| 1 | //! Galois Field New Instructions (GFNI) |
| 2 | //! |
| 3 | //! The intrinsics here correspond to those in the `immintrin.h` C header. |
| 4 | //! |
| 5 | //! The reference is [Intel 64 and IA-32 Architectures Software Developer's |
| 6 | //! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref]. |
| 7 | //! |
| 8 | //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf |
| 9 | |
| 10 | use crate::core_arch::simd::i8x16; |
| 11 | use crate::core_arch::simd::i8x32; |
| 12 | use crate::core_arch::simd::i8x64; |
| 13 | use crate::core_arch::x86::__m128i; |
| 14 | use crate::core_arch::x86::__m256i; |
| 15 | use crate::core_arch::x86::__m512i; |
| 16 | use crate::core_arch::x86::__mmask16; |
| 17 | use crate::core_arch::x86::__mmask32; |
| 18 | use crate::core_arch::x86::__mmask64; |
| 19 | use crate::intrinsics::simd::simd_select_bitmask; |
| 20 | use crate::mem::transmute; |
| 21 | |
| 22 | #[cfg (test)] |
| 23 | use stdarch_test::assert_instr; |
| 24 | |
| 25 | #[allow (improper_ctypes)] |
| 26 | unsafe extern "C" { |
| 27 | #[link_name = "llvm.x86.vgf2p8affineinvqb.512" ] |
| 28 | unsafefn vgf2p8affineinvqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; |
| 29 | #[link_name = "llvm.x86.vgf2p8affineinvqb.256" ] |
| 30 | unsafefn vgf2p8affineinvqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; |
| 31 | #[link_name = "llvm.x86.vgf2p8affineinvqb.128" ] |
| 32 | unsafefn vgf2p8affineinvqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; |
| 33 | #[link_name = "llvm.x86.vgf2p8affineqb.512" ] |
| 34 | unsafefn vgf2p8affineqb_512(x: i8x64, a: i8x64, imm8: u8) -> i8x64; |
| 35 | #[link_name = "llvm.x86.vgf2p8affineqb.256" ] |
| 36 | unsafefn vgf2p8affineqb_256(x: i8x32, a: i8x32, imm8: u8) -> i8x32; |
| 37 | #[link_name = "llvm.x86.vgf2p8affineqb.128" ] |
| 38 | unsafefn vgf2p8affineqb_128(x: i8x16, a: i8x16, imm8: u8) -> i8x16; |
| 39 | #[link_name = "llvm.x86.vgf2p8mulb.512" ] |
| 40 | unsafefn vgf2p8mulb_512(a: i8x64, b: i8x64) -> i8x64; |
| 41 | #[link_name = "llvm.x86.vgf2p8mulb.256" ] |
| 42 | unsafefn vgf2p8mulb_256(a: i8x32, b: i8x32) -> i8x32; |
| 43 | #[link_name = "llvm.x86.vgf2p8mulb.128" ] |
| 44 | unsafefn vgf2p8mulb_128(a: i8x16, b: i8x16) -> i8x16; |
| 45 | } |
| 46 | |
| 47 | // LLVM requires AVX512BW for a lot of these instructions, see |
| 48 | // https://github.com/llvm/llvm-project/blob/release/9.x/clang/include/clang/Basic/BuiltinsX86.def#L457 |
| 49 | // however our tests also require the target feature list to match Intel's |
| 50 | // which *doesn't* require AVX512BW but only AVX512F, so we added the redundant AVX512F |
| 51 | // requirement (for now) |
| 52 | // also see |
| 53 | // https://github.com/llvm/llvm-project/blob/release/9.x/clang/lib/Headers/gfniintrin.h |
| 54 | // for forcing GFNI, BW and optionally VL extension |
| 55 | |
| 56 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 57 | /// The field is in polynomial representation with the reduction polynomial |
| 58 | /// x^8 + x^4 + x^3 + x + 1. |
| 59 | /// |
| 60 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8) |
| 61 | #[inline ] |
| 62 | #[target_feature (enable = "gfni,avx512f" )] |
| 63 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 64 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 65 | pub unsafe fn _mm512_gf2p8mul_epi8(a: __m512i, b: __m512i) -> __m512i { |
| 66 | transmute(src:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64())) |
| 67 | } |
| 68 | |
| 69 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 70 | /// The field is in polynomial representation with the reduction polynomial |
| 71 | /// x^8 + x^4 + x^3 + x + 1. |
| 72 | /// |
| 73 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 74 | /// Otherwise the computation result is written into the result. |
| 75 | /// |
| 76 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8mul_epi8) |
| 77 | #[inline ] |
| 78 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
| 79 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 80 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 81 | pub unsafe fn _mm512_mask_gf2p8mul_epi8( |
| 82 | src: __m512i, |
| 83 | k: __mmask64, |
| 84 | a: __m512i, |
| 85 | b: __m512i, |
| 86 | ) -> __m512i { |
| 87 | transmute(src:simd_select_bitmask( |
| 88 | m:k, |
| 89 | yes:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), |
| 90 | no:src.as_i8x64(), |
| 91 | )) |
| 92 | } |
| 93 | |
| 94 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 95 | /// The field is in polynomial representation with the reduction polynomial |
| 96 | /// x^8 + x^4 + x^3 + x + 1. |
| 97 | /// |
| 98 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 99 | /// Otherwise the computation result is written into the result. |
| 100 | /// |
| 101 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8mul_epi8) |
| 102 | #[inline ] |
| 103 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
| 104 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 105 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 106 | pub unsafe fn _mm512_maskz_gf2p8mul_epi8(k: __mmask64, a: __m512i, b: __m512i) -> __m512i { |
| 107 | let zero: i8x64 = i8x64::ZERO; |
| 108 | transmute(src:simd_select_bitmask( |
| 109 | m:k, |
| 110 | yes:vgf2p8mulb_512(a.as_i8x64(), b.as_i8x64()), |
| 111 | no:zero, |
| 112 | )) |
| 113 | } |
| 114 | |
| 115 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 116 | /// The field is in polynomial representation with the reduction polynomial |
| 117 | /// x^8 + x^4 + x^3 + x + 1. |
| 118 | /// |
| 119 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8mul_epi8) |
| 120 | #[inline ] |
| 121 | #[target_feature (enable = "gfni,avx" )] |
| 122 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 123 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 124 | pub unsafe fn _mm256_gf2p8mul_epi8(a: __m256i, b: __m256i) -> __m256i { |
| 125 | transmute(src:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32())) |
| 126 | } |
| 127 | |
| 128 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 129 | /// The field is in polynomial representation with the reduction polynomial |
| 130 | /// x^8 + x^4 + x^3 + x + 1. |
| 131 | /// |
| 132 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 133 | /// Otherwise the computation result is written into the result. |
| 134 | /// |
| 135 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8mul_epi8) |
| 136 | #[inline ] |
| 137 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 138 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 139 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 140 | pub unsafe fn _mm256_mask_gf2p8mul_epi8( |
| 141 | src: __m256i, |
| 142 | k: __mmask32, |
| 143 | a: __m256i, |
| 144 | b: __m256i, |
| 145 | ) -> __m256i { |
| 146 | transmute(src:simd_select_bitmask( |
| 147 | m:k, |
| 148 | yes:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), |
| 149 | no:src.as_i8x32(), |
| 150 | )) |
| 151 | } |
| 152 | |
| 153 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 154 | /// The field is in polynomial representation with the reduction polynomial |
| 155 | /// x^8 + x^4 + x^3 + x + 1. |
| 156 | /// |
| 157 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 158 | /// Otherwise the computation result is written into the result. |
| 159 | /// |
| 160 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8mul_epi8) |
| 161 | #[inline ] |
| 162 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 163 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 164 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 165 | pub unsafe fn _mm256_maskz_gf2p8mul_epi8(k: __mmask32, a: __m256i, b: __m256i) -> __m256i { |
| 166 | let zero: i8x32 = i8x32::ZERO; |
| 167 | transmute(src:simd_select_bitmask( |
| 168 | m:k, |
| 169 | yes:vgf2p8mulb_256(a.as_i8x32(), b.as_i8x32()), |
| 170 | no:zero, |
| 171 | )) |
| 172 | } |
| 173 | |
| 174 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 175 | /// The field is in polynomial representation with the reduction polynomial |
| 176 | /// x^8 + x^4 + x^3 + x + 1. |
| 177 | /// |
| 178 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8mul_epi8) |
| 179 | #[inline ] |
| 180 | #[target_feature (enable = "gfni" )] |
| 181 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 182 | #[cfg_attr (test, assert_instr(gf2p8mulb))] |
| 183 | pub unsafe fn _mm_gf2p8mul_epi8(a: __m128i, b: __m128i) -> __m128i { |
| 184 | transmute(src:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16())) |
| 185 | } |
| 186 | |
| 187 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 188 | /// The field is in polynomial representation with the reduction polynomial |
| 189 | /// x^8 + x^4 + x^3 + x + 1. |
| 190 | /// |
| 191 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 192 | /// Otherwise the computation result is written into the result. |
| 193 | /// |
| 194 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8mul_epi8) |
| 195 | #[inline ] |
| 196 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 197 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 198 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 199 | pub unsafe fn _mm_mask_gf2p8mul_epi8( |
| 200 | src: __m128i, |
| 201 | k: __mmask16, |
| 202 | a: __m128i, |
| 203 | b: __m128i, |
| 204 | ) -> __m128i { |
| 205 | transmute(src:simd_select_bitmask( |
| 206 | m:k, |
| 207 | yes:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), |
| 208 | no:src.as_i8x16(), |
| 209 | )) |
| 210 | } |
| 211 | |
| 212 | /// Performs a multiplication in GF(2^8) on the packed bytes. |
| 213 | /// The field is in polynomial representation with the reduction polynomial |
| 214 | /// x^8 + x^4 + x^3 + x + 1. |
| 215 | /// |
| 216 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 217 | /// Otherwise the computation result is written into the result. |
| 218 | /// |
| 219 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8mul_epi8) |
| 220 | #[inline ] |
| 221 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 222 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 223 | #[cfg_attr (test, assert_instr(vgf2p8mulb))] |
| 224 | pub unsafe fn _mm_maskz_gf2p8mul_epi8(k: __mmask16, a: __m128i, b: __m128i) -> __m128i { |
| 225 | let zero: i8x16 = i8x16::ZERO; |
| 226 | transmute(src:simd_select_bitmask( |
| 227 | m:k, |
| 228 | yes:vgf2p8mulb_128(a.as_i8x16(), b.as_i8x16()), |
| 229 | no:zero, |
| 230 | )) |
| 231 | } |
| 232 | |
| 233 | /// Performs an affine transformation on the packed bytes in x. |
| 234 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 235 | /// and b being a constant 8-bit immediate value. |
| 236 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 237 | /// |
| 238 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8affine_epi64_epi8) |
| 239 | #[inline ] |
| 240 | #[target_feature (enable = "gfni,avx512f" )] |
| 241 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 242 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 243 | #[rustc_legacy_const_generics (2)] |
| 244 | pub unsafe fn _mm512_gf2p8affine_epi64_epi8<const B: i32>(x: __m512i, a: __m512i) -> __m512i { |
| 245 | static_assert_uimm_bits!(B, 8); |
| 246 | let b: u8 = B as u8; |
| 247 | let x: i8x64 = x.as_i8x64(); |
| 248 | let a: i8x64 = a.as_i8x64(); |
| 249 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
| 250 | transmute(src:r) |
| 251 | } |
| 252 | |
| 253 | /// Performs an affine transformation on the packed bytes in x. |
| 254 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 255 | /// and b being a constant 8-bit immediate value. |
| 256 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 257 | /// |
| 258 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 259 | /// Otherwise the computation result is written into the result. |
| 260 | /// |
| 261 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8affine_epi64_epi8) |
| 262 | #[inline ] |
| 263 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
| 264 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 265 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 266 | #[rustc_legacy_const_generics (3)] |
| 267 | pub unsafe fn _mm512_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
| 268 | k: __mmask64, |
| 269 | x: __m512i, |
| 270 | a: __m512i, |
| 271 | ) -> __m512i { |
| 272 | static_assert_uimm_bits!(B, 8); |
| 273 | let b: u8 = B as u8; |
| 274 | let zero: i8x64 = i8x64::ZERO; |
| 275 | let x: i8x64 = x.as_i8x64(); |
| 276 | let a: i8x64 = a.as_i8x64(); |
| 277 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
| 278 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
| 279 | } |
| 280 | |
| 281 | /// Performs an affine transformation on the packed bytes in x. |
| 282 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 283 | /// and b being a constant 8-bit immediate value. |
| 284 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 285 | /// |
| 286 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 287 | /// Otherwise the computation result is written into the result. |
| 288 | /// |
| 289 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8affine_epi64_epi8) |
| 290 | #[inline ] |
| 291 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
| 292 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 293 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 294 | #[rustc_legacy_const_generics (4)] |
| 295 | pub unsafe fn _mm512_mask_gf2p8affine_epi64_epi8<const B: i32>( |
| 296 | src: __m512i, |
| 297 | k: __mmask64, |
| 298 | x: __m512i, |
| 299 | a: __m512i, |
| 300 | ) -> __m512i { |
| 301 | static_assert_uimm_bits!(B, 8); |
| 302 | let b: u8 = B as u8; |
| 303 | let x: i8x64 = x.as_i8x64(); |
| 304 | let a: i8x64 = a.as_i8x64(); |
| 305 | let r: i8x64 = vgf2p8affineqb_512(x, a, imm8:b); |
| 306 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x64())) |
| 307 | } |
| 308 | |
| 309 | /// Performs an affine transformation on the packed bytes in x. |
| 310 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 311 | /// and b being a constant 8-bit immediate value. |
| 312 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 313 | /// |
| 314 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8affine_epi64_epi8) |
| 315 | #[inline ] |
| 316 | #[target_feature (enable = "gfni,avx" )] |
| 317 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 318 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 319 | #[rustc_legacy_const_generics (2)] |
| 320 | pub unsafe fn _mm256_gf2p8affine_epi64_epi8<const B: i32>(x: __m256i, a: __m256i) -> __m256i { |
| 321 | static_assert_uimm_bits!(B, 8); |
| 322 | let b: u8 = B as u8; |
| 323 | let x: i8x32 = x.as_i8x32(); |
| 324 | let a: i8x32 = a.as_i8x32(); |
| 325 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
| 326 | transmute(src:r) |
| 327 | } |
| 328 | |
| 329 | /// Performs an affine transformation on the packed bytes in x. |
| 330 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 331 | /// and b being a constant 8-bit immediate value. |
| 332 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 333 | /// |
| 334 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 335 | /// Otherwise the computation result is written into the result. |
| 336 | /// |
| 337 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8affine_epi64_epi8) |
| 338 | #[inline ] |
| 339 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 340 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 341 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 342 | #[rustc_legacy_const_generics (3)] |
| 343 | pub unsafe fn _mm256_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
| 344 | k: __mmask32, |
| 345 | x: __m256i, |
| 346 | a: __m256i, |
| 347 | ) -> __m256i { |
| 348 | static_assert_uimm_bits!(B, 8); |
| 349 | let b: u8 = B as u8; |
| 350 | let zero: i8x32 = i8x32::ZERO; |
| 351 | let x: i8x32 = x.as_i8x32(); |
| 352 | let a: i8x32 = a.as_i8x32(); |
| 353 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
| 354 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
| 355 | } |
| 356 | |
| 357 | /// Performs an affine transformation on the packed bytes in x. |
| 358 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 359 | /// and b being a constant 8-bit immediate value. |
| 360 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 361 | /// |
| 362 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 363 | /// Otherwise the computation result is written into the result. |
| 364 | /// |
| 365 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8affine_epi64_epi8) |
| 366 | #[inline ] |
| 367 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 368 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 369 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 370 | #[rustc_legacy_const_generics (4)] |
| 371 | pub unsafe fn _mm256_mask_gf2p8affine_epi64_epi8<const B: i32>( |
| 372 | src: __m256i, |
| 373 | k: __mmask32, |
| 374 | x: __m256i, |
| 375 | a: __m256i, |
| 376 | ) -> __m256i { |
| 377 | static_assert_uimm_bits!(B, 8); |
| 378 | let b: u8 = B as u8; |
| 379 | let x: i8x32 = x.as_i8x32(); |
| 380 | let a: i8x32 = a.as_i8x32(); |
| 381 | let r: i8x32 = vgf2p8affineqb_256(x, a, imm8:b); |
| 382 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x32())) |
| 383 | } |
| 384 | |
| 385 | /// Performs an affine transformation on the packed bytes in x. |
| 386 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 387 | /// and b being a constant 8-bit immediate value. |
| 388 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 389 | /// |
| 390 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8) |
| 391 | #[inline ] |
| 392 | #[target_feature (enable = "gfni" )] |
| 393 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 394 | #[cfg_attr (test, assert_instr(gf2p8affineqb, B = 0))] |
| 395 | #[rustc_legacy_const_generics (2)] |
| 396 | pub unsafe fn _mm_gf2p8affine_epi64_epi8<const B: i32>(x: __m128i, a: __m128i) -> __m128i { |
| 397 | static_assert_uimm_bits!(B, 8); |
| 398 | let b: u8 = B as u8; |
| 399 | let x: i8x16 = x.as_i8x16(); |
| 400 | let a: i8x16 = a.as_i8x16(); |
| 401 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
| 402 | transmute(src:r) |
| 403 | } |
| 404 | |
| 405 | /// Performs an affine transformation on the packed bytes in x. |
| 406 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 407 | /// and b being a constant 8-bit immediate value. |
| 408 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 409 | /// |
| 410 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 411 | /// Otherwise the computation result is written into the result. |
| 412 | /// |
| 413 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8affine_epi64_epi8) |
| 414 | #[inline ] |
| 415 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 416 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 417 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 418 | #[rustc_legacy_const_generics (3)] |
| 419 | pub unsafe fn _mm_maskz_gf2p8affine_epi64_epi8<const B: i32>( |
| 420 | k: __mmask16, |
| 421 | x: __m128i, |
| 422 | a: __m128i, |
| 423 | ) -> __m128i { |
| 424 | static_assert_uimm_bits!(B, 8); |
| 425 | let b: u8 = B as u8; |
| 426 | let zero: i8x16 = i8x16::ZERO; |
| 427 | let x: i8x16 = x.as_i8x16(); |
| 428 | let a: i8x16 = a.as_i8x16(); |
| 429 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
| 430 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
| 431 | } |
| 432 | |
| 433 | /// Performs an affine transformation on the packed bytes in x. |
| 434 | /// That is computes a*x+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 435 | /// and b being a constant 8-bit immediate value. |
| 436 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 437 | /// |
| 438 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 439 | /// Otherwise the computation result is written into the result. |
| 440 | /// |
| 441 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8affine_epi64_epi8) |
| 442 | #[inline ] |
| 443 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 444 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 445 | #[cfg_attr (test, assert_instr(vgf2p8affineqb, B = 0))] |
| 446 | #[rustc_legacy_const_generics (4)] |
| 447 | pub unsafe fn _mm_mask_gf2p8affine_epi64_epi8<const B: i32>( |
| 448 | src: __m128i, |
| 449 | k: __mmask16, |
| 450 | x: __m128i, |
| 451 | a: __m128i, |
| 452 | ) -> __m128i { |
| 453 | static_assert_uimm_bits!(B, 8); |
| 454 | let b: u8 = B as u8; |
| 455 | let x: i8x16 = x.as_i8x16(); |
| 456 | let a: i8x16 = a.as_i8x16(); |
| 457 | let r: i8x16 = vgf2p8affineqb_128(x, a, imm8:b); |
| 458 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x16())) |
| 459 | } |
| 460 | |
| 461 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 462 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 463 | /// and b being a constant 8-bit immediate value. |
| 464 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 465 | /// The inverse of 0 is 0. |
| 466 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 467 | /// |
| 468 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8affineinv_epi64_epi8) |
| 469 | #[inline ] |
| 470 | #[target_feature (enable = "gfni,avx512f" )] |
| 471 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 472 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 473 | #[rustc_legacy_const_generics (2)] |
| 474 | pub unsafe fn _mm512_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m512i, a: __m512i) -> __m512i { |
| 475 | static_assert_uimm_bits!(B, 8); |
| 476 | let b: u8 = B as u8; |
| 477 | let x: i8x64 = x.as_i8x64(); |
| 478 | let a: i8x64 = a.as_i8x64(); |
| 479 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
| 480 | transmute(src:r) |
| 481 | } |
| 482 | |
| 483 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 484 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 485 | /// and b being a constant 8-bit immediate value. |
| 486 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 487 | /// The inverse of 0 is 0. |
| 488 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 489 | /// |
| 490 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 491 | /// Otherwise the computation result is written into the result. |
| 492 | /// |
| 493 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_maskz_gf2p8affineinv_epi64_epi8) |
| 494 | #[inline ] |
| 495 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
| 496 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 497 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 498 | #[rustc_legacy_const_generics (3)] |
| 499 | pub unsafe fn _mm512_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
| 500 | k: __mmask64, |
| 501 | x: __m512i, |
| 502 | a: __m512i, |
| 503 | ) -> __m512i { |
| 504 | static_assert_uimm_bits!(B, 8); |
| 505 | let b: u8 = B as u8; |
| 506 | let zero: i8x64 = i8x64::ZERO; |
| 507 | let x: i8x64 = x.as_i8x64(); |
| 508 | let a: i8x64 = a.as_i8x64(); |
| 509 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
| 510 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
| 511 | } |
| 512 | |
| 513 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 514 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 515 | /// and b being a constant 8-bit immediate value. |
| 516 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 517 | /// The inverse of 0 is 0. |
| 518 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 519 | /// |
| 520 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 521 | /// Otherwise the computation result is written into the result. |
| 522 | /// |
| 523 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_mask_gf2p8affineinv_epi64_epi8) |
| 524 | #[inline ] |
| 525 | #[target_feature (enable = "gfni,avx512bw,avx512f" )] |
| 526 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 527 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 528 | #[rustc_legacy_const_generics (4)] |
| 529 | pub unsafe fn _mm512_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
| 530 | src: __m512i, |
| 531 | k: __mmask64, |
| 532 | x: __m512i, |
| 533 | a: __m512i, |
| 534 | ) -> __m512i { |
| 535 | static_assert_uimm_bits!(B, 8); |
| 536 | let b: u8 = B as u8; |
| 537 | let x: i8x64 = x.as_i8x64(); |
| 538 | let a: i8x64 = a.as_i8x64(); |
| 539 | let r: i8x64 = vgf2p8affineinvqb_512(x, a, imm8:b); |
| 540 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x64())) |
| 541 | } |
| 542 | |
| 543 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 544 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 545 | /// and b being a constant 8-bit immediate value. |
| 546 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 547 | /// The inverse of 0 is 0. |
| 548 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 549 | /// |
| 550 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_gf2p8affineinv_epi64_epi8) |
| 551 | #[inline ] |
| 552 | #[target_feature (enable = "gfni,avx" )] |
| 553 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 554 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 555 | #[rustc_legacy_const_generics (2)] |
| 556 | pub unsafe fn _mm256_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m256i, a: __m256i) -> __m256i { |
| 557 | static_assert_uimm_bits!(B, 8); |
| 558 | let b: u8 = B as u8; |
| 559 | let x: i8x32 = x.as_i8x32(); |
| 560 | let a: i8x32 = a.as_i8x32(); |
| 561 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
| 562 | transmute(src:r) |
| 563 | } |
| 564 | |
| 565 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 566 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 567 | /// and b being a constant 8-bit immediate value. |
| 568 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 569 | /// The inverse of 0 is 0. |
| 570 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 571 | /// |
| 572 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 573 | /// Otherwise the computation result is written into the result. |
| 574 | /// |
| 575 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_maskz_gf2p8affineinv_epi64_epi8) |
| 576 | #[inline ] |
| 577 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 578 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 579 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 580 | #[rustc_legacy_const_generics (3)] |
| 581 | pub unsafe fn _mm256_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
| 582 | k: __mmask32, |
| 583 | x: __m256i, |
| 584 | a: __m256i, |
| 585 | ) -> __m256i { |
| 586 | static_assert_uimm_bits!(B, 8); |
| 587 | let b: u8 = B as u8; |
| 588 | let zero: i8x32 = i8x32::ZERO; |
| 589 | let x: i8x32 = x.as_i8x32(); |
| 590 | let a: i8x32 = a.as_i8x32(); |
| 591 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
| 592 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
| 593 | } |
| 594 | |
| 595 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 596 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 597 | /// and b being a constant 8-bit immediate value. |
| 598 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 599 | /// The inverse of 0 is 0. |
| 600 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 601 | /// |
| 602 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 603 | /// Otherwise the computation result is written into the result. |
| 604 | /// |
| 605 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm256_mask_gf2p8affineinv_epi64_epi8) |
| 606 | #[inline ] |
| 607 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 608 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 609 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 610 | #[rustc_legacy_const_generics (4)] |
| 611 | pub unsafe fn _mm256_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
| 612 | src: __m256i, |
| 613 | k: __mmask32, |
| 614 | x: __m256i, |
| 615 | a: __m256i, |
| 616 | ) -> __m256i { |
| 617 | static_assert_uimm_bits!(B, 8); |
| 618 | let b: u8 = B as u8; |
| 619 | let x: i8x32 = x.as_i8x32(); |
| 620 | let a: i8x32 = a.as_i8x32(); |
| 621 | let r: i8x32 = vgf2p8affineinvqb_256(x, a, imm8:b); |
| 622 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x32())) |
| 623 | } |
| 624 | |
| 625 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 626 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 627 | /// and b being a constant 8-bit immediate value. |
| 628 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 629 | /// The inverse of 0 is 0. |
| 630 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 631 | /// |
| 632 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affineinv_epi64_epi8) |
| 633 | #[inline ] |
| 634 | #[target_feature (enable = "gfni" )] |
| 635 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 636 | #[cfg_attr (test, assert_instr(gf2p8affineinvqb, B = 0))] |
| 637 | #[rustc_legacy_const_generics (2)] |
| 638 | pub unsafe fn _mm_gf2p8affineinv_epi64_epi8<const B: i32>(x: __m128i, a: __m128i) -> __m128i { |
| 639 | static_assert_uimm_bits!(B, 8); |
| 640 | let b: u8 = B as u8; |
| 641 | let x: i8x16 = x.as_i8x16(); |
| 642 | let a: i8x16 = a.as_i8x16(); |
| 643 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
| 644 | transmute(src:r) |
| 645 | } |
| 646 | |
| 647 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 648 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 649 | /// and b being a constant 8-bit immediate value. |
| 650 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 651 | /// The inverse of 0 is 0. |
| 652 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 653 | /// |
| 654 | /// Uses the writemask in k - elements are zeroed in the result if the corresponding mask bit is not set. |
| 655 | /// Otherwise the computation result is written into the result. |
| 656 | /// |
| 657 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskz_gf2p8affineinv_epi64_epi8) |
| 658 | #[inline ] |
| 659 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 660 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 661 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 662 | #[rustc_legacy_const_generics (3)] |
| 663 | pub unsafe fn _mm_maskz_gf2p8affineinv_epi64_epi8<const B: i32>( |
| 664 | k: __mmask16, |
| 665 | x: __m128i, |
| 666 | a: __m128i, |
| 667 | ) -> __m128i { |
| 668 | static_assert_uimm_bits!(B, 8); |
| 669 | let b: u8 = B as u8; |
| 670 | let zero: i8x16 = i8x16::ZERO; |
| 671 | let x: i8x16 = x.as_i8x16(); |
| 672 | let a: i8x16 = a.as_i8x16(); |
| 673 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
| 674 | transmute(src:simd_select_bitmask(m:k, yes:r, no:zero)) |
| 675 | } |
| 676 | |
| 677 | /// Performs an affine transformation on the inverted packed bytes in x. |
| 678 | /// That is computes a*inv(x)+b over the Galois Field 2^8 for each packed byte with a being a 8x8 bit matrix |
| 679 | /// and b being a constant 8-bit immediate value. |
| 680 | /// The inverse of a byte is defined with respect to the reduction polynomial x^8+x^4+x^3+x+1. |
| 681 | /// The inverse of 0 is 0. |
| 682 | /// Each pack of 8 bytes in x is paired with the 64-bit word at the same position in a. |
| 683 | /// |
| 684 | /// Uses the writemask in k - elements are copied from src if the corresponding mask bit is not set. |
| 685 | /// Otherwise the computation result is written into the result. |
| 686 | /// |
| 687 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mask_gf2p8affineinv_epi64_epi8) |
| 688 | #[inline ] |
| 689 | #[target_feature (enable = "gfni,avx512bw,avx512vl" )] |
| 690 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 691 | #[cfg_attr (test, assert_instr(vgf2p8affineinvqb, B = 0))] |
| 692 | #[rustc_legacy_const_generics (4)] |
| 693 | pub unsafe fn _mm_mask_gf2p8affineinv_epi64_epi8<const B: i32>( |
| 694 | src: __m128i, |
| 695 | k: __mmask16, |
| 696 | x: __m128i, |
| 697 | a: __m128i, |
| 698 | ) -> __m128i { |
| 699 | static_assert_uimm_bits!(B, 8); |
| 700 | let b: u8 = B as u8; |
| 701 | let x: i8x16 = x.as_i8x16(); |
| 702 | let a: i8x16 = a.as_i8x16(); |
| 703 | let r: i8x16 = vgf2p8affineinvqb_128(x, a, imm8:b); |
| 704 | transmute(src:simd_select_bitmask(m:k, yes:r, no:src.as_i8x16())) |
| 705 | } |
| 706 | |
| 707 | #[cfg (test)] |
| 708 | mod tests { |
| 709 | // The constants in the tests below are just bit patterns. They should not |
| 710 | // be interpreted as integers; signedness does not make sense for them, but |
| 711 | // __mXXXi happens to be defined in terms of signed integers. |
| 712 | #![allow (overflowing_literals)] |
| 713 | |
| 714 | use core::hint::black_box; |
| 715 | use core::intrinsics::size_of; |
| 716 | use stdarch_test::simd_test; |
| 717 | |
| 718 | use crate::core_arch::x86::*; |
| 719 | |
| 720 | fn mulbyte(left: u8, right: u8) -> u8 { |
| 721 | // this implementation follows the description in |
| 722 | // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm512_gf2p8mul_epi8 |
| 723 | const REDUCTION_POLYNOMIAL: u16 = 0x11b; |
| 724 | let left: u16 = left.into(); |
| 725 | let right: u16 = right.into(); |
| 726 | let mut carryless_product: u16 = 0; |
| 727 | |
| 728 | // Carryless multiplication |
| 729 | for i in 0..8 { |
| 730 | if ((left >> i) & 0x01) != 0 { |
| 731 | carryless_product ^= right << i; |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | // reduction, adding in "0" where appropriate to clear out high bits |
| 736 | // note that REDUCTION_POLYNOMIAL is zero in this context |
| 737 | for i in (8..=14).rev() { |
| 738 | if ((carryless_product >> i) & 0x01) != 0 { |
| 739 | carryless_product ^= REDUCTION_POLYNOMIAL << (i - 8); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | carryless_product as u8 |
| 744 | } |
| 745 | |
| 746 | const NUM_TEST_WORDS_512: usize = 4; |
| 747 | const NUM_TEST_WORDS_256: usize = NUM_TEST_WORDS_512 * 2; |
| 748 | const NUM_TEST_WORDS_128: usize = NUM_TEST_WORDS_256 * 2; |
| 749 | const NUM_TEST_ENTRIES: usize = NUM_TEST_WORDS_512 * 64; |
| 750 | const NUM_TEST_WORDS_64: usize = NUM_TEST_WORDS_128 * 2; |
| 751 | const NUM_BYTES: usize = 256; |
| 752 | const NUM_BYTES_WORDS_128: usize = NUM_BYTES / 16; |
| 753 | const NUM_BYTES_WORDS_256: usize = NUM_BYTES_WORDS_128 / 2; |
| 754 | const NUM_BYTES_WORDS_512: usize = NUM_BYTES_WORDS_256 / 2; |
| 755 | |
| 756 | fn parity(input: u8) -> u8 { |
| 757 | let mut accumulator = 0; |
| 758 | for i in 0..8 { |
| 759 | accumulator ^= (input >> i) & 0x01; |
| 760 | } |
| 761 | accumulator |
| 762 | } |
| 763 | |
| 764 | fn mat_vec_multiply_affine(matrix: u64, x: u8, b: u8) -> u8 { |
| 765 | // this implementation follows the description in |
| 766 | // https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_gf2p8affine_epi64_epi8 |
| 767 | let mut accumulator = 0; |
| 768 | |
| 769 | for bit in 0..8 { |
| 770 | accumulator |= parity(x & matrix.to_le_bytes()[bit]) << (7 - bit); |
| 771 | } |
| 772 | |
| 773 | accumulator ^ b |
| 774 | } |
| 775 | |
| 776 | fn generate_affine_mul_test_data( |
| 777 | immediate: u8, |
| 778 | ) -> ( |
| 779 | [u64; NUM_TEST_WORDS_64], |
| 780 | [u8; NUM_TEST_ENTRIES], |
| 781 | [u8; NUM_TEST_ENTRIES], |
| 782 | ) { |
| 783 | let mut left: [u64; NUM_TEST_WORDS_64] = [0; NUM_TEST_WORDS_64]; |
| 784 | let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
| 785 | let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
| 786 | |
| 787 | for i in 0..NUM_TEST_WORDS_64 { |
| 788 | left[i] = (i as u64) * 103 * 101; |
| 789 | for j in 0..8 { |
| 790 | let j64 = j as u64; |
| 791 | right[i * 8 + j] = ((left[i] + j64) % 256) as u8; |
| 792 | result[i * 8 + j] = mat_vec_multiply_affine(left[i], right[i * 8 + j], immediate); |
| 793 | } |
| 794 | } |
| 795 | |
| 796 | (left, right, result) |
| 797 | } |
| 798 | |
| 799 | fn generate_inv_tests_data() -> ([u8; NUM_BYTES], [u8; NUM_BYTES]) { |
| 800 | let mut input: [u8; NUM_BYTES] = [0; NUM_BYTES]; |
| 801 | let mut result: [u8; NUM_BYTES] = [0; NUM_BYTES]; |
| 802 | |
| 803 | for i in 0..NUM_BYTES { |
| 804 | input[i] = (i % 256) as u8; |
| 805 | result[i] = if i == 0 { 0 } else { 1 }; |
| 806 | } |
| 807 | |
| 808 | (input, result) |
| 809 | } |
| 810 | |
| 811 | const AES_S_BOX: [u8; NUM_BYTES] = [ |
| 812 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, |
| 813 | 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, |
| 814 | 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, |
| 815 | 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, |
| 816 | 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, |
| 817 | 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, |
| 818 | 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, |
| 819 | 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, |
| 820 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, |
| 821 | 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, |
| 822 | 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, |
| 823 | 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, |
| 824 | 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, |
| 825 | 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, |
| 826 | 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, |
| 827 | 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
| 828 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, |
| 829 | 0x16, |
| 830 | ]; |
| 831 | |
| 832 | fn generate_byte_mul_test_data() -> ( |
| 833 | [u8; NUM_TEST_ENTRIES], |
| 834 | [u8; NUM_TEST_ENTRIES], |
| 835 | [u8; NUM_TEST_ENTRIES], |
| 836 | ) { |
| 837 | let mut left: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
| 838 | let mut right: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
| 839 | let mut result: [u8; NUM_TEST_ENTRIES] = [0; NUM_TEST_ENTRIES]; |
| 840 | |
| 841 | for i in 0..NUM_TEST_ENTRIES { |
| 842 | left[i] = (i % 256) as u8; |
| 843 | right[i] = left[i].wrapping_mul(101); |
| 844 | result[i] = mulbyte(left[i], right[i]); |
| 845 | } |
| 846 | |
| 847 | (left, right, result) |
| 848 | } |
| 849 | |
| 850 | #[target_feature (enable = "sse2" )] |
| 851 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 852 | unsafe fn load_m128i_word<T>(data: &[T], word_index: usize) -> __m128i { |
| 853 | let byte_offset = word_index * 16 / size_of::<T>(); |
| 854 | let pointer = data.as_ptr().add(byte_offset) as *const __m128i; |
| 855 | _mm_loadu_si128(black_box(pointer)) |
| 856 | } |
| 857 | |
| 858 | #[target_feature (enable = "avx" )] |
| 859 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 860 | unsafe fn load_m256i_word<T>(data: &[T], word_index: usize) -> __m256i { |
| 861 | let byte_offset = word_index * 32 / size_of::<T>(); |
| 862 | let pointer = data.as_ptr().add(byte_offset) as *const __m256i; |
| 863 | _mm256_loadu_si256(black_box(pointer)) |
| 864 | } |
| 865 | |
| 866 | #[target_feature (enable = "avx512f" )] |
| 867 | #[unstable (feature = "stdarch_x86_avx512" , issue = "111137" )] |
| 868 | unsafe fn load_m512i_word<T>(data: &[T], word_index: usize) -> __m512i { |
| 869 | let byte_offset = word_index * 64 / size_of::<T>(); |
| 870 | let pointer = data.as_ptr().add(byte_offset) as *const i32; |
| 871 | _mm512_loadu_si512(black_box(pointer)) |
| 872 | } |
| 873 | |
| 874 | #[simd_test(enable = "gfni,avx512f" )] |
| 875 | unsafe fn test_mm512_gf2p8mul_epi8() { |
| 876 | let (left, right, expected) = generate_byte_mul_test_data(); |
| 877 | |
| 878 | for i in 0..NUM_TEST_WORDS_512 { |
| 879 | let left = load_m512i_word(&left, i); |
| 880 | let right = load_m512i_word(&right, i); |
| 881 | let expected = load_m512i_word(&expected, i); |
| 882 | let result = _mm512_gf2p8mul_epi8(left, right); |
| 883 | assert_eq_m512i(result, expected); |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | #[simd_test(enable = "gfni,avx512bw" )] |
| 888 | unsafe fn test_mm512_maskz_gf2p8mul_epi8() { |
| 889 | let (left, right, _expected) = generate_byte_mul_test_data(); |
| 890 | |
| 891 | for i in 0..NUM_TEST_WORDS_512 { |
| 892 | let left = load_m512i_word(&left, i); |
| 893 | let right = load_m512i_word(&right, i); |
| 894 | let result_zero = _mm512_maskz_gf2p8mul_epi8(0, left, right); |
| 895 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
| 896 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
| 897 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
| 898 | let expected_result = _mm512_gf2p8mul_epi8(left, right); |
| 899 | let result_masked = _mm512_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
| 900 | let expected_masked = |
| 901 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
| 902 | assert_eq_m512i(result_masked, expected_masked); |
| 903 | } |
| 904 | } |
| 905 | |
| 906 | #[simd_test(enable = "gfni,avx512bw" )] |
| 907 | unsafe fn test_mm512_mask_gf2p8mul_epi8() { |
| 908 | let (left, right, _expected) = generate_byte_mul_test_data(); |
| 909 | |
| 910 | for i in 0..NUM_TEST_WORDS_512 { |
| 911 | let left = load_m512i_word(&left, i); |
| 912 | let right = load_m512i_word(&right, i); |
| 913 | let result_left = _mm512_mask_gf2p8mul_epi8(left, 0, left, right); |
| 914 | assert_eq_m512i(result_left, left); |
| 915 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
| 916 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
| 917 | let expected_result = _mm512_gf2p8mul_epi8(left, right); |
| 918 | let result_masked = _mm512_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
| 919 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
| 920 | assert_eq_m512i(result_masked, expected_masked); |
| 921 | } |
| 922 | } |
| 923 | |
| 924 | #[simd_test(enable = "gfni,avx" )] |
| 925 | unsafe fn test_mm256_gf2p8mul_epi8() { |
| 926 | let (left, right, expected) = generate_byte_mul_test_data(); |
| 927 | |
| 928 | for i in 0..NUM_TEST_WORDS_256 { |
| 929 | let left = load_m256i_word(&left, i); |
| 930 | let right = load_m256i_word(&right, i); |
| 931 | let expected = load_m256i_word(&expected, i); |
| 932 | let result = _mm256_gf2p8mul_epi8(left, right); |
| 933 | assert_eq_m256i(result, expected); |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 938 | unsafe fn test_mm256_maskz_gf2p8mul_epi8() { |
| 939 | let (left, right, _expected) = generate_byte_mul_test_data(); |
| 940 | |
| 941 | for i in 0..NUM_TEST_WORDS_256 { |
| 942 | let left = load_m256i_word(&left, i); |
| 943 | let right = load_m256i_word(&right, i); |
| 944 | let result_zero = _mm256_maskz_gf2p8mul_epi8(0, left, right); |
| 945 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
| 946 | let mask_bytes: __mmask32 = 0x0F_F0_FF_00; |
| 947 | const MASK_WORDS: i32 = 0b01_10_11_00; |
| 948 | let expected_result = _mm256_gf2p8mul_epi8(left, right); |
| 949 | let result_masked = _mm256_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
| 950 | let expected_masked = |
| 951 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
| 952 | assert_eq_m256i(result_masked, expected_masked); |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 957 | unsafe fn test_mm256_mask_gf2p8mul_epi8() { |
| 958 | let (left, right, _expected) = generate_byte_mul_test_data(); |
| 959 | |
| 960 | for i in 0..NUM_TEST_WORDS_256 { |
| 961 | let left = load_m256i_word(&left, i); |
| 962 | let right = load_m256i_word(&right, i); |
| 963 | let result_left = _mm256_mask_gf2p8mul_epi8(left, 0, left, right); |
| 964 | assert_eq_m256i(result_left, left); |
| 965 | let mask_bytes: __mmask32 = 0x0F_F0_FF_00; |
| 966 | const MASK_WORDS: i32 = 0b01_10_11_00; |
| 967 | let expected_result = _mm256_gf2p8mul_epi8(left, right); |
| 968 | let result_masked = _mm256_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
| 969 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
| 970 | assert_eq_m256i(result_masked, expected_masked); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | #[simd_test(enable = "gfni" )] |
| 975 | unsafe fn test_mm_gf2p8mul_epi8() { |
| 976 | let (left, right, expected) = generate_byte_mul_test_data(); |
| 977 | |
| 978 | for i in 0..NUM_TEST_WORDS_128 { |
| 979 | let left = load_m128i_word(&left, i); |
| 980 | let right = load_m128i_word(&right, i); |
| 981 | let expected = load_m128i_word(&expected, i); |
| 982 | let result = _mm_gf2p8mul_epi8(left, right); |
| 983 | assert_eq_m128i(result, expected); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 988 | unsafe fn test_mm_maskz_gf2p8mul_epi8() { |
| 989 | let (left, right, _expected) = generate_byte_mul_test_data(); |
| 990 | |
| 991 | for i in 0..NUM_TEST_WORDS_128 { |
| 992 | let left = load_m128i_word(&left, i); |
| 993 | let right = load_m128i_word(&right, i); |
| 994 | let result_zero = _mm_maskz_gf2p8mul_epi8(0, left, right); |
| 995 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
| 996 | let mask_bytes: __mmask16 = 0x0F_F0; |
| 997 | const MASK_WORDS: i32 = 0b01_10; |
| 998 | let expected_result = _mm_gf2p8mul_epi8(left, right); |
| 999 | let result_masked = _mm_maskz_gf2p8mul_epi8(mask_bytes, left, right); |
| 1000 | let expected_masked = |
| 1001 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
| 1002 | assert_eq_m128i(result_masked, expected_masked); |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1007 | unsafe fn test_mm_mask_gf2p8mul_epi8() { |
| 1008 | let (left, right, _expected) = generate_byte_mul_test_data(); |
| 1009 | |
| 1010 | for i in 0..NUM_TEST_WORDS_128 { |
| 1011 | let left = load_m128i_word(&left, i); |
| 1012 | let right = load_m128i_word(&right, i); |
| 1013 | let result_left = _mm_mask_gf2p8mul_epi8(left, 0, left, right); |
| 1014 | assert_eq_m128i(result_left, left); |
| 1015 | let mask_bytes: __mmask16 = 0x0F_F0; |
| 1016 | const MASK_WORDS: i32 = 0b01_10; |
| 1017 | let expected_result = _mm_gf2p8mul_epi8(left, right); |
| 1018 | let result_masked = _mm_mask_gf2p8mul_epi8(left, mask_bytes, left, right); |
| 1019 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
| 1020 | assert_eq_m128i(result_masked, expected_masked); |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | #[simd_test(enable = "gfni,avx512f" )] |
| 1025 | unsafe fn test_mm512_gf2p8affine_epi64_epi8() { |
| 1026 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
| 1027 | const IDENTITY_BYTE: i32 = 0; |
| 1028 | let constant: i64 = 0; |
| 1029 | const CONSTANT_BYTE: i32 = 0x63; |
| 1030 | let identity = _mm512_set1_epi64(identity); |
| 1031 | let constant = _mm512_set1_epi64(constant); |
| 1032 | let constant_reference = _mm512_set1_epi8(CONSTANT_BYTE as i8); |
| 1033 | |
| 1034 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
| 1035 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
| 1036 | |
| 1037 | for i in 0..NUM_TEST_WORDS_512 { |
| 1038 | let data = load_m512i_word(&bytes, i); |
| 1039 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
| 1040 | assert_eq_m512i(result, data); |
| 1041 | let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
| 1042 | assert_eq_m512i(result, constant_reference); |
| 1043 | let data = load_m512i_word(&more_bytes, i); |
| 1044 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
| 1045 | assert_eq_m512i(result, data); |
| 1046 | let result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
| 1047 | assert_eq_m512i(result, constant_reference); |
| 1048 | |
| 1049 | let matrix = load_m512i_word(&matrices, i); |
| 1050 | let vector = load_m512i_word(&vectors, i); |
| 1051 | let reference = load_m512i_word(&references, i); |
| 1052 | |
| 1053 | let result = _mm512_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
| 1054 | assert_eq_m512i(result, reference); |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | #[simd_test(enable = "gfni,avx512bw" )] |
| 1059 | unsafe fn test_mm512_maskz_gf2p8affine_epi64_epi8() { |
| 1060 | const CONSTANT_BYTE: i32 = 0x63; |
| 1061 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1062 | |
| 1063 | for i in 0..NUM_TEST_WORDS_512 { |
| 1064 | let matrix = load_m512i_word(&matrices, i); |
| 1065 | let vector = load_m512i_word(&vectors, i); |
| 1066 | let result_zero = |
| 1067 | _mm512_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
| 1068 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
| 1069 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
| 1070 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
| 1071 | let expected_result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1072 | let result_masked = |
| 1073 | _mm512_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
| 1074 | let expected_masked = |
| 1075 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
| 1076 | assert_eq_m512i(result_masked, expected_masked); |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | #[simd_test(enable = "gfni,avx512bw" )] |
| 1081 | unsafe fn test_mm512_mask_gf2p8affine_epi64_epi8() { |
| 1082 | const CONSTANT_BYTE: i32 = 0x63; |
| 1083 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1084 | |
| 1085 | for i in 0..NUM_TEST_WORDS_512 { |
| 1086 | let left = load_m512i_word(&vectors, i); |
| 1087 | let right = load_m512i_word(&matrices, i); |
| 1088 | let result_left = |
| 1089 | _mm512_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
| 1090 | assert_eq_m512i(result_left, left); |
| 1091 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
| 1092 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
| 1093 | let expected_result = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
| 1094 | let result_masked = |
| 1095 | _mm512_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
| 1096 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
| 1097 | assert_eq_m512i(result_masked, expected_masked); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | #[simd_test(enable = "gfni,avx" )] |
| 1102 | unsafe fn test_mm256_gf2p8affine_epi64_epi8() { |
| 1103 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
| 1104 | const IDENTITY_BYTE: i32 = 0; |
| 1105 | let constant: i64 = 0; |
| 1106 | const CONSTANT_BYTE: i32 = 0x63; |
| 1107 | let identity = _mm256_set1_epi64x(identity); |
| 1108 | let constant = _mm256_set1_epi64x(constant); |
| 1109 | let constant_reference = _mm256_set1_epi8(CONSTANT_BYTE as i8); |
| 1110 | |
| 1111 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
| 1112 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
| 1113 | |
| 1114 | for i in 0..NUM_TEST_WORDS_256 { |
| 1115 | let data = load_m256i_word(&bytes, i); |
| 1116 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
| 1117 | assert_eq_m256i(result, data); |
| 1118 | let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
| 1119 | assert_eq_m256i(result, constant_reference); |
| 1120 | let data = load_m256i_word(&more_bytes, i); |
| 1121 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
| 1122 | assert_eq_m256i(result, data); |
| 1123 | let result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
| 1124 | assert_eq_m256i(result, constant_reference); |
| 1125 | |
| 1126 | let matrix = load_m256i_word(&matrices, i); |
| 1127 | let vector = load_m256i_word(&vectors, i); |
| 1128 | let reference = load_m256i_word(&references, i); |
| 1129 | |
| 1130 | let result = _mm256_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
| 1131 | assert_eq_m256i(result, reference); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1136 | unsafe fn test_mm256_maskz_gf2p8affine_epi64_epi8() { |
| 1137 | const CONSTANT_BYTE: i32 = 0x63; |
| 1138 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1139 | |
| 1140 | for i in 0..NUM_TEST_WORDS_256 { |
| 1141 | let matrix = load_m256i_word(&matrices, i); |
| 1142 | let vector = load_m256i_word(&vectors, i); |
| 1143 | let result_zero = |
| 1144 | _mm256_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
| 1145 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
| 1146 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
| 1147 | const MASK_WORDS: i32 = 0b11_01_10_00; |
| 1148 | let expected_result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1149 | let result_masked = |
| 1150 | _mm256_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
| 1151 | let expected_masked = |
| 1152 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
| 1153 | assert_eq_m256i(result_masked, expected_masked); |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1158 | unsafe fn test_mm256_mask_gf2p8affine_epi64_epi8() { |
| 1159 | const CONSTANT_BYTE: i32 = 0x63; |
| 1160 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1161 | |
| 1162 | for i in 0..NUM_TEST_WORDS_256 { |
| 1163 | let left = load_m256i_word(&vectors, i); |
| 1164 | let right = load_m256i_word(&matrices, i); |
| 1165 | let result_left = |
| 1166 | _mm256_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
| 1167 | assert_eq_m256i(result_left, left); |
| 1168 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
| 1169 | const MASK_WORDS: i32 = 0b11_01_10_00; |
| 1170 | let expected_result = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
| 1171 | let result_masked = |
| 1172 | _mm256_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
| 1173 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
| 1174 | assert_eq_m256i(result_masked, expected_masked); |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | #[simd_test(enable = "gfni" )] |
| 1179 | unsafe fn test_mm_gf2p8affine_epi64_epi8() { |
| 1180 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
| 1181 | const IDENTITY_BYTE: i32 = 0; |
| 1182 | let constant: i64 = 0; |
| 1183 | const CONSTANT_BYTE: i32 = 0x63; |
| 1184 | let identity = _mm_set1_epi64x(identity); |
| 1185 | let constant = _mm_set1_epi64x(constant); |
| 1186 | let constant_reference = _mm_set1_epi8(CONSTANT_BYTE as i8); |
| 1187 | |
| 1188 | let (bytes, more_bytes, _) = generate_byte_mul_test_data(); |
| 1189 | let (matrices, vectors, references) = generate_affine_mul_test_data(IDENTITY_BYTE as u8); |
| 1190 | |
| 1191 | for i in 0..NUM_TEST_WORDS_128 { |
| 1192 | let data = load_m128i_word(&bytes, i); |
| 1193 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
| 1194 | assert_eq_m128i(result, data); |
| 1195 | let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
| 1196 | assert_eq_m128i(result, constant_reference); |
| 1197 | let data = load_m128i_word(&more_bytes, i); |
| 1198 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(data, identity); |
| 1199 | assert_eq_m128i(result, data); |
| 1200 | let result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(data, constant); |
| 1201 | assert_eq_m128i(result, constant_reference); |
| 1202 | |
| 1203 | let matrix = load_m128i_word(&matrices, i); |
| 1204 | let vector = load_m128i_word(&vectors, i); |
| 1205 | let reference = load_m128i_word(&references, i); |
| 1206 | |
| 1207 | let result = _mm_gf2p8affine_epi64_epi8::<IDENTITY_BYTE>(vector, matrix); |
| 1208 | assert_eq_m128i(result, reference); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1213 | unsafe fn test_mm_maskz_gf2p8affine_epi64_epi8() { |
| 1214 | const CONSTANT_BYTE: i32 = 0x63; |
| 1215 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1216 | |
| 1217 | for i in 0..NUM_TEST_WORDS_128 { |
| 1218 | let matrix = load_m128i_word(&matrices, i); |
| 1219 | let vector = load_m128i_word(&vectors, i); |
| 1220 | let result_zero = _mm_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
| 1221 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
| 1222 | let mask_bytes: __mmask16 = 0x0F_F0; |
| 1223 | const MASK_WORDS: i32 = 0b01_10; |
| 1224 | let expected_result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1225 | let result_masked = |
| 1226 | _mm_maskz_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
| 1227 | let expected_masked = |
| 1228 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
| 1229 | assert_eq_m128i(result_masked, expected_masked); |
| 1230 | } |
| 1231 | } |
| 1232 | |
| 1233 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1234 | unsafe fn test_mm_mask_gf2p8affine_epi64_epi8() { |
| 1235 | const CONSTANT_BYTE: i32 = 0x63; |
| 1236 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1237 | |
| 1238 | for i in 0..NUM_TEST_WORDS_128 { |
| 1239 | let left = load_m128i_word(&vectors, i); |
| 1240 | let right = load_m128i_word(&matrices, i); |
| 1241 | let result_left = |
| 1242 | _mm_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
| 1243 | assert_eq_m128i(result_left, left); |
| 1244 | let mask_bytes: __mmask16 = 0x0F_F0; |
| 1245 | const MASK_WORDS: i32 = 0b01_10; |
| 1246 | let expected_result = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, right); |
| 1247 | let result_masked = |
| 1248 | _mm_mask_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
| 1249 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
| 1250 | assert_eq_m128i(result_masked, expected_masked); |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | #[simd_test(enable = "gfni,avx512f" )] |
| 1255 | unsafe fn test_mm512_gf2p8affineinv_epi64_epi8() { |
| 1256 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
| 1257 | const IDENTITY_BYTE: i32 = 0; |
| 1258 | const CONSTANT_BYTE: i32 = 0x63; |
| 1259 | let identity = _mm512_set1_epi64(identity); |
| 1260 | |
| 1261 | // validate inversion |
| 1262 | let (inputs, results) = generate_inv_tests_data(); |
| 1263 | |
| 1264 | for i in 0..NUM_BYTES_WORDS_512 { |
| 1265 | let input = load_m512i_word(&inputs, i); |
| 1266 | let reference = load_m512i_word(&results, i); |
| 1267 | let result = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
| 1268 | let remultiplied = _mm512_gf2p8mul_epi8(result, input); |
| 1269 | assert_eq_m512i(remultiplied, reference); |
| 1270 | } |
| 1271 | |
| 1272 | // validate subsequent affine operation |
| 1273 | let (matrices, vectors, _affine_expected) = |
| 1274 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1275 | |
| 1276 | for i in 0..NUM_TEST_WORDS_512 { |
| 1277 | let vector = load_m512i_word(&vectors, i); |
| 1278 | let matrix = load_m512i_word(&matrices, i); |
| 1279 | |
| 1280 | let inv_vec = _mm512_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
| 1281 | let reference = _mm512_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
| 1282 | let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1283 | assert_eq_m512i(result, reference); |
| 1284 | } |
| 1285 | |
| 1286 | // validate everything by virtue of checking against the AES SBox |
| 1287 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
| 1288 | let sbox_matrix = _mm512_set1_epi64(AES_S_BOX_MATRIX); |
| 1289 | |
| 1290 | for i in 0..NUM_BYTES_WORDS_512 { |
| 1291 | let reference = load_m512i_word(&AES_S_BOX, i); |
| 1292 | let input = load_m512i_word(&inputs, i); |
| 1293 | let result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
| 1294 | assert_eq_m512i(result, reference); |
| 1295 | } |
| 1296 | } |
| 1297 | |
| 1298 | #[simd_test(enable = "gfni,avx512bw" )] |
| 1299 | unsafe fn test_mm512_maskz_gf2p8affineinv_epi64_epi8() { |
| 1300 | const CONSTANT_BYTE: i32 = 0x63; |
| 1301 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1302 | |
| 1303 | for i in 0..NUM_TEST_WORDS_512 { |
| 1304 | let matrix = load_m512i_word(&matrices, i); |
| 1305 | let vector = load_m512i_word(&vectors, i); |
| 1306 | let result_zero = |
| 1307 | _mm512_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
| 1308 | assert_eq_m512i(result_zero, _mm512_setzero_si512()); |
| 1309 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
| 1310 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
| 1311 | let expected_result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1312 | let result_masked = |
| 1313 | _mm512_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
| 1314 | let expected_masked = |
| 1315 | _mm512_mask_blend_epi32(mask_words, _mm512_setzero_si512(), expected_result); |
| 1316 | assert_eq_m512i(result_masked, expected_masked); |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | #[simd_test(enable = "gfni,avx512bw" )] |
| 1321 | unsafe fn test_mm512_mask_gf2p8affineinv_epi64_epi8() { |
| 1322 | const CONSTANT_BYTE: i32 = 0x63; |
| 1323 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1324 | |
| 1325 | for i in 0..NUM_TEST_WORDS_512 { |
| 1326 | let left = load_m512i_word(&vectors, i); |
| 1327 | let right = load_m512i_word(&matrices, i); |
| 1328 | let result_left = |
| 1329 | _mm512_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
| 1330 | assert_eq_m512i(result_left, left); |
| 1331 | let mask_bytes: __mmask64 = 0x0F_0F_0F_0F_FF_FF_00_00; |
| 1332 | let mask_words: __mmask16 = 0b01_01_01_01_11_11_00_00; |
| 1333 | let expected_result = _mm512_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
| 1334 | let result_masked = _mm512_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>( |
| 1335 | left, mask_bytes, left, right, |
| 1336 | ); |
| 1337 | let expected_masked = _mm512_mask_blend_epi32(mask_words, left, expected_result); |
| 1338 | assert_eq_m512i(result_masked, expected_masked); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | #[simd_test(enable = "gfni,avx" )] |
| 1343 | unsafe fn test_mm256_gf2p8affineinv_epi64_epi8() { |
| 1344 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
| 1345 | const IDENTITY_BYTE: i32 = 0; |
| 1346 | const CONSTANT_BYTE: i32 = 0x63; |
| 1347 | let identity = _mm256_set1_epi64x(identity); |
| 1348 | |
| 1349 | // validate inversion |
| 1350 | let (inputs, results) = generate_inv_tests_data(); |
| 1351 | |
| 1352 | for i in 0..NUM_BYTES_WORDS_256 { |
| 1353 | let input = load_m256i_word(&inputs, i); |
| 1354 | let reference = load_m256i_word(&results, i); |
| 1355 | let result = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
| 1356 | let remultiplied = _mm256_gf2p8mul_epi8(result, input); |
| 1357 | assert_eq_m256i(remultiplied, reference); |
| 1358 | } |
| 1359 | |
| 1360 | // validate subsequent affine operation |
| 1361 | let (matrices, vectors, _affine_expected) = |
| 1362 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1363 | |
| 1364 | for i in 0..NUM_TEST_WORDS_256 { |
| 1365 | let vector = load_m256i_word(&vectors, i); |
| 1366 | let matrix = load_m256i_word(&matrices, i); |
| 1367 | |
| 1368 | let inv_vec = _mm256_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
| 1369 | let reference = _mm256_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
| 1370 | let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1371 | assert_eq_m256i(result, reference); |
| 1372 | } |
| 1373 | |
| 1374 | // validate everything by virtue of checking against the AES SBox |
| 1375 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
| 1376 | let sbox_matrix = _mm256_set1_epi64x(AES_S_BOX_MATRIX); |
| 1377 | |
| 1378 | for i in 0..NUM_BYTES_WORDS_256 { |
| 1379 | let reference = load_m256i_word(&AES_S_BOX, i); |
| 1380 | let input = load_m256i_word(&inputs, i); |
| 1381 | let result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
| 1382 | assert_eq_m256i(result, reference); |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1387 | unsafe fn test_mm256_maskz_gf2p8affineinv_epi64_epi8() { |
| 1388 | const CONSTANT_BYTE: i32 = 0x63; |
| 1389 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1390 | |
| 1391 | for i in 0..NUM_TEST_WORDS_256 { |
| 1392 | let matrix = load_m256i_word(&matrices, i); |
| 1393 | let vector = load_m256i_word(&vectors, i); |
| 1394 | let result_zero = |
| 1395 | _mm256_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
| 1396 | assert_eq_m256i(result_zero, _mm256_setzero_si256()); |
| 1397 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
| 1398 | const MASK_WORDS: i32 = 0b11_01_10_00; |
| 1399 | let expected_result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1400 | let result_masked = |
| 1401 | _mm256_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
| 1402 | let expected_masked = |
| 1403 | _mm256_blend_epi32::<MASK_WORDS>(_mm256_setzero_si256(), expected_result); |
| 1404 | assert_eq_m256i(result_masked, expected_masked); |
| 1405 | } |
| 1406 | } |
| 1407 | |
| 1408 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1409 | unsafe fn test_mm256_mask_gf2p8affineinv_epi64_epi8() { |
| 1410 | const CONSTANT_BYTE: i32 = 0x63; |
| 1411 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1412 | |
| 1413 | for i in 0..NUM_TEST_WORDS_256 { |
| 1414 | let left = load_m256i_word(&vectors, i); |
| 1415 | let right = load_m256i_word(&matrices, i); |
| 1416 | let result_left = |
| 1417 | _mm256_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
| 1418 | assert_eq_m256i(result_left, left); |
| 1419 | let mask_bytes: __mmask32 = 0xFF_0F_F0_00; |
| 1420 | const MASK_WORDS: i32 = 0b11_01_10_00; |
| 1421 | let expected_result = _mm256_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
| 1422 | let result_masked = _mm256_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>( |
| 1423 | left, mask_bytes, left, right, |
| 1424 | ); |
| 1425 | let expected_masked = _mm256_blend_epi32::<MASK_WORDS>(left, expected_result); |
| 1426 | assert_eq_m256i(result_masked, expected_masked); |
| 1427 | } |
| 1428 | } |
| 1429 | |
| 1430 | #[simd_test(enable = "gfni" )] |
| 1431 | unsafe fn test_mm_gf2p8affineinv_epi64_epi8() { |
| 1432 | let identity: i64 = 0x01_02_04_08_10_20_40_80; |
| 1433 | const IDENTITY_BYTE: i32 = 0; |
| 1434 | const CONSTANT_BYTE: i32 = 0x63; |
| 1435 | let identity = _mm_set1_epi64x(identity); |
| 1436 | |
| 1437 | // validate inversion |
| 1438 | let (inputs, results) = generate_inv_tests_data(); |
| 1439 | |
| 1440 | for i in 0..NUM_BYTES_WORDS_128 { |
| 1441 | let input = load_m128i_word(&inputs, i); |
| 1442 | let reference = load_m128i_word(&results, i); |
| 1443 | let result = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(input, identity); |
| 1444 | let remultiplied = _mm_gf2p8mul_epi8(result, input); |
| 1445 | assert_eq_m128i(remultiplied, reference); |
| 1446 | } |
| 1447 | |
| 1448 | // validate subsequent affine operation |
| 1449 | let (matrices, vectors, _affine_expected) = |
| 1450 | generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1451 | |
| 1452 | for i in 0..NUM_TEST_WORDS_128 { |
| 1453 | let vector = load_m128i_word(&vectors, i); |
| 1454 | let matrix = load_m128i_word(&matrices, i); |
| 1455 | |
| 1456 | let inv_vec = _mm_gf2p8affineinv_epi64_epi8::<IDENTITY_BYTE>(vector, identity); |
| 1457 | let reference = _mm_gf2p8affine_epi64_epi8::<CONSTANT_BYTE>(inv_vec, matrix); |
| 1458 | let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1459 | assert_eq_m128i(result, reference); |
| 1460 | } |
| 1461 | |
| 1462 | // validate everything by virtue of checking against the AES SBox |
| 1463 | const AES_S_BOX_MATRIX: i64 = 0xF1_E3_C7_8F_1F_3E_7C_F8; |
| 1464 | let sbox_matrix = _mm_set1_epi64x(AES_S_BOX_MATRIX); |
| 1465 | |
| 1466 | for i in 0..NUM_BYTES_WORDS_128 { |
| 1467 | let reference = load_m128i_word(&AES_S_BOX, i); |
| 1468 | let input = load_m128i_word(&inputs, i); |
| 1469 | let result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(input, sbox_matrix); |
| 1470 | assert_eq_m128i(result, reference); |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1475 | unsafe fn test_mm_maskz_gf2p8affineinv_epi64_epi8() { |
| 1476 | const CONSTANT_BYTE: i32 = 0x63; |
| 1477 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1478 | |
| 1479 | for i in 0..NUM_TEST_WORDS_128 { |
| 1480 | let matrix = load_m128i_word(&matrices, i); |
| 1481 | let vector = load_m128i_word(&vectors, i); |
| 1482 | let result_zero = |
| 1483 | _mm_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(0, vector, matrix); |
| 1484 | assert_eq_m128i(result_zero, _mm_setzero_si128()); |
| 1485 | let mask_bytes: __mmask16 = 0x0F_F0; |
| 1486 | const MASK_WORDS: i32 = 0b01_10; |
| 1487 | let expected_result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(vector, matrix); |
| 1488 | let result_masked = |
| 1489 | _mm_maskz_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(mask_bytes, vector, matrix); |
| 1490 | let expected_masked = |
| 1491 | _mm_blend_epi32::<MASK_WORDS>(_mm_setzero_si128(), expected_result); |
| 1492 | assert_eq_m128i(result_masked, expected_masked); |
| 1493 | } |
| 1494 | } |
| 1495 | |
| 1496 | #[simd_test(enable = "gfni,avx512bw,avx512vl" )] |
| 1497 | unsafe fn test_mm_mask_gf2p8affineinv_epi64_epi8() { |
| 1498 | const CONSTANT_BYTE: i32 = 0x63; |
| 1499 | let (matrices, vectors, _expected) = generate_affine_mul_test_data(CONSTANT_BYTE as u8); |
| 1500 | |
| 1501 | for i in 0..NUM_TEST_WORDS_128 { |
| 1502 | let left = load_m128i_word(&vectors, i); |
| 1503 | let right = load_m128i_word(&matrices, i); |
| 1504 | let result_left = |
| 1505 | _mm_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, 0, left, right); |
| 1506 | assert_eq_m128i(result_left, left); |
| 1507 | let mask_bytes: __mmask16 = 0x0F_F0; |
| 1508 | const MASK_WORDS: i32 = 0b01_10; |
| 1509 | let expected_result = _mm_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, right); |
| 1510 | let result_masked = |
| 1511 | _mm_mask_gf2p8affineinv_epi64_epi8::<CONSTANT_BYTE>(left, mask_bytes, left, right); |
| 1512 | let expected_masked = _mm_blend_epi32::<MASK_WORDS>(left, expected_result); |
| 1513 | assert_eq_m128i(result_masked, expected_masked); |
| 1514 | } |
| 1515 | } |
| 1516 | } |
| 1517 | |