| 1 | use crate::core_arch::{simd::*, x86::*}; |
| 2 | |
| 3 | #[allow (improper_ctypes)] |
| 4 | unsafe extern "C" { |
| 5 | #[link_name = "llvm.x86.sha1msg1" ] |
| 6 | unsafefn sha1msg1(a: i32x4, b: i32x4) -> i32x4; |
| 7 | #[link_name = "llvm.x86.sha1msg2" ] |
| 8 | unsafefn sha1msg2(a: i32x4, b: i32x4) -> i32x4; |
| 9 | #[link_name = "llvm.x86.sha1nexte" ] |
| 10 | unsafefn sha1nexte(a: i32x4, b: i32x4) -> i32x4; |
| 11 | #[link_name = "llvm.x86.sha1rnds4" ] |
| 12 | unsafefn sha1rnds4(a: i32x4, b: i32x4, c: i8) -> i32x4; |
| 13 | #[link_name = "llvm.x86.sha256msg1" ] |
| 14 | unsafefn sha256msg1(a: i32x4, b: i32x4) -> i32x4; |
| 15 | #[link_name = "llvm.x86.sha256msg2" ] |
| 16 | unsafefn sha256msg2(a: i32x4, b: i32x4) -> i32x4; |
| 17 | #[link_name = "llvm.x86.sha256rnds2" ] |
| 18 | unsafefn sha256rnds2(a: i32x4, b: i32x4, k: i32x4) -> i32x4; |
| 19 | } |
| 20 | |
| 21 | #[cfg (test)] |
| 22 | use stdarch_test::assert_instr; |
| 23 | |
| 24 | /// Performs an intermediate calculation for the next four SHA1 message values |
| 25 | /// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 26 | /// and returning the result. |
| 27 | /// |
| 28 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg1_epu32) |
| 29 | #[inline ] |
| 30 | #[target_feature (enable = "sha" )] |
| 31 | #[cfg_attr (test, assert_instr(sha1msg1))] |
| 32 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 33 | pub fn _mm_sha1msg1_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 34 | unsafe { transmute(src:sha1msg1(a.as_i32x4(), b.as_i32x4())) } |
| 35 | } |
| 36 | |
| 37 | /// Performs the final calculation for the next four SHA1 message values |
| 38 | /// (unsigned 32-bit integers) using the intermediate result in `a` and the |
| 39 | /// previous message values in `b`, and returns the result. |
| 40 | /// |
| 41 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1msg2_epu32) |
| 42 | #[inline ] |
| 43 | #[target_feature (enable = "sha" )] |
| 44 | #[cfg_attr (test, assert_instr(sha1msg2))] |
| 45 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 46 | pub fn _mm_sha1msg2_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 47 | unsafe { transmute(src:sha1msg2(a.as_i32x4(), b.as_i32x4())) } |
| 48 | } |
| 49 | |
| 50 | /// Calculate SHA1 state variable E after four rounds of operation from the |
| 51 | /// current SHA1 state variable `a`, add that value to the scheduled values |
| 52 | /// (unsigned 32-bit integers) in `b`, and returns the result. |
| 53 | /// |
| 54 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1nexte_epu32) |
| 55 | #[inline ] |
| 56 | #[target_feature (enable = "sha" )] |
| 57 | #[cfg_attr (test, assert_instr(sha1nexte))] |
| 58 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 59 | pub fn _mm_sha1nexte_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 60 | unsafe { transmute(src:sha1nexte(a.as_i32x4(), b.as_i32x4())) } |
| 61 | } |
| 62 | |
| 63 | /// Performs four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) |
| 64 | /// from `a` and some pre-computed sum of the next 4 round message values |
| 65 | /// (unsigned 32-bit integers), and state variable E from `b`, and return the |
| 66 | /// updated SHA1 state (A,B,C,D). `FUNC` contains the logic functions and round |
| 67 | /// constants. |
| 68 | /// |
| 69 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha1rnds4_epu32) |
| 70 | #[inline ] |
| 71 | #[target_feature (enable = "sha" )] |
| 72 | #[cfg_attr (test, assert_instr(sha1rnds4, FUNC = 0))] |
| 73 | #[rustc_legacy_const_generics (2)] |
| 74 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 75 | pub fn _mm_sha1rnds4_epu32<const FUNC: i32>(a: __m128i, b: __m128i) -> __m128i { |
| 76 | static_assert_uimm_bits!(FUNC, 2); |
| 77 | unsafe { transmute(src:sha1rnds4(a.as_i32x4(), b.as_i32x4(), FUNC as i8)) } |
| 78 | } |
| 79 | |
| 80 | /// Performs an intermediate calculation for the next four SHA256 message values |
| 81 | /// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 82 | /// and return the result. |
| 83 | /// |
| 84 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg1_epu32) |
| 85 | #[inline ] |
| 86 | #[target_feature (enable = "sha" )] |
| 87 | #[cfg_attr (test, assert_instr(sha256msg1))] |
| 88 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 89 | pub fn _mm_sha256msg1_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 90 | unsafe { transmute(src:sha256msg1(a.as_i32x4(), b.as_i32x4())) } |
| 91 | } |
| 92 | |
| 93 | /// Performs the final calculation for the next four SHA256 message values |
| 94 | /// (unsigned 32-bit integers) using previous message values from `a` and `b`, |
| 95 | /// and return the result. |
| 96 | /// |
| 97 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256msg2_epu32) |
| 98 | #[inline ] |
| 99 | #[target_feature (enable = "sha" )] |
| 100 | #[cfg_attr (test, assert_instr(sha256msg2))] |
| 101 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 102 | pub fn _mm_sha256msg2_epu32(a: __m128i, b: __m128i) -> __m128i { |
| 103 | unsafe { transmute(src:sha256msg2(a.as_i32x4(), b.as_i32x4())) } |
| 104 | } |
| 105 | |
| 106 | /// Performs 2 rounds of SHA256 operation using an initial SHA256 state |
| 107 | /// (C,D,G,H) from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a |
| 108 | /// pre-computed sum of the next 2 round message values (unsigned 32-bit |
| 109 | /// integers) and the corresponding round constants from `k`, and store the |
| 110 | /// updated SHA256 state (A,B,E,F) in dst. |
| 111 | /// |
| 112 | /// [Intel's documentation](https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sha256rnds2_epu32) |
| 113 | #[inline ] |
| 114 | #[target_feature (enable = "sha" )] |
| 115 | #[cfg_attr (test, assert_instr(sha256rnds2))] |
| 116 | #[stable (feature = "simd_x86" , since = "1.27.0" )] |
| 117 | pub fn _mm_sha256rnds2_epu32(a: __m128i, b: __m128i, k: __m128i) -> __m128i { |
| 118 | unsafe { transmute(src:sha256rnds2(a.as_i32x4(), b.as_i32x4(), k.as_i32x4())) } |
| 119 | } |
| 120 | |
| 121 | #[cfg (test)] |
| 122 | mod tests { |
| 123 | use std::{ |
| 124 | f32, f64, |
| 125 | mem::{self, transmute}, |
| 126 | }; |
| 127 | |
| 128 | use crate::{ |
| 129 | core_arch::{simd::*, x86::*}, |
| 130 | hint::black_box, |
| 131 | }; |
| 132 | use stdarch_test::simd_test; |
| 133 | |
| 134 | const NAN: f64 = f64::NAN; |
| 135 | |
| 136 | #[simd_test(enable = "sha" )] |
| 137 | #[allow (overflowing_literals)] |
| 138 | unsafe fn test_mm_sha1msg1_epu32() { |
| 139 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 140 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 141 | let expected = _mm_set_epi64x(0x98829f34f74ad457, 0xda2b1a44d0b5ad3c); |
| 142 | let r = _mm_sha1msg1_epu32(a, b); |
| 143 | assert_eq_m128i(r, expected); |
| 144 | } |
| 145 | |
| 146 | #[simd_test(enable = "sha" )] |
| 147 | #[allow (overflowing_literals)] |
| 148 | unsafe fn test_mm_sha1msg2_epu32() { |
| 149 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 150 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 151 | let expected = _mm_set_epi64x(0xf714b202d863d47d, 0x90c30d946b3d3b35); |
| 152 | let r = _mm_sha1msg2_epu32(a, b); |
| 153 | assert_eq_m128i(r, expected); |
| 154 | } |
| 155 | |
| 156 | #[simd_test(enable = "sha" )] |
| 157 | #[allow (overflowing_literals)] |
| 158 | unsafe fn test_mm_sha1nexte_epu32() { |
| 159 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 160 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 161 | let expected = _mm_set_epi64x(0x2589d5be923f82a4, 0x59f111f13956c25b); |
| 162 | let r = _mm_sha1nexte_epu32(a, b); |
| 163 | assert_eq_m128i(r, expected); |
| 164 | } |
| 165 | |
| 166 | #[simd_test(enable = "sha" )] |
| 167 | #[allow (overflowing_literals)] |
| 168 | unsafe fn test_mm_sha1rnds4_epu32() { |
| 169 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 170 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 171 | let expected = _mm_set_epi64x(0x32b13cd8322f5268, 0xc54420862bd9246f); |
| 172 | let r = _mm_sha1rnds4_epu32::<0>(a, b); |
| 173 | assert_eq_m128i(r, expected); |
| 174 | |
| 175 | let expected = _mm_set_epi64x(0x6d4c43e56a3c25d9, 0xa7e00fb775cbd3fe); |
| 176 | let r = _mm_sha1rnds4_epu32::<1>(a, b); |
| 177 | assert_eq_m128i(r, expected); |
| 178 | |
| 179 | let expected = _mm_set_epi64x(0xb304e383c01222f4, 0x66f6b3b1f89d8001); |
| 180 | let r = _mm_sha1rnds4_epu32::<2>(a, b); |
| 181 | assert_eq_m128i(r, expected); |
| 182 | |
| 183 | let expected = _mm_set_epi64x(0x8189b758bfabfa79, 0xdb08f6e78cae098b); |
| 184 | let r = _mm_sha1rnds4_epu32::<3>(a, b); |
| 185 | assert_eq_m128i(r, expected); |
| 186 | } |
| 187 | |
| 188 | #[simd_test(enable = "sha" )] |
| 189 | #[allow (overflowing_literals)] |
| 190 | unsafe fn test_mm_sha256msg1_epu32() { |
| 191 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 192 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 193 | let expected = _mm_set_epi64x(0xeb84973fd5cda67d, 0x2857b88f406b09ee); |
| 194 | let r = _mm_sha256msg1_epu32(a, b); |
| 195 | assert_eq_m128i(r, expected); |
| 196 | } |
| 197 | |
| 198 | #[simd_test(enable = "sha" )] |
| 199 | #[allow (overflowing_literals)] |
| 200 | unsafe fn test_mm_sha256msg2_epu32() { |
| 201 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 202 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 203 | let expected = _mm_set_epi64x(0xb58777ce887fd851, 0x15d1ec8b73ac8450); |
| 204 | let r = _mm_sha256msg2_epu32(a, b); |
| 205 | assert_eq_m128i(r, expected); |
| 206 | } |
| 207 | |
| 208 | #[simd_test(enable = "sha" )] |
| 209 | #[allow (overflowing_literals)] |
| 210 | unsafe fn test_mm_sha256rnds2_epu32() { |
| 211 | let a = _mm_set_epi64x(0xe9b5dba5b5c0fbcf, 0x71374491428a2f98); |
| 212 | let b = _mm_set_epi64x(0xab1c5ed5923f82a4, 0x59f111f13956c25b); |
| 213 | let k = _mm_set_epi64x(0, 0x12835b01d807aa98); |
| 214 | let expected = _mm_set_epi64x(0xd3063037effb15ea, 0x187ee3db0d6d1d19); |
| 215 | let r = _mm_sha256rnds2_epu32(a, b, k); |
| 216 | assert_eq_m128i(r, expected); |
| 217 | } |
| 218 | } |
| 219 | |