1 | //! Michael-Scott lock-free queue. |
2 | //! |
3 | //! Usable with any number of producers and consumers. |
4 | //! |
5 | //! Michael and Scott. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue |
6 | //! Algorithms. PODC 1996. <http://dl.acm.org/citation.cfm?id=248106> |
7 | //! |
8 | //! Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004b. Formal Verification of a |
9 | //! Practical Lock-Free Queue Algorithm. <https://doi.org/10.1007/978-3-540-30232-2_7> |
10 | |
11 | use core::mem::MaybeUninit; |
12 | use core::sync::atomic::Ordering::{Acquire, Relaxed, Release}; |
13 | |
14 | use crossbeam_utils::CachePadded; |
15 | |
16 | use crate::{unprotected, Atomic, Guard, Owned, Shared}; |
17 | |
18 | // The representation here is a singly-linked list, with a sentinel node at the front. In general |
19 | // the `tail` pointer may lag behind the actual tail. Non-sentinel nodes are either all `Data` or |
20 | // all `Blocked` (requests for data from blocked threads). |
21 | #[derive (Debug)] |
22 | pub(crate) struct Queue<T> { |
23 | head: CachePadded<Atomic<Node<T>>>, |
24 | tail: CachePadded<Atomic<Node<T>>>, |
25 | } |
26 | |
27 | struct Node<T> { |
28 | /// The slot in which a value of type `T` can be stored. |
29 | /// |
30 | /// The type of `data` is `MaybeUninit<T>` because a `Node<T>` doesn't always contain a `T`. |
31 | /// For example, the sentinel node in a queue never contains a value: its slot is always empty. |
32 | /// Other nodes start their life with a push operation and contain a value until it gets popped |
33 | /// out. After that such empty nodes get added to the collector for destruction. |
34 | data: MaybeUninit<T>, |
35 | |
36 | next: Atomic<Node<T>>, |
37 | } |
38 | |
39 | // Any particular `T` should never be accessed concurrently, so no need for `Sync`. |
40 | unsafe impl<T: Send> Sync for Queue<T> {} |
41 | unsafe impl<T: Send> Send for Queue<T> {} |
42 | |
43 | impl<T> Queue<T> { |
44 | /// Create a new, empty queue. |
45 | pub(crate) fn new() -> Queue<T> { |
46 | let q = Queue { |
47 | head: CachePadded::new(Atomic::null()), |
48 | tail: CachePadded::new(Atomic::null()), |
49 | }; |
50 | let sentinel = Owned::new(Node { |
51 | data: MaybeUninit::uninit(), |
52 | next: Atomic::null(), |
53 | }); |
54 | unsafe { |
55 | let guard = unprotected(); |
56 | let sentinel = sentinel.into_shared(guard); |
57 | q.head.store(sentinel, Relaxed); |
58 | q.tail.store(sentinel, Relaxed); |
59 | q |
60 | } |
61 | } |
62 | |
63 | /// Attempts to atomically place `n` into the `next` pointer of `onto`, and returns `true` on |
64 | /// success. The queue's `tail` pointer may be updated. |
65 | #[inline (always)] |
66 | fn push_internal( |
67 | &self, |
68 | onto: Shared<'_, Node<T>>, |
69 | new: Shared<'_, Node<T>>, |
70 | guard: &Guard, |
71 | ) -> bool { |
72 | // is `onto` the actual tail? |
73 | let o = unsafe { onto.deref() }; |
74 | let next = o.next.load(Acquire, guard); |
75 | if unsafe { next.as_ref().is_some() } { |
76 | // if not, try to "help" by moving the tail pointer forward |
77 | let _ = self |
78 | .tail |
79 | .compare_exchange(onto, next, Release, Relaxed, guard); |
80 | false |
81 | } else { |
82 | // looks like the actual tail; attempt to link in `n` |
83 | let result = o |
84 | .next |
85 | .compare_exchange(Shared::null(), new, Release, Relaxed, guard) |
86 | .is_ok(); |
87 | if result { |
88 | // try to move the tail pointer forward |
89 | let _ = self |
90 | .tail |
91 | .compare_exchange(onto, new, Release, Relaxed, guard); |
92 | } |
93 | result |
94 | } |
95 | } |
96 | |
97 | /// Adds `t` to the back of the queue, possibly waking up threads blocked on `pop`. |
98 | pub(crate) fn push(&self, t: T, guard: &Guard) { |
99 | let new = Owned::new(Node { |
100 | data: MaybeUninit::new(t), |
101 | next: Atomic::null(), |
102 | }); |
103 | let new = Owned::into_shared(new, guard); |
104 | |
105 | loop { |
106 | // We push onto the tail, so we'll start optimistically by looking there first. |
107 | let tail = self.tail.load(Acquire, guard); |
108 | |
109 | // Attempt to push onto the `tail` snapshot; fails if `tail.next` has changed. |
110 | if self.push_internal(tail, new, guard) { |
111 | break; |
112 | } |
113 | } |
114 | } |
115 | |
116 | /// Attempts to pop a data node. `Ok(None)` if queue is empty; `Err(())` if lost race to pop. |
117 | #[inline (always)] |
118 | fn pop_internal(&self, guard: &Guard) -> Result<Option<T>, ()> { |
119 | let head = self.head.load(Acquire, guard); |
120 | let h = unsafe { head.deref() }; |
121 | let next = h.next.load(Acquire, guard); |
122 | match unsafe { next.as_ref() } { |
123 | Some(n) => unsafe { |
124 | self.head |
125 | .compare_exchange(head, next, Release, Relaxed, guard) |
126 | .map(|_| { |
127 | let tail = self.tail.load(Relaxed, guard); |
128 | // Advance the tail so that we don't retire a pointer to a reachable node. |
129 | if head == tail { |
130 | let _ = self |
131 | .tail |
132 | .compare_exchange(tail, next, Release, Relaxed, guard); |
133 | } |
134 | guard.defer_destroy(head); |
135 | Some(n.data.assume_init_read()) |
136 | }) |
137 | .map_err(|_| ()) |
138 | }, |
139 | None => Ok(None), |
140 | } |
141 | } |
142 | |
143 | /// Attempts to pop a data node, if the data satisfies the given condition. `Ok(None)` if queue |
144 | /// is empty or the data does not satisfy the condition; `Err(())` if lost race to pop. |
145 | #[inline (always)] |
146 | fn pop_if_internal<F>(&self, condition: F, guard: &Guard) -> Result<Option<T>, ()> |
147 | where |
148 | T: Sync, |
149 | F: Fn(&T) -> bool, |
150 | { |
151 | let head = self.head.load(Acquire, guard); |
152 | let h = unsafe { head.deref() }; |
153 | let next = h.next.load(Acquire, guard); |
154 | match unsafe { next.as_ref() } { |
155 | Some(n) if condition(unsafe { &*n.data.as_ptr() }) => unsafe { |
156 | self.head |
157 | .compare_exchange(head, next, Release, Relaxed, guard) |
158 | .map(|_| { |
159 | let tail = self.tail.load(Relaxed, guard); |
160 | // Advance the tail so that we don't retire a pointer to a reachable node. |
161 | if head == tail { |
162 | let _ = self |
163 | .tail |
164 | .compare_exchange(tail, next, Release, Relaxed, guard); |
165 | } |
166 | guard.defer_destroy(head); |
167 | Some(n.data.assume_init_read()) |
168 | }) |
169 | .map_err(|_| ()) |
170 | }, |
171 | None | Some(_) => Ok(None), |
172 | } |
173 | } |
174 | |
175 | /// Attempts to dequeue from the front. |
176 | /// |
177 | /// Returns `None` if the queue is observed to be empty. |
178 | pub(crate) fn try_pop(&self, guard: &Guard) -> Option<T> { |
179 | loop { |
180 | if let Ok(head) = self.pop_internal(guard) { |
181 | return head; |
182 | } |
183 | } |
184 | } |
185 | |
186 | /// Attempts to dequeue from the front, if the item satisfies the given condition. |
187 | /// |
188 | /// Returns `None` if the queue is observed to be empty, or the head does not satisfy the given |
189 | /// condition. |
190 | pub(crate) fn try_pop_if<F>(&self, condition: F, guard: &Guard) -> Option<T> |
191 | where |
192 | T: Sync, |
193 | F: Fn(&T) -> bool, |
194 | { |
195 | loop { |
196 | if let Ok(head) = self.pop_if_internal(&condition, guard) { |
197 | return head; |
198 | } |
199 | } |
200 | } |
201 | } |
202 | |
203 | impl<T> Drop for Queue<T> { |
204 | fn drop(&mut self) { |
205 | unsafe { |
206 | let guard: &Guard = unprotected(); |
207 | |
208 | while self.try_pop(guard).is_some() {} |
209 | |
210 | // Destroy the remaining sentinel node. |
211 | let sentinel: Shared<'_, Node> = self.head.load(ord:Relaxed, guard); |
212 | drop(sentinel.into_owned()); |
213 | } |
214 | } |
215 | } |
216 | |
217 | #[cfg (all(test, not(crossbeam_loom)))] |
218 | mod test { |
219 | use super::*; |
220 | use crate::pin; |
221 | use crossbeam_utils::thread; |
222 | |
223 | struct Queue<T> { |
224 | queue: super::Queue<T>, |
225 | } |
226 | |
227 | impl<T> Queue<T> { |
228 | pub(crate) fn new() -> Queue<T> { |
229 | Queue { |
230 | queue: super::Queue::new(), |
231 | } |
232 | } |
233 | |
234 | pub(crate) fn push(&self, t: T) { |
235 | let guard = &pin(); |
236 | self.queue.push(t, guard); |
237 | } |
238 | |
239 | pub(crate) fn is_empty(&self) -> bool { |
240 | let guard = &pin(); |
241 | let head = self.queue.head.load(Acquire, guard); |
242 | let h = unsafe { head.deref() }; |
243 | h.next.load(Acquire, guard).is_null() |
244 | } |
245 | |
246 | pub(crate) fn try_pop(&self) -> Option<T> { |
247 | let guard = &pin(); |
248 | self.queue.try_pop(guard) |
249 | } |
250 | |
251 | pub(crate) fn pop(&self) -> T { |
252 | loop { |
253 | match self.try_pop() { |
254 | None => continue, |
255 | Some(t) => return t, |
256 | } |
257 | } |
258 | } |
259 | } |
260 | |
261 | #[cfg (miri)] |
262 | const CONC_COUNT: i64 = 1000; |
263 | #[cfg (not(miri))] |
264 | const CONC_COUNT: i64 = 1000000; |
265 | |
266 | #[test ] |
267 | fn push_try_pop_1() { |
268 | let q: Queue<i64> = Queue::new(); |
269 | assert!(q.is_empty()); |
270 | q.push(37); |
271 | assert!(!q.is_empty()); |
272 | assert_eq!(q.try_pop(), Some(37)); |
273 | assert!(q.is_empty()); |
274 | } |
275 | |
276 | #[test ] |
277 | fn push_try_pop_2() { |
278 | let q: Queue<i64> = Queue::new(); |
279 | assert!(q.is_empty()); |
280 | q.push(37); |
281 | q.push(48); |
282 | assert_eq!(q.try_pop(), Some(37)); |
283 | assert!(!q.is_empty()); |
284 | assert_eq!(q.try_pop(), Some(48)); |
285 | assert!(q.is_empty()); |
286 | } |
287 | |
288 | #[test ] |
289 | fn push_try_pop_many_seq() { |
290 | let q: Queue<i64> = Queue::new(); |
291 | assert!(q.is_empty()); |
292 | for i in 0..200 { |
293 | q.push(i) |
294 | } |
295 | assert!(!q.is_empty()); |
296 | for i in 0..200 { |
297 | assert_eq!(q.try_pop(), Some(i)); |
298 | } |
299 | assert!(q.is_empty()); |
300 | } |
301 | |
302 | #[test ] |
303 | fn push_pop_1() { |
304 | let q: Queue<i64> = Queue::new(); |
305 | assert!(q.is_empty()); |
306 | q.push(37); |
307 | assert!(!q.is_empty()); |
308 | assert_eq!(q.pop(), 37); |
309 | assert!(q.is_empty()); |
310 | } |
311 | |
312 | #[test ] |
313 | fn push_pop_2() { |
314 | let q: Queue<i64> = Queue::new(); |
315 | q.push(37); |
316 | q.push(48); |
317 | assert_eq!(q.pop(), 37); |
318 | assert_eq!(q.pop(), 48); |
319 | } |
320 | |
321 | #[test ] |
322 | fn push_pop_many_seq() { |
323 | let q: Queue<i64> = Queue::new(); |
324 | assert!(q.is_empty()); |
325 | for i in 0..200 { |
326 | q.push(i) |
327 | } |
328 | assert!(!q.is_empty()); |
329 | for i in 0..200 { |
330 | assert_eq!(q.pop(), i); |
331 | } |
332 | assert!(q.is_empty()); |
333 | } |
334 | |
335 | #[test ] |
336 | fn push_try_pop_many_spsc() { |
337 | let q: Queue<i64> = Queue::new(); |
338 | assert!(q.is_empty()); |
339 | |
340 | thread::scope(|scope| { |
341 | scope.spawn(|_| { |
342 | let mut next = 0; |
343 | |
344 | while next < CONC_COUNT { |
345 | if let Some(elem) = q.try_pop() { |
346 | assert_eq!(elem, next); |
347 | next += 1; |
348 | } |
349 | } |
350 | }); |
351 | |
352 | for i in 0..CONC_COUNT { |
353 | q.push(i) |
354 | } |
355 | }) |
356 | .unwrap(); |
357 | } |
358 | |
359 | #[test ] |
360 | fn push_try_pop_many_spmc() { |
361 | fn recv(_t: i32, q: &Queue<i64>) { |
362 | let mut cur = -1; |
363 | for _i in 0..CONC_COUNT { |
364 | if let Some(elem) = q.try_pop() { |
365 | assert!(elem > cur); |
366 | cur = elem; |
367 | |
368 | if cur == CONC_COUNT - 1 { |
369 | break; |
370 | } |
371 | } |
372 | } |
373 | } |
374 | |
375 | let q: Queue<i64> = Queue::new(); |
376 | assert!(q.is_empty()); |
377 | thread::scope(|scope| { |
378 | for i in 0..3 { |
379 | let q = &q; |
380 | scope.spawn(move |_| recv(i, q)); |
381 | } |
382 | |
383 | scope.spawn(|_| { |
384 | for i in 0..CONC_COUNT { |
385 | q.push(i); |
386 | } |
387 | }); |
388 | }) |
389 | .unwrap(); |
390 | } |
391 | |
392 | #[test ] |
393 | fn push_try_pop_many_mpmc() { |
394 | enum LR { |
395 | Left(i64), |
396 | Right(i64), |
397 | } |
398 | |
399 | let q: Queue<LR> = Queue::new(); |
400 | assert!(q.is_empty()); |
401 | |
402 | thread::scope(|scope| { |
403 | for _t in 0..2 { |
404 | scope.spawn(|_| { |
405 | for i in CONC_COUNT - 1..CONC_COUNT { |
406 | q.push(LR::Left(i)) |
407 | } |
408 | }); |
409 | scope.spawn(|_| { |
410 | for i in CONC_COUNT - 1..CONC_COUNT { |
411 | q.push(LR::Right(i)) |
412 | } |
413 | }); |
414 | scope.spawn(|_| { |
415 | let mut vl = vec![]; |
416 | let mut vr = vec![]; |
417 | for _i in 0..CONC_COUNT { |
418 | match q.try_pop() { |
419 | Some(LR::Left(x)) => vl.push(x), |
420 | Some(LR::Right(x)) => vr.push(x), |
421 | _ => {} |
422 | } |
423 | } |
424 | |
425 | let mut vl2 = vl.clone(); |
426 | let mut vr2 = vr.clone(); |
427 | vl2.sort_unstable(); |
428 | vr2.sort_unstable(); |
429 | |
430 | assert_eq!(vl, vl2); |
431 | assert_eq!(vr, vr2); |
432 | }); |
433 | } |
434 | }) |
435 | .unwrap(); |
436 | } |
437 | |
438 | #[test ] |
439 | fn push_pop_many_spsc() { |
440 | let q: Queue<i64> = Queue::new(); |
441 | |
442 | thread::scope(|scope| { |
443 | scope.spawn(|_| { |
444 | let mut next = 0; |
445 | while next < CONC_COUNT { |
446 | assert_eq!(q.pop(), next); |
447 | next += 1; |
448 | } |
449 | }); |
450 | |
451 | for i in 0..CONC_COUNT { |
452 | q.push(i) |
453 | } |
454 | }) |
455 | .unwrap(); |
456 | assert!(q.is_empty()); |
457 | } |
458 | |
459 | #[test ] |
460 | fn is_empty_dont_pop() { |
461 | let q: Queue<i64> = Queue::new(); |
462 | q.push(20); |
463 | q.push(20); |
464 | assert!(!q.is_empty()); |
465 | assert!(!q.is_empty()); |
466 | assert!(q.try_pop().is_some()); |
467 | } |
468 | } |
469 | |