1 | use super::sealed::Sealed; |
2 | use crate::simd::{ |
3 | cmp::SimdPartialOrd, intrinsics, num::SimdUint, LaneCount, Mask, Simd, SimdCast, SimdElement, |
4 | SupportedLaneCount, |
5 | }; |
6 | |
7 | /// Operations on SIMD vectors of signed integers. |
8 | pub trait SimdInt: Copy + Sealed { |
9 | /// Mask type used for manipulating this SIMD vector type. |
10 | type Mask; |
11 | |
12 | /// Scalar type contained by this SIMD vector type. |
13 | type Scalar; |
14 | |
15 | /// A SIMD vector of unsigned integers with the same element size. |
16 | type Unsigned; |
17 | |
18 | /// A SIMD vector with a different element type. |
19 | type Cast<T: SimdElement>; |
20 | |
21 | /// Performs elementwise conversion of this vector's elements to another SIMD-valid type. |
22 | /// |
23 | /// This follows the semantics of Rust's `as` conversion for casting integers (wrapping to |
24 | /// other integer types, and saturating to float types). |
25 | #[must_use ] |
26 | fn cast<T: SimdCast>(self) -> Self::Cast<T>; |
27 | |
28 | /// Lanewise saturating add. |
29 | /// |
30 | /// # Examples |
31 | /// ``` |
32 | /// # #![feature (portable_simd)] |
33 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
34 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
35 | /// # use simd::prelude::*; |
36 | /// use core::i32::{MIN, MAX}; |
37 | /// let x = Simd::from_array([MIN, 0, 1, MAX]); |
38 | /// let max = Simd::splat(MAX); |
39 | /// let unsat = x + max; |
40 | /// let sat = x.saturating_add(max); |
41 | /// assert_eq!(unsat, Simd::from_array([-1, MAX, MIN, -2])); |
42 | /// assert_eq!(sat, Simd::from_array([-1, MAX, MAX, MAX])); |
43 | /// ``` |
44 | fn saturating_add(self, second: Self) -> Self; |
45 | |
46 | /// Lanewise saturating subtract. |
47 | /// |
48 | /// # Examples |
49 | /// ``` |
50 | /// # #![feature (portable_simd)] |
51 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
52 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
53 | /// # use simd::prelude::*; |
54 | /// use core::i32::{MIN, MAX}; |
55 | /// let x = Simd::from_array([MIN, -2, -1, MAX]); |
56 | /// let max = Simd::splat(MAX); |
57 | /// let unsat = x - max; |
58 | /// let sat = x.saturating_sub(max); |
59 | /// assert_eq!(unsat, Simd::from_array([1, MAX, MIN, 0])); |
60 | /// assert_eq!(sat, Simd::from_array([MIN, MIN, MIN, 0])); |
61 | fn saturating_sub(self, second: Self) -> Self; |
62 | |
63 | /// Lanewise absolute value, implemented in Rust. |
64 | /// Every element becomes its absolute value. |
65 | /// |
66 | /// # Examples |
67 | /// ``` |
68 | /// # #![feature (portable_simd)] |
69 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
70 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
71 | /// # use simd::prelude::*; |
72 | /// use core::i32::{MIN, MAX}; |
73 | /// let xs = Simd::from_array([MIN, MIN +1, -5, 0]); |
74 | /// assert_eq!(xs.abs(), Simd::from_array([MIN, MAX, 5, 0])); |
75 | /// ``` |
76 | fn abs(self) -> Self; |
77 | |
78 | /// Lanewise saturating absolute value, implemented in Rust. |
79 | /// As abs(), except the MIN value becomes MAX instead of itself. |
80 | /// |
81 | /// # Examples |
82 | /// ``` |
83 | /// # #![feature (portable_simd)] |
84 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
85 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
86 | /// # use simd::prelude::*; |
87 | /// use core::i32::{MIN, MAX}; |
88 | /// let xs = Simd::from_array([MIN, -2, 0, 3]); |
89 | /// let unsat = xs.abs(); |
90 | /// let sat = xs.saturating_abs(); |
91 | /// assert_eq!(unsat, Simd::from_array([MIN, 2, 0, 3])); |
92 | /// assert_eq!(sat, Simd::from_array([MAX, 2, 0, 3])); |
93 | /// ``` |
94 | fn saturating_abs(self) -> Self; |
95 | |
96 | /// Lanewise saturating negation, implemented in Rust. |
97 | /// As neg(), except the MIN value becomes MAX instead of itself. |
98 | /// |
99 | /// # Examples |
100 | /// ``` |
101 | /// # #![feature (portable_simd)] |
102 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
103 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
104 | /// # use simd::prelude::*; |
105 | /// use core::i32::{MIN, MAX}; |
106 | /// let x = Simd::from_array([MIN, -2, 3, MAX]); |
107 | /// let unsat = -x; |
108 | /// let sat = x.saturating_neg(); |
109 | /// assert_eq!(unsat, Simd::from_array([MIN, 2, -3, MIN + 1])); |
110 | /// assert_eq!(sat, Simd::from_array([MAX, 2, -3, MIN + 1])); |
111 | /// ``` |
112 | fn saturating_neg(self) -> Self; |
113 | |
114 | /// Returns true for each positive element and false if it is zero or negative. |
115 | fn is_positive(self) -> Self::Mask; |
116 | |
117 | /// Returns true for each negative element and false if it is zero or positive. |
118 | fn is_negative(self) -> Self::Mask; |
119 | |
120 | /// Returns numbers representing the sign of each element. |
121 | /// * `0` if the number is zero |
122 | /// * `1` if the number is positive |
123 | /// * `-1` if the number is negative |
124 | fn signum(self) -> Self; |
125 | |
126 | /// Returns the sum of the elements of the vector, with wrapping addition. |
127 | /// |
128 | /// # Examples |
129 | /// |
130 | /// ``` |
131 | /// # #![feature (portable_simd)] |
132 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
133 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
134 | /// # use simd::prelude::*; |
135 | /// let v = i32x4::from_array([1, 2, 3, 4]); |
136 | /// assert_eq!(v.reduce_sum(), 10); |
137 | /// |
138 | /// // SIMD integer addition is always wrapping |
139 | /// let v = i32x4::from_array([i32::MAX, 1, 0, 0]); |
140 | /// assert_eq!(v.reduce_sum(), i32::MIN); |
141 | /// ``` |
142 | fn reduce_sum(self) -> Self::Scalar; |
143 | |
144 | /// Returns the product of the elements of the vector, with wrapping multiplication. |
145 | /// |
146 | /// # Examples |
147 | /// |
148 | /// ``` |
149 | /// # #![feature (portable_simd)] |
150 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
151 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
152 | /// # use simd::prelude::*; |
153 | /// let v = i32x4::from_array([1, 2, 3, 4]); |
154 | /// assert_eq!(v.reduce_product(), 24); |
155 | /// |
156 | /// // SIMD integer multiplication is always wrapping |
157 | /// let v = i32x4::from_array([i32::MAX, 2, 1, 1]); |
158 | /// assert!(v.reduce_product() < i32::MAX); |
159 | /// ``` |
160 | fn reduce_product(self) -> Self::Scalar; |
161 | |
162 | /// Returns the maximum element in the vector. |
163 | /// |
164 | /// # Examples |
165 | /// |
166 | /// ``` |
167 | /// # #![feature (portable_simd)] |
168 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
169 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
170 | /// # use simd::prelude::*; |
171 | /// let v = i32x4::from_array([1, 2, 3, 4]); |
172 | /// assert_eq!(v.reduce_max(), 4); |
173 | /// ``` |
174 | fn reduce_max(self) -> Self::Scalar; |
175 | |
176 | /// Returns the minimum element in the vector. |
177 | /// |
178 | /// # Examples |
179 | /// |
180 | /// ``` |
181 | /// # #![feature (portable_simd)] |
182 | /// # #[cfg (feature = "as_crate" )] use core_simd::simd; |
183 | /// # #[cfg (not(feature = "as_crate" ))] use core::simd; |
184 | /// # use simd::prelude::*; |
185 | /// let v = i32x4::from_array([1, 2, 3, 4]); |
186 | /// assert_eq!(v.reduce_min(), 1); |
187 | /// ``` |
188 | fn reduce_min(self) -> Self::Scalar; |
189 | |
190 | /// Returns the cumulative bitwise "and" across the elements of the vector. |
191 | fn reduce_and(self) -> Self::Scalar; |
192 | |
193 | /// Returns the cumulative bitwise "or" across the elements of the vector. |
194 | fn reduce_or(self) -> Self::Scalar; |
195 | |
196 | /// Returns the cumulative bitwise "xor" across the elements of the vector. |
197 | fn reduce_xor(self) -> Self::Scalar; |
198 | |
199 | /// Reverses the byte order of each element. |
200 | fn swap_bytes(self) -> Self; |
201 | |
202 | /// Reverses the order of bits in each elemnent. |
203 | /// The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc. |
204 | fn reverse_bits(self) -> Self; |
205 | |
206 | /// Returns the number of leading zeros in the binary representation of each element. |
207 | fn leading_zeros(self) -> Self::Unsigned; |
208 | |
209 | /// Returns the number of trailing zeros in the binary representation of each element. |
210 | fn trailing_zeros(self) -> Self::Unsigned; |
211 | |
212 | /// Returns the number of leading ones in the binary representation of each element. |
213 | fn leading_ones(self) -> Self::Unsigned; |
214 | |
215 | /// Returns the number of trailing ones in the binary representation of each element. |
216 | fn trailing_ones(self) -> Self::Unsigned; |
217 | } |
218 | |
219 | macro_rules! impl_trait { |
220 | { $($ty:ident ($unsigned:ident)),* } => { |
221 | $( |
222 | impl<const N: usize> Sealed for Simd<$ty, N> |
223 | where |
224 | LaneCount<N>: SupportedLaneCount, |
225 | { |
226 | } |
227 | |
228 | impl<const N: usize> SimdInt for Simd<$ty, N> |
229 | where |
230 | LaneCount<N>: SupportedLaneCount, |
231 | { |
232 | type Mask = Mask<<$ty as SimdElement>::Mask, N>; |
233 | type Scalar = $ty; |
234 | type Unsigned = Simd<$unsigned, N>; |
235 | type Cast<T: SimdElement> = Simd<T, N>; |
236 | |
237 | #[inline] |
238 | fn cast<T: SimdCast>(self) -> Self::Cast<T> { |
239 | // Safety: supported types are guaranteed by SimdCast |
240 | unsafe { intrinsics::simd_as(self) } |
241 | } |
242 | |
243 | #[inline] |
244 | fn saturating_add(self, second: Self) -> Self { |
245 | // Safety: `self` is a vector |
246 | unsafe { intrinsics::simd_saturating_add(self, second) } |
247 | } |
248 | |
249 | #[inline] |
250 | fn saturating_sub(self, second: Self) -> Self { |
251 | // Safety: `self` is a vector |
252 | unsafe { intrinsics::simd_saturating_sub(self, second) } |
253 | } |
254 | |
255 | #[inline] |
256 | fn abs(self) -> Self { |
257 | const SHR: $ty = <$ty>::BITS as $ty - 1; |
258 | let m = self >> Simd::splat(SHR); |
259 | (self^m) - m |
260 | } |
261 | |
262 | #[inline] |
263 | fn saturating_abs(self) -> Self { |
264 | // arith shift for -1 or 0 mask based on sign bit, giving 2s complement |
265 | const SHR: $ty = <$ty>::BITS as $ty - 1; |
266 | let m = self >> Simd::splat(SHR); |
267 | (self^m).saturating_sub(m) |
268 | } |
269 | |
270 | #[inline] |
271 | fn saturating_neg(self) -> Self { |
272 | Self::splat(0).saturating_sub(self) |
273 | } |
274 | |
275 | #[inline] |
276 | fn is_positive(self) -> Self::Mask { |
277 | self.simd_gt(Self::splat(0)) |
278 | } |
279 | |
280 | #[inline] |
281 | fn is_negative(self) -> Self::Mask { |
282 | self.simd_lt(Self::splat(0)) |
283 | } |
284 | |
285 | #[inline] |
286 | fn signum(self) -> Self { |
287 | self.is_positive().select( |
288 | Self::splat(1), |
289 | self.is_negative().select(Self::splat(-1), Self::splat(0)) |
290 | ) |
291 | } |
292 | |
293 | #[inline] |
294 | fn reduce_sum(self) -> Self::Scalar { |
295 | // Safety: `self` is an integer vector |
296 | unsafe { intrinsics::simd_reduce_add_ordered(self, 0) } |
297 | } |
298 | |
299 | #[inline] |
300 | fn reduce_product(self) -> Self::Scalar { |
301 | // Safety: `self` is an integer vector |
302 | unsafe { intrinsics::simd_reduce_mul_ordered(self, 1) } |
303 | } |
304 | |
305 | #[inline] |
306 | fn reduce_max(self) -> Self::Scalar { |
307 | // Safety: `self` is an integer vector |
308 | unsafe { intrinsics::simd_reduce_max(self) } |
309 | } |
310 | |
311 | #[inline] |
312 | fn reduce_min(self) -> Self::Scalar { |
313 | // Safety: `self` is an integer vector |
314 | unsafe { intrinsics::simd_reduce_min(self) } |
315 | } |
316 | |
317 | #[inline] |
318 | fn reduce_and(self) -> Self::Scalar { |
319 | // Safety: `self` is an integer vector |
320 | unsafe { intrinsics::simd_reduce_and(self) } |
321 | } |
322 | |
323 | #[inline] |
324 | fn reduce_or(self) -> Self::Scalar { |
325 | // Safety: `self` is an integer vector |
326 | unsafe { intrinsics::simd_reduce_or(self) } |
327 | } |
328 | |
329 | #[inline] |
330 | fn reduce_xor(self) -> Self::Scalar { |
331 | // Safety: `self` is an integer vector |
332 | unsafe { intrinsics::simd_reduce_xor(self) } |
333 | } |
334 | |
335 | #[inline] |
336 | fn swap_bytes(self) -> Self { |
337 | // Safety: `self` is an integer vector |
338 | unsafe { intrinsics::simd_bswap(self) } |
339 | } |
340 | |
341 | #[inline] |
342 | fn reverse_bits(self) -> Self { |
343 | // Safety: `self` is an integer vector |
344 | unsafe { intrinsics::simd_bitreverse(self) } |
345 | } |
346 | |
347 | #[inline] |
348 | fn leading_zeros(self) -> Self::Unsigned { |
349 | self.cast::<$unsigned>().leading_zeros() |
350 | } |
351 | |
352 | #[inline] |
353 | fn trailing_zeros(self) -> Self::Unsigned { |
354 | self.cast::<$unsigned>().trailing_zeros() |
355 | } |
356 | |
357 | #[inline] |
358 | fn leading_ones(self) -> Self::Unsigned { |
359 | self.cast::<$unsigned>().leading_ones() |
360 | } |
361 | |
362 | #[inline] |
363 | fn trailing_ones(self) -> Self::Unsigned { |
364 | self.cast::<$unsigned>().trailing_ones() |
365 | } |
366 | } |
367 | )* |
368 | } |
369 | } |
370 | |
371 | impl_trait! { i8 (u8), i16 (u16), i32 (u32), i64 (u64), isize (usize) } |
372 | |