32, |
374 | x: __m256i, |
375 | a: __m256i, |
376 | ) -> __m256i { |
377 | static_assert_uimm_bits!(B, 8); |
378 | let b: u8 = B as u8; |
379 | let x: i8x32 = x.as_i8x32(); |
380 | let a: i8x32 = a.as_i8x32(); |
381 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
382 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x32())) |
383 | } |
384 | |
385 | /// Performs an affine transformation on the packed bytes in x. |
386 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
387 | /// and b being a constant 8-bit immediate value. |
388 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
389 | /// |
390 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8) |
391 | #[inline ] |
392 | #[target_feature (enable = "gfni" )] |
393 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
394 | #[cfg_attr (test, assert_instr(gf2p8affineqb, B = 0))] |
395 | #[rustc_legacy_const_generics (2)] |
396 | pub unsafe fn _mm_gf2p8affine_epi64_epi8<const B: i32>(x: __m128i, a: __m128i) -> __m128i { |
397 | static_assert_uimm_bits!(B, 8); |
398 | let b: u8 = B as u8; |
399 | let x: i8x16 = x.as_i8x16(); |
400 | let a: i8x16 = a.as_i8x16(); |
401 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
402 | transmute(src:r) |
403 | } |
404 | |
405 | /// Performs an affine transformation on the packed bytes in x. |
406 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
407 | /// and b being a constant 8-bit immediate value. |
408 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
409 | /// |
410 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
411 | /// Otherwise the computation result is written into the result. |
412 | /// |
413 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8affine_epi64_epi8) |
414 | #[inline ] |
415 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
416 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
417 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
418 | #[rustc_legacy_const_generics (3)] |
419 | pub unsafe fn _mm_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
420 | k: __mmask16, |
421 | x: __m128i, |
422 | a: __m128i, |
423 | ) -> __m128i { |
424 | static_assert_uimm_bits!(B, 8); |
425 | let b: u8 = B as u8; |
426 | let zero: i8x16 = i8x16::ZERO; |
427 | let x: i8x16 = x.as_i8x16(); |
428 | let a: i8x16 = a.as_i8x16(); |
429 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
430 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
431 | } |
432 | |
433 | /// Performs an affine transformation on the packed bytes in x. |
434 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
435 | /// and b being a constant 8-bit immediate value. |
436 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
437 | /// |
438 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
439 | /// Otherwise the computation result is written into the result. |
440 | /// |
441 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8affine_epi64_epi8) |
442 | #[inline ] |
443 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
444 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
445 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
446 | #[rustc_legacy_const_generics (4)] |
447 | pub unsafe fn _mm_mask_gf2p8affine_epi64_epi8<const B: i32>( |
448 | src: __m128i, |
449 | k: __mmask16, |
450 | x: __m128i, |
451 | a: __m128i, |
452 | ) -> __m128i { |
453 | static_assert_uimm_bits!(B, 8); |
454 | let b: u8 = B as u8; |
455 | let x: i8x16 = x.as_i8x16(); |
456 | let a: i8x16 = a.as_i8x16(); |
457 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
458 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x16())) |
459 | } |
460 | |
461 | /// Performs an affine transformation on the inverted packed bytes in x. |
462 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
463 | /// and b being a constant 8-bit immediate value. |
464 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
465 | /// The inverse of 0 is 0. |
466 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
467 | /// |
468 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8affineinv_epi64_epi8) |
469 | #[inline ] |
470 | #[target_feature (enable = "gfni,avx512f" )] |
471 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
472 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
473 | #[rustc_legacy_const_generics (2)] |
474 | pub unsafe fn _mm512_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m512i, a: __m512i) -> __m512i { |
475 | static_assert_uimm_bits!(B, 8); |
476 | let b: u8 = B as u8; |
477 | let x: i8x64 = x.as_i8x64(); |
478 | let a: i8x64 = a.as_i8x64(); |
479 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
480 | transmute(src:r) |
481 | } |
482 | |
483 | /// Performs an affine transformation on the inverted packed bytes in x. |
484 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
485 | /// and b being a constant 8-bit immediate value. |
486 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
487 | /// The inverse of 0 is 0. |
488 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
489 | /// |
490 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
491 | /// Otherwise the computation result is written into the result. |
492 | /// |
493 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8affineinv_epi64_epi8) |
494 | #[inline ] |
495 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
496 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
497 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
498 | #[rustc_legacy_const_generics (3)] |
499 | pub unsafe fn _mm512_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
500 | k: __mmask64, |
501 | x: __m512i, |
502 | a: __m512i, |
503 | ) -> __m512i { |
504 | static_assert_uimm_bits!(B, 8); |
505 | let b: u8 = B as u8; |
506 | let zero: i8x64 = i8x64::ZERO; |
507 | let x: i8x64 = x.as_i8x64(); |
508 | let a: i8x64 = a.as_i8x64(); |
509 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
510 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
511 | } |
512 | |
513 | /// Performs an affine transformation on the inverted packed bytes in x. |
514 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
515 | /// and b being a constant 8-bit immediate value. |
516 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
517 | /// The inverse of 0 is 0. |
518 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
519 | /// |
520 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
521 | /// Otherwise the computation result is written into the result. |
522 | /// |
523 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8affineinv_epi64_epi8) |
524 | #[inline ] |
525 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
526 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
527 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
528 | #[rustc_legacy_const_generics (4)] |
529 | pub unsafe fn _mm512_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
530 | src: __m512i, |
531 | k: __mmask64, |
532 | x: __m512i, |
533 | a: __m512i, |
534 | ) -> __m512i { |
535 | static_assert_uimm_bits!(B, 8); |
536 | let b: u8 = B as u8; |
537 | let x: i8x64 = x.as_i8x64(); |
538 | let a: i8x64 = a.as_i8x64(); |
539 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
540 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x64())) |
541 | } |
542 | |
543 | /// Performs an affine transformation on the inverted packed bytes in x. |
544 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
545 | /// and b being a constant 8-bit immediate value. |
546 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
547 | /// The inverse of 0 is 0. |
548 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
549 | /// |
550 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8affineinv_epi64_epi8) |
551 | #[inline ] |
552 | #[target_feature (enable = "gfni,avx" )] |
553 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
554 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
555 | #[rustc_legacy_const_generics (2)] |
556 | pub unsafe fn _mm256_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m256i, a: __m256i) -> __m256i { |
557 | static_assert_uimm_bits!(B, 8); |
558 | let b: u8 = B as u8; |
559 | let x: i8x32 = x.as_i8x32(); |
560 | let a: i8x32 = a.as_i8x32(); |
561 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
562 | transmute(src:r) |
563 | } |
564 | |
565 | /// Performs an affine transformation on the inverted packed bytes in x. |
566 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
567 | /// and b being a constant 8-bit immediate value. |
568 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
569 | /// The inverse of 0 is 0. |
570 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
571 | /// |
572 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
573 | /// Otherwise the computation result is written into the result. |
574 | /// |
575 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8affineinv_epi64_epi8) |
576 | #[inline ] |
577 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
578 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
579 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
580 | #[rustc_legacy_const_generics (3)] |
581 | pub unsafe fn _mm256_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
582 | k: __mmask32, |
583 | x: __m256i, |
584 | a: __m256i, |
585 | ) -> __m256i { |
586 | static_assert_uimm_bits!(B, 8); |
587 | let b: u8 = B as u8; |
588 | let zero: i8x32 = i8x32::ZERO; |
589 | let x: i8x32 = x.as_i8x32(); |
590 | let a: i8x32 = a.as_i8x32(); |
591 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
592 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
593 | } |
594 | |
595 | /// Performs an affine transformation on the inverted packed bytes in x. |
596 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
597 | /// and b being a constant 8-bit immediate value. |
598 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
599 | /// The inverse of 0 is 0. |
600 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
601 | /// |
602 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
603 | /// Otherwise the computation result is written into the result. |
604 | /// |
605 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8affineinv_epi64_epi8) |
606 | #[inline ] |
607 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
608 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
609 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
610 | #[rustc_legacy_const_generics (4)] |
611 | pub unsafe fn _mm256_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
612 | src: __m256i, |
613 | k: __mmask32, |
614 | x: __m256i, |
615 | a: __m256i, |
616 | ) -> __m256i { |
617 | static_assert_uimm_bits!(B, 8); |
618 | let b: u8 = B as u8; |
619 | let x: i8x32 = x.as_i8x32(); |
620 | let a: i8x32 = a.as_i8x32(); |
621 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
622 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x32())) |
623 | } |
624 | |
625 | /// Performs an affine transformation on the inverted packed bytes in x. |
626 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
627 | /// and b being a constant 8-bit immediate value. |
628 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
629 | /// The inverse of 0 is 0. |
630 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
631 | /// |
632 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affineinv_epi64_epi8) |
633 | #[inline ] |
634 | #[target_feature (enable = "gfni" )] |
635 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
636 | #[cfg_attr (test, assert_instr(gf2p8affineinvqb, B = 0))] |
637 | #[rustc_legacy_const_generics (2)] |
638 | pub unsafe fn _mm_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m128i, a: __m128i) -> __m128i { |
639 | static_assert_uimm_bits!(B, 8); |
640 | let b: u8 = B as u8; |
641 | let x: i8x16 = x.as_i8x16(); |
642 | let a: i8x16 = a.as_i8x16(); |
643 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
644 | transmute(src:r) |
645 | } |
646 | |
647 | /// Performs an affine transformation on the inverted packed bytes in x. |
648 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
649 | /// and b being a constant 8-bit immediate value. |
650 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
651 | /// The inverse of 0 is 0. |
652 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
653 | /// |
654 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
655 | /// Otherwise the computation result is written into the result. |
656 | /// |
657 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8affineinv_epi64_epi8) |
658 | #[inline ] |
659 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
660 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
661 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
662 | #[rustc_legacy_const_generics (3)] |
663 | pub unsafe fn _mm_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
664 | k: __mmask16, |
665 | x: __m128i, |
666 | a: __m128i, |
667 | ) -> __m128i { |
668 | static_assert_uimm_bits!(B, 8); |
669 | let b: u8 = B as u8; |
670 | let zero: i8x16 = i8x16::ZERO; |
671 | let x: i8x16 = x.as_i8x16(); |
672 | let a: i8x16 = a.as_i8x16(); |
673 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
674 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
675 | } |
676 | |
677 | /// Performs an affine transformation on the inverted packed bytes in x. |
678 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
679 | /// and b being a constant 8-bit immediate value. |
680 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
681 | /// The inverse of 0 is 0. |
682 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
683 | /// |
684 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
685 | /// Otherwise the computation result is written into the result. |
686 | /// |
687 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8affineinv_epi64_epi8) |
688 | #[inline ] |
689 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
690 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
691 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
692 | #[rustc_legacy_const_generics (4)] |
693 | pub unsafe fn _mm_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
694 | src: __m128i, |
695 | k: __mmask16, |
696 | x: __m128i, |
697 | a: __m128i, |
698 | ) -> __m128i { |
699 | static_assert_uimm_bits!(B, 8); |
700 | let b: u8 = B as u8; |
701 | let x: i8x16 = x.as_i8x16(); |
702 | let a: i8x16 = a.as_i8x16(); |
703 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
704 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x16())) |
705 | } |
706 | |
707 | #[cfg (test)] |
708 | mod tests { |
709 | // The constants in the tests below are just bit patterns. They should not |
710 | // be interpreted as integers; signedness does not make sense for them, but |
711 | // __mXXXi happens to be defined in terms of signed integers. |
712 | #![allow (overflowing_literals)] |
713 | |
714 | use core::hint::black_box; |
715 | use core::intrinsics::size_of; |
716 | use stdarch_test::simd_test; |
717 | |
718 | use crate::core_arch::x86::*; |
719 | |
720 | fn mulbyte(left: u8, right: u8) -> u8 { |
721 | // this implementation follows the description in |
722 | // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8 |
723 | const REDUCTION_POLYNOMIAL: u16 = 0x11b; |
724 | let left: u16 = left.into(); |
725 | let right: u16 = right.into(); |
726 | let mut carryless_product: u16 = 0; |
727 | |
728 | // Carryless multiplication |
729 | for i in 0..8 { |
730 | if ((left >> i) & 0x01) != 0 { |
731 | carryless_product ^= right << i; |
732 | } |
733 | } |
734 | |
735 | // reduction, adding in "0" where appropriate to clear out high bits |
736 | // note that REDUCTION_POLYNOMIAL is zero in this context |
737 | for i in (8..=14).rev() { |
738 | if ((carryless_product >> i) & 0x01) != 0 { |
739 | carryless_product ^= REDUCTION_POLYNOMIAL << (i - 8); |
740 | } |
741 | } |
742 | |
743 | carryless_product as u8 |
744 | } |
745 | |
746 | const NUM_TEST_WORDS_512: usize = 4; |
747 | const NUM_TEST_WORDS_256: usize = NUM_TEST_WORDS_512 * 2; |
748 | const NUM_TEST_WORDS_128: usize = NUM_TEST_WORDS_256 * 2; |
749 | const NUM_TEST_ENTRIES: usize = NUM_TEST_WORDS_512 * 64; |
750 | const NUM_TEST_WORDS_64: usize = NUM_TEST_WORDS_128 * 2; |
751 | const NUM_BYTES: usize = 256; |
752 | const NUM_BYTES_WORDS_128: usize = NUM_BYTES / 16; |
753 | const NUM_BYTES_WORDS_256: usize = NUM_BYTES_WORDS_128 / 2; |
754 | const NUM_BYTES_WORDS_512: usize = NUM_BYTES_WORDS_256 / 2; |
755 | |
756 | fn parity(input: u8) -> u8 { |
757 | let mut accumulator = 0; |
758 | for i in 0..8 { |
759 | accumulator ^= (input >> i) & 0x01; |
760 | } |
761 | accumulator |
762 | } |
763 | |
764 | fn mat_vec_multiply_affine(matrix: u64, x: u8, b: u8) -> u8 { |
765 | // this implementation follows the description in |
766 | // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8 |
767 | let mut accumulator = 0; |
768 | |
769 | for bit in 0..8 { |
770 | accumulator |= parity(x & matrix.to_le_bytes()[bit]) << (7 - bit); |
771 | } |
772 | |
773 | accumulator ^ b |
774 | } |
775 | |
776 | fn generate_affine_mul_test_data( |
777 | immediate: u8, |
778 | ) -> ( |
779 | [u64; NUM_TEST_WORDS_64], |
780 | [u8; NUM_TEST_ENTRIES], |
781 | [u8; NUM_TEST_ENTRIES], |
782 | ) { |
783 | let mut left: [u64; NUM_TEST_WORDS_64] = [0; NUM_TEST_WORDS_64]; |
784 | let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
785 | let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
786 | |
787 | for i in 0..NUM_TEST_WORDS_64 { |
788 | left[i] = (i as u64) * 103 * 101; |
789 | for j in 0..8 { |
790 | let j64 = j as u64; |
791 | right[i * 8 + j] = ((left[i] + j64) % 256) as u8; |
792 | result[i * 8 + j] = mat_vec_multiply_affine(left[i], right[i * 8 + j], immediate); |
793 | } |
794 | } |
795 | |
796 | (left, right, result) |
797 | } |
798 | |
799 | fn generate_inv_tests_data() -> ([u8; NUM_BYTES], [u8; NUM_BYTES]) { |
800 | let mut input: [u8; NUM_BYTES] = [0; NUM_BYTES]; |
801 | let mut result: [u8; NUM_BYTES] = [0; NUM_BYTES]; |
802 | |
803 | for i in 0..NUM_BYTES { |
804 | input[i] = (i % 256) as u8; |
805 | result[i] = if i == 0 { 0 } else { 1 }; |
806 | } |
807 | |
808 | (input, result) |
809 | } |
810 | |
811 | const AES_S_BOX: [u8; NUM_BYTES] = [ |
812 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, |
813 | 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, |
814 | 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, |
815 | 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, |
816 | 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, |
817 | 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, |
818 | 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, |
819 | 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
820 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, |
821 | 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, |
822 | 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, |
823 | 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, |
824 | 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, |
825 | 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, |
826 | 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, |
827 | 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
828 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, |
829 | 0x16, |
830 | ]; |
831 | |
832 | fn generate_byte_mul_test_data() -> ( |
833 | [u8; NUM_TEST_ENTRIES], |
834 | [u8; NUM_TEST_ENTRIES], |
835 | [u8; NUM_TEST_ENTRIES], |
836 | ) { |
837 | let mut left: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
838 | let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
839 | let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
840 | |
841 | for i in 0..NUM_TEST_ENTRIES { |
842 | left[i] = (i % 256) as u8; |
843 | right[i] = left[i].wrapping_mul(101); |
844 | result[i] = mulbyte(left[i], right[i]); |
845 | } |
846 | |
847 | (left, right, result) |
848 | } |
849 | |
850 | #[target_feature (enable = "sse2" )] |
851 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
852 | unsafe fn load_m128i_word<T>(data: &[T], word_index: usize) -> __m128i { |
853 | let byte_offset = word_index * 16 / size_of::<T>(); |
854 | let pointer = data.as_ptr().add(byte_offset) as *const __m128i; |
855 | _mm_loadu_si128(black_box(pointer)) |
856 | } |
857 | |
858 | #[target_feature (enable = "avx" )] |
859 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
860 | unsafe fn load_m256i_word<T>(data: &[T], word_index: usize) -> __m256i { |
861 | let byte_offset = word_index * 32 / size_of::<T>(); |
862 | let pointer = data.as_ptr().add(byte_offset) as *const __m256i; |
863 | _mm256_loadu_si256(black_box(pointer)) |
864 | } |
865 | |
866 | #[target_feature (enable = "avx512f" )] |
867 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
868 | unsafe fn load_m512i_word<T>(data: &[T], word_index: usize) -> __m512i { |
869 | let byte_offset = word_index * 64 / size_of::<T>(); |
870 | let pointer = data.as_ptr().add(byte_offset) as *const i32; |
871 | _mm512_loadu_si512(black_box(pointer)) |
872 | } |
873 | |
874 | #[simd_test(enable = "gfni,avx512f" )] |
875 | unsafe fn test_mm512_gf2p8mul_epi8() { |
876 | let (left, right, expected) = generate_byte_mul_test_data(); |
877 | |
878 | for i in 0..NUM_TEST_WORDS_512 { |
879 | let left = load_m512i_word(&left, i); |
880 | let right = load_m512i_word(&right, i); |
881 | let expected = load_m512i_word(&expected, i); |
882 | let result = _mm512_gf2p8mul_epi8(left, right); |
883 | assert_eq_m512i(result, expected); |
884 | } |
885 | } |
886 | |
887 | #[simd_test(enable = "gfni,avx512bw" )] |
888 | unsafe fn test_mm512_maskz_gf2p8mul_epi8() { |
889 | let (left, right, _expected) = generate_byte_mul_test_data(); |
890 | |
891 | for i in 0..NUM_TEST_WORDS_512 { |
892 | let left = load_m512i_word(&left, i); |
893 | let right = load_m512i_word(&right, i); |
894 | let result_zero = _mm512_maskz_gf2p8mul_epi8(0, left, right); |
895 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
896 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
897 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
898 | let expected_result = _mm512_gf2p8mul_epi8(left, right); |
899 | let result_masked = _mm512_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
900 | let expected_masked = |
901 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
902 | assert_eq_m512i(result_masked, expected_masked); |
903 | } |
904 | } |
905 | |
906 | #[simd_test(enable = "gfni,avx512bw" )] |
907 | unsafe fn test_mm512_mask_gf2p8mul_epi8() { |
908 | let (left, right, _expected) = generate_byte_mul_test_data(); |
909 | |
910 | for i in 0..NUM_TEST_WORDS_512 { |
911 | let left = load_m512i_word(&left, i); |
912 | let right = load_m512i_word(&right, i); |
913 | let result_left = _mm512_mask_gf2p8mul_epi8(left, 0, left, right); |
914 | assert_eq_m512i(result_left, left); |
915 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
916 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
917 | let expected_result = _mm512_gf2p8mul_epi8(left, right); |
918 | let result_masked = _mm512_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
919 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
920 | assert_eq_m512i(result_masked, expected_masked); |
921 | } |
922 | } |
923 | |
924 | #[simd_test(enable = "gfni,avx" )] |
925 | unsafe fn test_mm256_gf2p8mul_epi8() { |
926 | let (left, right, expected) = generate_byte_mul_test_data(); |
927 | |
928 | for i in 0..NUM_TEST_WORDS_256 { |
929 | let left = load_m256i_word(&left, i); |
930 | let right = load_m256i_word(&right, i); |
931 | let expected = load_m256i_word(&expected, i); |
932 | let result = _mm256_gf2p8mul_epi8(left, right); |
933 | assert_eq_m256i(result, expected); |
934 | } |
935 | } |
936 | |
937 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
938 | unsafe fn test_mm256_maskz_gf2p8mul_epi8() { |
939 | let (left, right, _expected) = generate_byte_mul_test_data(); |
940 | |
941 | for i in 0..NUM_TEST_WORDS_256 { |
942 | let left = load_m256i_word(&left, i); |
943 | let right = load_m256i_word(&right, i); |
944 | let result_zero = _mm256_maskz_gf2p8mul_epi8(0, left, right); |
945 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
946 | let mask_bytes: __mmask32 = 0x0F_F0_FF_00; |
947 | const MASK_WORDS: i32 = 0b01_10_11_00; |
948 | let expected_result = _mm256_gf2p8mul_epi8(left, right); |
949 | let result_masked = _mm256_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
950 | let expected_masked = |
951 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
952 | assert_eq_m256i(result_masked, expected_masked); |
953 | } |
954 | } |
955 | |
956 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
957 | unsafe fn test_mm256_mask_gf2p8mul_epi8() { |
958 | let (left, right, _expected) = generate_byte_mul_test_data(); |
959 | |
960 | for i in 0..NUM_TEST_WORDS_256 { |
961 | let left = load_m256i_word(&left, i); |
962 | let right = load_m256i_word(&right, i); |
963 | let result_left = _mm256_mask_gf2p8mul_epi8(left, 0, left, right); |
964 | assert_eq_m256i(result_left, left); |
965 | let mask_bytes: __mmask32 = 0x0F_F0_FF_00; |
966 | const MASK_WORDS: i32 = 0b01_10_11_00; |
967 | let expected_result = _mm256_gf2p8mul_epi8(left, right); |
968 | let result_masked = _mm256_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
969 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
970 | assert_eq_m256i(result_masked, expected_masked); |
971 | } |
972 | } |
973 | |
974 | #[simd_test(enable = "gfni" )] |
975 | unsafe fn test_mm_gf2p8mul_epi8() { |
976 | let (left, right, expected) = generate_byte_mul_test_data(); |
977 | |
978 | for i in 0..NUM_TEST_WORDS_128 { |
979 | let left = load_m128i_word(&left, i); |
980 | let right = load_m128i_word(&right, i); |
981 | let expected = load_m128i_word(&expected, i); |
982 | let result = _mm_gf2p8mul_epi8(left, right); |
983 | assert_eq_m128i(result, expected); |
984 | } |
985 | } |
986 | |
987 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
988 | unsafe fn test_mm_maskz_gf2p8mul_epi8() { |
989 | let (left, right, _expected) = generate_byte_mul_test_data(); |
990 | |
991 | for i in 0..NUM_TEST_WORDS_128 { |
992 | let left = load_m128i_word(&left, i); |
993 | let right = load_m128i_word(&right, i); |
994 | let result_zero = _mm_maskz_gf2p8mul_epi8(0, left, right); |
995 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
996 | let mask_bytes: __mmask16 = 0x0F_F0; |
997 | const MASK_WORDS: i32 = 0b01_10; |
998 | let expected_result = _mm_gf2p8mul_epi8(left, right); |
999 | let result_masked = _mm_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
1000 | let expected_masked = |
1001 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
1002 | assert_eq_m128i(result_masked, expected_masked); |
1003 | } |
1004 | } |
1005 | |
1006 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1007 | unsafe fn test_mm_mask_gf2p8mul_epi8() { |
1008 | let (left, right, _expected) = generate_byte_mul_test_data(); |
1009 | |
1010 | for i in 0..NUM_TEST_WORDS_128 { |
1011 | let left = load_m128i_word(&left, i); |
1012 | let right = load_m128i_word(&right, i); |
1013 | let result_left = _mm_mask_gf2p8mul_epi8(left, 0, left, right); |
1014 | assert_eq_m128i(result_left, left); |
1015 | let mask_bytes: __mmask16 = 0x0F_F0; |
1016 | const MASK_WORDS: i32 = 0b01_10; |
1017 | let expected_result = _mm_gf2p8mul_epi8(left, right); |
1018 | let result_masked = _mm_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
1019 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
1020 | assert_eq_m128i(result_masked, expected_masked); |
1021 | } |
1022 | } |
1023 | |
1024 | #[simd_test(enable = "gfni,avx512f" )] |
1025 | unsafe fn test_mm512_gf2p8affine_epi64_epi8() { |
1026 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1027 | const IDENTITY_BYTE: i32 = 0; |
1028 | let constant: i64 = 0; |
1029 | const CONSTANT_BYTE: i32 = 0x63; |
1030 | let identity = _mm512_set1_epi64(identity); |
1031 | let constant = _mm512_set1_epi64(constant); |
1032 | let constant_reference = _mm512_set1_epi8(CONSTANT_BYTE as i8); |
1033 | |
1034 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
1035 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
1036 | |
1037 | for i in 0..NUM_TEST_WORDS_512 { |
1038 | let data = load_m512i_word(&bytes, i); |
1039 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1040 | assert_eq_m512i(result, data); |
1041 | let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1042 | assert_eq_m512i(result, constant_reference); |
1043 | let data = load_m512i_word(&more_bytes, i); |
1044 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1045 | assert_eq_m512i(result, data); |
1046 | let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1047 | assert_eq_m512i(result, constant_reference); |
1048 | |
1049 | let matrix = load_m512i_word(&matrices, i); |
1050 | let vector = load_m512i_word(&vectors, i); |
1051 | let reference = load_m512i_word(&references, i); |
1052 | |
1053 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
1054 | assert_eq_m512i(result, reference); |
1055 | } |
1056 | } |
1057 | |
1058 | #[simd_test(enable = "gfni,avx512bw" )] |
1059 | unsafe fn test_mm512_maskz_gf2p8affine_epi64_epi8() { |
1060 | const CONSTANT_BYTE: i32 = 0x63; |
1061 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1062 | |
1063 | for i in 0..NUM_TEST_WORDS_512 { |
1064 | let matrix = load_m512i_word(&matrices, i); |
1065 | let vector = load_m512i_word(&vectors, i); |
1066 | let result_zero = |
1067 | _mm512_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1068 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
1069 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1070 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1071 | let expected_result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1072 | let result_masked = |
1073 | _mm512_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1074 | let expected_masked = |
1075 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
1076 | assert_eq_m512i(result_masked, expected_masked); |
1077 | } |
1078 | } |
1079 | |
1080 | #[simd_test(enable = "gfni,avx512bw" )] |
1081 | unsafe fn test_mm512_mask_gf2p8affine_epi64_epi8() { |
1082 | const CONSTANT_BYTE: i32 = 0x63; |
1083 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1084 | |
1085 | for i in 0..NUM_TEST_WORDS_512 { |
1086 | let left = load_m512i_word(&vectors, i); |
1087 | let right = load_m512i_word(&matrices, i); |
1088 | let result_left = |
1089 | _mm512_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1090 | assert_eq_m512i(result_left, left); |
1091 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1092 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1093 | let expected_result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1094 | let result_masked = |
1095 | _mm512_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1096 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
1097 | assert_eq_m512i(result_masked, expected_masked); |
1098 | } |
1099 | } |
1100 | |
1101 | #[simd_test(enable = "gfni,avx" )] |
1102 | unsafe fn test_mm256_gf2p8affine_epi64_epi8() { |
1103 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1104 | const IDENTITY_BYTE: i32 = 0; |
1105 | let constant: i64 = 0; |
1106 | const CONSTANT_BYTE: i32 = 0x63; |
1107 | let identity = _mm256_set1_epi64x(identity); |
1108 | let constant = _mm256_set1_epi64x(constant); |
1109 | let constant_reference = _mm256_set1_epi8(CONSTANT_BYTE as i8); |
1110 | |
1111 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
1112 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
1113 | |
1114 | for i in 0..NUM_TEST_WORDS_256 { |
1115 | let data = load_m256i_word(&bytes, i); |
1116 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1117 | assert_eq_m256i(result, data); |
1118 | let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1119 | assert_eq_m256i(result, constant_reference); |
1120 | let data = load_m256i_word(&more_bytes, i); |
1121 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1122 | assert_eq_m256i(result, data); |
1123 | let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1124 | assert_eq_m256i(result, constant_reference); |
1125 | |
1126 | let matrix = load_m256i_word(&matrices, i); |
1127 | let vector = load_m256i_word(&vectors, i); |
1128 | let reference = load_m256i_word(&references, i); |
1129 | |
1130 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
1131 | assert_eq_m256i(result, reference); |
1132 | } |
1133 | } |
1134 | |
1135 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1136 | unsafe fn test_mm256_maskz_gf2p8affine_epi64_epi8() { |
1137 | const CONSTANT_BYTE: i32 = 0x63; |
1138 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1139 | |
1140 | for i in 0..NUM_TEST_WORDS_256 { |
1141 | let matrix = load_m256i_word(&matrices, i); |
1142 | let vector = load_m256i_word(&vectors, i); |
1143 | let result_zero = |
1144 | _mm256_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1145 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
1146 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1147 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1148 | let expected_result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1149 | let result_masked = |
1150 | _mm256_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1151 | let expected_masked = |
1152 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
1153 | assert_eq_m256i(result_masked, expected_masked); |
1154 | } |
1155 | } |
1156 | |
1157 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1158 | unsafe fn test_mm256_mask_gf2p8affine_epi64_epi8() { |
1159 | const CONSTANT_BYTE: i32 = 0x63; |
1160 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1161 | |
1162 | for i in 0..NUM_TEST_WORDS_256 { |
1163 | let left = load_m256i_word(&vectors, i); |
1164 | let right = load_m256i_word(&matrices, i); |
1165 | let result_left = |
1166 | _mm256_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1167 | assert_eq_m256i(result_left, left); |
1168 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1169 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1170 | let expected_result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1171 | let result_masked = |
1172 | _mm256_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1173 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
1174 | assert_eq_m256i(result_masked, expected_masked); |
1175 | } |
1176 | } |
1177 | |
1178 | #[simd_test(enable = "gfni" )] |
1179 | unsafe fn test_mm_gf2p8affine_epi64_epi8() { |
1180 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1181 | const IDENTITY_BYTE: i32 = 0; |
1182 | let constant: i64 = 0; |
1183 | const CONSTANT_BYTE: i32 = 0x63; |
1184 | let identity = _mm_set1_epi64x(identity); |
1185 | let constant = _mm_set1_epi64x(constant); |
1186 | let constant_reference = _mm_set1_epi8(CONSTANT_BYTE as i8); |
1187 | |
1188 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
1189 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
1190 | |
1191 | for i in 0..NUM_TEST_WORDS_128 { |
1192 | let data = load_m128i_word(&bytes, i); |
1193 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1194 | assert_eq_m128i(result, data); |
1195 | let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1196 | assert_eq_m128i(result, constant_reference); |
1197 | let data = load_m128i_word(&more_bytes, i); |
1198 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
1199 | assert_eq_m128i(result, data); |
1200 | let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
1201 | assert_eq_m128i(result, constant_reference); |
1202 | |
1203 | let matrix = load_m128i_word(&matrices, i); |
1204 | let vector = load_m128i_word(&vectors, i); |
1205 | let reference = load_m128i_word(&references, i); |
1206 | |
1207 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
1208 | assert_eq_m128i(result, reference); |
1209 | } |
1210 | } |
1211 | |
1212 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1213 | unsafe fn test_mm_maskz_gf2p8affine_epi64_epi8() { |
1214 | const CONSTANT_BYTE: i32 = 0x63; |
1215 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1216 | |
1217 | for i in 0..NUM_TEST_WORDS_128 { |
1218 | let matrix = load_m128i_word(&matrices, i); |
1219 | let vector = load_m128i_word(&vectors, i); |
1220 | let result_zero = _mm_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1221 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
1222 | let mask_bytes: __mmask16 = 0x0F_F0; |
1223 | const MASK_WORDS: i32 = 0b01_10; |
1224 | let expected_result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1225 | let result_masked = |
1226 | _mm_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1227 | let expected_masked = |
1228 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
1229 | assert_eq_m128i(result_masked, expected_masked); |
1230 | } |
1231 | } |
1232 | |
1233 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1234 | unsafe fn test_mm_mask_gf2p8affine_epi64_epi8() { |
1235 | const CONSTANT_BYTE: i32 = 0x63; |
1236 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1237 | |
1238 | for i in 0..NUM_TEST_WORDS_128 { |
1239 | let left = load_m128i_word(&vectors, i); |
1240 | let right = load_m128i_word(&matrices, i); |
1241 | let result_left = |
1242 | _mm_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1243 | assert_eq_m128i(result_left, left); |
1244 | let mask_bytes: __mmask16 = 0x0F_F0; |
1245 | const MASK_WORDS: i32 = 0b01_10; |
1246 | let expected_result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1247 | let result_masked = |
1248 | _mm_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1249 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
1250 | assert_eq_m128i(result_masked, expected_masked); |
1251 | } |
1252 | } |
1253 | |
1254 | #[simd_test(enable = "gfni,avx512f" )] |
1255 | unsafe fn test_mm512_gf2p8affineinv_epi64_epi8() { |
1256 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1257 | const IDENTITY_BYTE: i32 = 0; |
1258 | const CONSTANT_BYTE: i32 = 0x63; |
1259 | let identity = _mm512_set1_epi64(identity); |
1260 | |
1261 | // validate inversion |
1262 | let (inputs, results) = generate_inv_tests_data(); |
1263 | |
1264 | for i in 0..NUM_BYTES_WORDS_512 { |
1265 | let input = load_m512i_word(&inputs, i); |
1266 | let reference = load_m512i_word(&results, i); |
1267 | let result = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
1268 | let remultiplied = _mm512_gf2p8mul_epi8(result, input); |
1269 | assert_eq_m512i(remultiplied, reference); |
1270 | } |
1271 | |
1272 | // validate subsequent affine operation |
1273 | let (matrices, vectors, _affine_expected) = |
1274 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1275 | |
1276 | for i in 0..NUM_TEST_WORDS_512 { |
1277 | let vector = load_m512i_word(&vectors, i); |
1278 | let matrix = load_m512i_word(&matrices, i); |
1279 | |
1280 | let inv_vec = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
1281 | let reference = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
1282 | let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1283 | assert_eq_m512i(result, reference); |
1284 | } |
1285 | |
1286 | // validate everything by virtue of checking against the AES SBox |
1287 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
1288 | let sbox_matrix = _mm512_set1_epi64(AES_S_BOX_MATRIX); |
1289 | |
1290 | for i in 0..NUM_BYTES_WORDS_512 { |
1291 | let reference = load_m512i_word(&AES_S_BOX, i); |
1292 | let input = load_m512i_word(&inputs, i); |
1293 | let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
1294 | assert_eq_m512i(result, reference); |
1295 | } |
1296 | } |
1297 | |
1298 | #[simd_test(enable = "gfni,avx512bw" )] |
1299 | unsafe fn test_mm512_maskz_gf2p8affineinv_epi64_epi8() { |
1300 | const CONSTANT_BYTE: i32 = 0x63; |
1301 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1302 | |
1303 | for i in 0..NUM_TEST_WORDS_512 { |
1304 | let matrix = load_m512i_word(&matrices, i); |
1305 | let vector = load_m512i_word(&vectors, i); |
1306 | let result_zero = |
1307 | _mm512_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1308 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
1309 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1310 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1311 | let expected_result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1312 | let result_masked = |
1313 | _mm512_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1314 | let expected_masked = |
1315 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
1316 | assert_eq_m512i(result_masked, expected_masked); |
1317 | } |
1318 | } |
1319 | |
1320 | #[simd_test(enable = "gfni,avx512bw" )] |
1321 | unsafe fn test_mm512_mask_gf2p8affineinv_epi64_epi8() { |
1322 | const CONSTANT_BYTE: i32 = 0x63; |
1323 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1324 | |
1325 | for i in 0..NUM_TEST_WORDS_512 { |
1326 | let left = load_m512i_word(&vectors, i); |
1327 | let right = load_m512i_word(&matrices, i); |
1328 | let result_left = |
1329 | _mm512_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1330 | assert_eq_m512i(result_left, left); |
1331 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
1332 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
1333 | let expected_result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1334 | let result_masked = _mm512_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>( |
1335 | left, mask_bytes, left, right, |
1336 | ); |
1337 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
1338 | assert_eq_m512i(result_masked, expected_masked); |
1339 | } |
1340 | } |
1341 | |
1342 | #[simd_test(enable = "gfni,avx" )] |
1343 | unsafe fn test_mm256_gf2p8affineinv_epi64_epi8() { |
1344 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1345 | const IDENTITY_BYTE: i32 = 0; |
1346 | const CONSTANT_BYTE: i32 = 0x63; |
1347 | let identity = _mm256_set1_epi64x(identity); |
1348 | |
1349 | // validate inversion |
1350 | let (inputs, results) = generate_inv_tests_data(); |
1351 | |
1352 | for i in 0..NUM_BYTES_WORDS_256 { |
1353 | let input = load_m256i_word(&inputs, i); |
1354 | let reference = load_m256i_word(&results, i); |
1355 | let result = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
1356 | let remultiplied = _mm256_gf2p8mul_epi8(result, input); |
1357 | assert_eq_m256i(remultiplied, reference); |
1358 | } |
1359 | |
1360 | // validate subsequent affine operation |
1361 | let (matrices, vectors, _affine_expected) = |
1362 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1363 | |
1364 | for i in 0..NUM_TEST_WORDS_256 { |
1365 | let vector = load_m256i_word(&vectors, i); |
1366 | let matrix = load_m256i_word(&matrices, i); |
1367 | |
1368 | let inv_vec = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
1369 | let reference = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
1370 | let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1371 | assert_eq_m256i(result, reference); |
1372 | } |
1373 | |
1374 | // validate everything by virtue of checking against the AES SBox |
1375 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
1376 | let sbox_matrix = _mm256_set1_epi64x(AES_S_BOX_MATRIX); |
1377 | |
1378 | for i in 0..NUM_BYTES_WORDS_256 { |
1379 | let reference = load_m256i_word(&AES_S_BOX, i); |
1380 | let input = load_m256i_word(&inputs, i); |
1381 | let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
1382 | assert_eq_m256i(result, reference); |
1383 | } |
1384 | } |
1385 | |
1386 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1387 | unsafe fn test_mm256_maskz_gf2p8affineinv_epi64_epi8() { |
1388 | const CONSTANT_BYTE: i32 = 0x63; |
1389 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1390 | |
1391 | for i in 0..NUM_TEST_WORDS_256 { |
1392 | let matrix = load_m256i_word(&matrices, i); |
1393 | let vector = load_m256i_word(&vectors, i); |
1394 | let result_zero = |
1395 | _mm256_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1396 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
1397 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1398 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1399 | let expected_result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1400 | let result_masked = |
1401 | _mm256_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1402 | let expected_masked = |
1403 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
1404 | assert_eq_m256i(result_masked, expected_masked); |
1405 | } |
1406 | } |
1407 | |
1408 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1409 | unsafe fn test_mm256_mask_gf2p8affineinv_epi64_epi8() { |
1410 | const CONSTANT_BYTE: i32 = 0x63; |
1411 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1412 | |
1413 | for i in 0..NUM_TEST_WORDS_256 { |
1414 | let left = load_m256i_word(&vectors, i); |
1415 | let right = load_m256i_word(&matrices, i); |
1416 | let result_left = |
1417 | _mm256_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1418 | assert_eq_m256i(result_left, left); |
1419 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
1420 | const MASK_WORDS: i32 = 0b11_01_10_00; |
1421 | let expected_result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1422 | let result_masked = _mm256_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>( |
1423 | left, mask_bytes, left, right, |
1424 | ); |
1425 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
1426 | assert_eq_m256i(result_masked, expected_masked); |
1427 | } |
1428 | } |
1429 | |
1430 | #[simd_test(enable = "gfni" )] |
1431 | unsafe fn test_mm_gf2p8affineinv_epi64_epi8() { |
1432 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
1433 | const IDENTITY_BYTE: i32 = 0; |
1434 | const CONSTANT_BYTE: i32 = 0x63; |
1435 | let identity = _mm_set1_epi64x(identity); |
1436 | |
1437 | // validate inversion |
1438 | let (inputs, results) = generate_inv_tests_data(); |
1439 | |
1440 | for i in 0..NUM_BYTES_WORDS_128 { |
1441 | let input = load_m128i_word(&inputs, i); |
1442 | let reference = load_m128i_word(&results, i); |
1443 | let result = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
1444 | let remultiplied = _mm_gf2p8mul_epi8(result, input); |
1445 | assert_eq_m128i(remultiplied, reference); |
1446 | } |
1447 | |
1448 | // validate subsequent affine operation |
1449 | let (matrices, vectors, _affine_expected) = |
1450 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1451 | |
1452 | for i in 0..NUM_TEST_WORDS_128 { |
1453 | let vector = load_m128i_word(&vectors, i); |
1454 | let matrix = load_m128i_word(&matrices, i); |
1455 | |
1456 | let inv_vec = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
1457 | let reference = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
1458 | let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1459 | assert_eq_m128i(result, reference); |
1460 | } |
1461 | |
1462 | // validate everything by virtue of checking against the AES SBox |
1463 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
1464 | let sbox_matrix = _mm_set1_epi64x(AES_S_BOX_MATRIX); |
1465 | |
1466 | for i in 0..NUM_BYTES_WORDS_128 { |
1467 | let reference = load_m128i_word(&AES_S_BOX, i); |
1468 | let input = load_m128i_word(&inputs, i); |
1469 | let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
1470 | assert_eq_m128i(result, reference); |
1471 | } |
1472 | } |
1473 | |
1474 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1475 | unsafe fn test_mm_maskz_gf2p8affineinv_epi64_epi8() { |
1476 | const CONSTANT_BYTE: i32 = 0x63; |
1477 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1478 | |
1479 | for i in 0..NUM_TEST_WORDS_128 { |
1480 | let matrix = load_m128i_word(&matrices, i); |
1481 | let vector = load_m128i_word(&vectors, i); |
1482 | let result_zero = |
1483 | _mm_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
1484 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
1485 | let mask_bytes: __mmask16 = 0x0F_F0; |
1486 | const MASK_WORDS: i32 = 0b01_10; |
1487 | let expected_result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
1488 | let result_masked = |
1489 | _mm_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
1490 | let expected_masked = |
1491 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
1492 | assert_eq_m128i(result_masked, expected_masked); |
1493 | } |
1494 | } |
1495 | |
1496 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
1497 | unsafe fn test_mm_mask_gf2p8affineinv_epi64_epi8() { |
1498 | const CONSTANT_BYTE: i32 = 0x63; |
1499 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
1500 | |
1501 | for i in 0..NUM_TEST_WORDS_128 { |
1502 | let left = load_m128i_word(&vectors, i); |
1503 | let right = load_m128i_word(&matrices, i); |
1504 | let result_left = |
1505 | _mm_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
1506 | assert_eq_m128i(result_left, left); |
1507 | let mask_bytes: __mmask16 = 0x0F_F0; |
1508 | const MASK_WORDS: i32 = 0b01_10; |
1509 | let expected_result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
1510 | let result_masked = |
1511 | _mm_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
1512 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
1513 | assert_eq_m128i(result_masked, expected_masked); |
1514 | } |
1515 | } |
1516 | } |
1517 | |