1 | #![cfg_attr (not(test), no_std)] |
2 | #![allow (async_fn_in_trait)] |
3 | #![doc = include_str!("../README.md" )] |
4 | #![warn (missing_docs)] |
5 | |
6 | // This must go FIRST so that all the other modules see its macros. |
7 | mod fmt; |
8 | |
9 | use core::cell::UnsafeCell; |
10 | use core::future::poll_fn; |
11 | use core::marker::PhantomData; |
12 | use core::sync::atomic::{AtomicBool, AtomicU16, AtomicU32, Ordering}; |
13 | use core::task::Poll; |
14 | |
15 | use embassy_sync::waitqueue::AtomicWaker; |
16 | use embassy_usb_driver::{ |
17 | Bus as _, Direction, EndpointAddress, EndpointAllocError, EndpointError, EndpointIn, EndpointInfo, EndpointOut, |
18 | EndpointType, Event, Unsupported, |
19 | }; |
20 | |
21 | use crate::fmt::Bytes; |
22 | |
23 | pub mod otg_v1; |
24 | |
25 | use otg_v1::{regs, vals, Otg}; |
26 | |
27 | /// Handle interrupts. |
28 | pub unsafe fn on_interrupt<const MAX_EP_COUNT: usize>(r: Otg, state: &State<MAX_EP_COUNT>, ep_count: usize) { |
29 | trace!("irq" ); |
30 | |
31 | let ints = r.gintsts().read(); |
32 | if ints.wkupint() || ints.usbsusp() || ints.usbrst() || ints.enumdne() || ints.otgint() || ints.srqint() { |
33 | // Mask interrupts and notify `Bus` to process them |
34 | r.gintmsk().write(|w| { |
35 | w.set_iepint(true); |
36 | w.set_oepint(true); |
37 | w.set_rxflvlm(true); |
38 | }); |
39 | state.bus_waker.wake(); |
40 | } |
41 | |
42 | // Handle RX |
43 | while r.gintsts().read().rxflvl() { |
44 | let status = r.grxstsp().read(); |
45 | trace!("=== status {:08x}" , status.0); |
46 | let ep_num = status.epnum() as usize; |
47 | let len = status.bcnt() as usize; |
48 | |
49 | assert!(ep_num < ep_count); |
50 | |
51 | match status.pktstsd() { |
52 | vals::Pktstsd::SETUP_DATA_RX => { |
53 | trace!("SETUP_DATA_RX" ); |
54 | assert!(len == 8, "invalid SETUP packet length={}" , len); |
55 | assert!(ep_num == 0, "invalid SETUP packet endpoint={}" , ep_num); |
56 | |
57 | // flushing TX if something stuck in control endpoint |
58 | if r.dieptsiz(ep_num).read().pktcnt() != 0 { |
59 | r.grstctl().modify(|w| { |
60 | w.set_txfnum(ep_num as _); |
61 | w.set_txfflsh(true); |
62 | }); |
63 | while r.grstctl().read().txfflsh() {} |
64 | } |
65 | |
66 | let data = &state.cp_state.setup_data; |
67 | data[0].store(r.fifo(0).read().data(), Ordering::Relaxed); |
68 | data[1].store(r.fifo(0).read().data(), Ordering::Relaxed); |
69 | } |
70 | vals::Pktstsd::OUT_DATA_RX => { |
71 | trace!("OUT_DATA_RX ep={} len={}" , ep_num, len); |
72 | |
73 | if state.ep_states[ep_num].out_size.load(Ordering::Acquire) == EP_OUT_BUFFER_EMPTY { |
74 | // SAFETY: Buffer size is allocated to be equal to endpoint's maximum packet size |
75 | // We trust the peripheral to not exceed its configured MPSIZ |
76 | let buf = |
77 | unsafe { core::slice::from_raw_parts_mut(*state.ep_states[ep_num].out_buffer.get(), len) }; |
78 | |
79 | for chunk in buf.chunks_mut(4) { |
80 | // RX FIFO is shared so always read from fifo(0) |
81 | let data = r.fifo(0).read().0; |
82 | chunk.copy_from_slice(&data.to_ne_bytes()[0..chunk.len()]); |
83 | } |
84 | |
85 | state.ep_states[ep_num].out_size.store(len as u16, Ordering::Release); |
86 | state.ep_states[ep_num].out_waker.wake(); |
87 | } else { |
88 | error!("ep_out buffer overflow index={}" , ep_num); |
89 | |
90 | // discard FIFO data |
91 | let len_words = (len + 3) / 4; |
92 | for _ in 0..len_words { |
93 | r.fifo(0).read().data(); |
94 | } |
95 | } |
96 | } |
97 | vals::Pktstsd::OUT_DATA_DONE => { |
98 | trace!("OUT_DATA_DONE ep={}" , ep_num); |
99 | } |
100 | vals::Pktstsd::SETUP_DATA_DONE => { |
101 | trace!("SETUP_DATA_DONE ep={}" , ep_num); |
102 | } |
103 | x => trace!("unknown PKTSTS: {}" , x.to_bits()), |
104 | } |
105 | } |
106 | |
107 | // IN endpoint interrupt |
108 | if ints.iepint() { |
109 | let mut ep_mask = r.daint().read().iepint(); |
110 | let mut ep_num = 0; |
111 | |
112 | // Iterate over endpoints while there are non-zero bits in the mask |
113 | while ep_mask != 0 { |
114 | if ep_mask & 1 != 0 { |
115 | let ep_ints = r.diepint(ep_num).read(); |
116 | |
117 | // clear all |
118 | r.diepint(ep_num).write_value(ep_ints); |
119 | |
120 | // TXFE is cleared in DIEPEMPMSK |
121 | if ep_ints.txfe() { |
122 | critical_section::with(|_| { |
123 | r.diepempmsk().modify(|w| { |
124 | w.set_ineptxfem(w.ineptxfem() & !(1 << ep_num)); |
125 | }); |
126 | }); |
127 | } |
128 | |
129 | state.ep_states[ep_num].in_waker.wake(); |
130 | trace!("in ep={} irq val={:08x}" , ep_num, ep_ints.0); |
131 | } |
132 | |
133 | ep_mask >>= 1; |
134 | ep_num += 1; |
135 | } |
136 | } |
137 | |
138 | // out endpoint interrupt |
139 | if ints.oepint() { |
140 | trace!("oepint" ); |
141 | let mut ep_mask = r.daint().read().oepint(); |
142 | let mut ep_num = 0; |
143 | |
144 | // Iterate over endpoints while there are non-zero bits in the mask |
145 | while ep_mask != 0 { |
146 | if ep_mask & 1 != 0 { |
147 | let ep_ints = r.doepint(ep_num).read(); |
148 | // clear all |
149 | r.doepint(ep_num).write_value(ep_ints); |
150 | |
151 | if ep_ints.stup() { |
152 | state.cp_state.setup_ready.store(true, Ordering::Release); |
153 | } |
154 | state.ep_states[ep_num].out_waker.wake(); |
155 | trace!("out ep={} irq val={:08x}" , ep_num, ep_ints.0); |
156 | } |
157 | |
158 | ep_mask >>= 1; |
159 | ep_num += 1; |
160 | } |
161 | } |
162 | } |
163 | |
164 | /// USB PHY type |
165 | #[derive (Copy, Clone, Debug, Eq, PartialEq)] |
166 | pub enum PhyType { |
167 | /// Internal Full-Speed PHY |
168 | /// |
169 | /// Available on most High-Speed peripherals. |
170 | InternalFullSpeed, |
171 | /// Internal High-Speed PHY |
172 | /// |
173 | /// Available on a few STM32 chips. |
174 | InternalHighSpeed, |
175 | /// External ULPI Full-Speed PHY (or High-Speed PHY in Full-Speed mode) |
176 | ExternalFullSpeed, |
177 | /// External ULPI High-Speed PHY |
178 | ExternalHighSpeed, |
179 | } |
180 | |
181 | impl PhyType { |
182 | /// Get whether this PHY is any of the internal types. |
183 | pub fn internal(&self) -> bool { |
184 | match self { |
185 | PhyType::InternalFullSpeed | PhyType::InternalHighSpeed => true, |
186 | PhyType::ExternalHighSpeed | PhyType::ExternalFullSpeed => false, |
187 | } |
188 | } |
189 | |
190 | /// Get whether this PHY is any of the high-speed types. |
191 | pub fn high_speed(&self) -> bool { |
192 | match self { |
193 | PhyType::InternalFullSpeed | PhyType::ExternalFullSpeed => false, |
194 | PhyType::ExternalHighSpeed | PhyType::InternalHighSpeed => true, |
195 | } |
196 | } |
197 | |
198 | fn to_dspd(&self) -> vals::Dspd { |
199 | match self { |
200 | PhyType::InternalFullSpeed => vals::Dspd::FULL_SPEED_INTERNAL, |
201 | PhyType::InternalHighSpeed => vals::Dspd::HIGH_SPEED, |
202 | PhyType::ExternalFullSpeed => vals::Dspd::FULL_SPEED_EXTERNAL, |
203 | PhyType::ExternalHighSpeed => vals::Dspd::HIGH_SPEED, |
204 | } |
205 | } |
206 | } |
207 | |
208 | /// Indicates that [State::ep_out_buffers] is empty. |
209 | const EP_OUT_BUFFER_EMPTY: u16 = u16::MAX; |
210 | |
211 | struct EpState { |
212 | in_waker: AtomicWaker, |
213 | out_waker: AtomicWaker, |
214 | /// RX FIFO is shared so extra buffers are needed to dequeue all data without waiting on each endpoint. |
215 | /// Buffers are ready when associated [State::ep_out_size] != [EP_OUT_BUFFER_EMPTY]. |
216 | out_buffer: UnsafeCell<*mut u8>, |
217 | out_size: AtomicU16, |
218 | } |
219 | |
220 | // SAFETY: The EndpointAllocator ensures that the buffer points to valid memory exclusive for each endpoint and is |
221 | // large enough to hold the maximum packet size. Access to the buffer is synchronized between the USB interrupt and the |
222 | // EndpointOut impl using the out_size atomic variable. |
223 | unsafe impl Send for EpState {} |
224 | unsafe impl Sync for EpState {} |
225 | |
226 | struct ControlPipeSetupState { |
227 | /// Holds received SETUP packets. Available if [Ep0State::setup_ready] is true. |
228 | setup_data: [AtomicU32; 2], |
229 | setup_ready: AtomicBool, |
230 | } |
231 | |
232 | /// USB OTG driver state. |
233 | pub struct State<const EP_COUNT: usize> { |
234 | cp_state: ControlPipeSetupState, |
235 | ep_states: [EpState; EP_COUNT], |
236 | bus_waker: AtomicWaker, |
237 | } |
238 | |
239 | unsafe impl<const EP_COUNT: usize> Send for State<EP_COUNT> {} |
240 | unsafe impl<const EP_COUNT: usize> Sync for State<EP_COUNT> {} |
241 | |
242 | impl<const EP_COUNT: usize> State<EP_COUNT> { |
243 | /// Create a new State. |
244 | pub const fn new() -> Self { |
245 | Self { |
246 | cp_state: ControlPipeSetupState { |
247 | setup_data: [const { AtomicU32::new(0) }; 2], |
248 | setup_ready: AtomicBool::new(false), |
249 | }, |
250 | ep_states: [const { |
251 | EpState { |
252 | in_waker: AtomicWaker::new(), |
253 | out_waker: AtomicWaker::new(), |
254 | out_buffer: UnsafeCell::new(0 as _), |
255 | out_size: AtomicU16::new(EP_OUT_BUFFER_EMPTY), |
256 | } |
257 | }; EP_COUNT], |
258 | bus_waker: AtomicWaker::new(), |
259 | } |
260 | } |
261 | } |
262 | |
263 | #[derive (Debug, Clone, Copy)] |
264 | struct EndpointData { |
265 | ep_type: EndpointType, |
266 | max_packet_size: u16, |
267 | fifo_size_words: u16, |
268 | } |
269 | |
270 | /// USB driver config. |
271 | #[non_exhaustive ] |
272 | #[derive (Clone, Copy, PartialEq, Eq, Debug)] |
273 | pub struct Config { |
274 | /// Enable VBUS detection. |
275 | /// |
276 | /// The USB spec requires USB devices monitor for USB cable plug/unplug and react accordingly. |
277 | /// This is done by checking whether there is 5V on the VBUS pin or not. |
278 | /// |
279 | /// If your device is bus-powered (powers itself from the USB host via VBUS), then this is optional. |
280 | /// (If there's no power in VBUS your device would be off anyway, so it's fine to always assume |
281 | /// there's power in VBUS, i.e. the USB cable is always plugged in.) |
282 | /// |
283 | /// If your device is self-powered (i.e. it gets power from a source other than the USB cable, and |
284 | /// therefore can stay powered through USB cable plug/unplug) then you MUST set this to true. |
285 | /// |
286 | /// If you set this to true, you must connect VBUS to PA9 for FS, PB13 for HS, possibly with a |
287 | /// voltage divider. See ST application note AN4879 and the reference manual for more details. |
288 | pub vbus_detection: bool, |
289 | |
290 | /// Enable transceiver delay. |
291 | /// |
292 | /// Some ULPI PHYs like the Microchip USB334x series require a delay between the ULPI register write that initiates |
293 | /// the HS Chirp and the subsequent transmit command, otherwise the HS Chirp does not get executed and the deivce |
294 | /// enumerates in FS mode. Some USB Link IP like those in the STM32H7 series support adding this delay to work with |
295 | /// the affected PHYs. |
296 | pub xcvrdly: bool, |
297 | } |
298 | |
299 | impl Default for Config { |
300 | fn default() -> Self { |
301 | Self { |
302 | vbus_detection: false, |
303 | xcvrdly: false, |
304 | } |
305 | } |
306 | } |
307 | |
308 | /// USB OTG driver. |
309 | pub struct Driver<'d, const MAX_EP_COUNT: usize> { |
310 | config: Config, |
311 | ep_in: [Option<EndpointData>; MAX_EP_COUNT], |
312 | ep_out: [Option<EndpointData>; MAX_EP_COUNT], |
313 | ep_out_buffer: &'d mut [u8], |
314 | ep_out_buffer_offset: usize, |
315 | instance: OtgInstance<'d, MAX_EP_COUNT>, |
316 | } |
317 | |
318 | impl<'d, const MAX_EP_COUNT: usize> Driver<'d, MAX_EP_COUNT> { |
319 | /// Initializes the USB OTG peripheral. |
320 | /// |
321 | /// # Arguments |
322 | /// |
323 | /// * `ep_out_buffer` - An internal buffer used to temporarily store received packets. |
324 | /// Must be large enough to fit all OUT endpoint max packet sizes. |
325 | /// Endpoint allocation will fail if it is too small. |
326 | /// * `instance` - The USB OTG peripheral instance and its configuration. |
327 | /// * `config` - The USB driver configuration. |
328 | pub fn new(ep_out_buffer: &'d mut [u8], instance: OtgInstance<'d, MAX_EP_COUNT>, config: Config) -> Self { |
329 | Self { |
330 | config, |
331 | ep_in: [None; MAX_EP_COUNT], |
332 | ep_out: [None; MAX_EP_COUNT], |
333 | ep_out_buffer, |
334 | ep_out_buffer_offset: 0, |
335 | instance, |
336 | } |
337 | } |
338 | |
339 | /// Returns the total amount of words (u32) allocated in dedicated FIFO. |
340 | fn allocated_fifo_words(&self) -> u16 { |
341 | self.instance.extra_rx_fifo_words + ep_fifo_size(&self.ep_out) + ep_fifo_size(&self.ep_in) |
342 | } |
343 | |
344 | /// Creates an [`Endpoint`] with the given parameters. |
345 | fn alloc_endpoint<D: Dir>( |
346 | &mut self, |
347 | ep_type: EndpointType, |
348 | max_packet_size: u16, |
349 | interval_ms: u8, |
350 | ) -> Result<Endpoint<'d, D>, EndpointAllocError> { |
351 | trace!( |
352 | "allocating type={:?} mps={:?} interval_ms={}, dir={:?}" , |
353 | ep_type, |
354 | max_packet_size, |
355 | interval_ms, |
356 | D::dir() |
357 | ); |
358 | |
359 | if D::dir() == Direction::Out { |
360 | if self.ep_out_buffer_offset + max_packet_size as usize >= self.ep_out_buffer.len() { |
361 | error!("Not enough endpoint out buffer capacity" ); |
362 | return Err(EndpointAllocError); |
363 | } |
364 | }; |
365 | |
366 | let fifo_size_words = match D::dir() { |
367 | Direction::Out => (max_packet_size + 3) / 4, |
368 | // INEPTXFD requires minimum size of 16 words |
369 | Direction::In => u16::max((max_packet_size + 3) / 4, 16), |
370 | }; |
371 | |
372 | if fifo_size_words + self.allocated_fifo_words() > self.instance.fifo_depth_words { |
373 | error!("Not enough FIFO capacity" ); |
374 | return Err(EndpointAllocError); |
375 | } |
376 | |
377 | let eps = match D::dir() { |
378 | Direction::Out => &mut self.ep_out[..self.instance.endpoint_count], |
379 | Direction::In => &mut self.ep_in[..self.instance.endpoint_count], |
380 | }; |
381 | |
382 | // Find free endpoint slot |
383 | let slot = eps.iter_mut().enumerate().find(|(i, ep)| { |
384 | if *i == 0 && ep_type != EndpointType::Control { |
385 | // reserved for control pipe |
386 | false |
387 | } else { |
388 | ep.is_none() |
389 | } |
390 | }); |
391 | |
392 | let index = match slot { |
393 | Some((index, ep)) => { |
394 | *ep = Some(EndpointData { |
395 | ep_type, |
396 | max_packet_size, |
397 | fifo_size_words, |
398 | }); |
399 | index |
400 | } |
401 | None => { |
402 | error!("No free endpoints available" ); |
403 | return Err(EndpointAllocError); |
404 | } |
405 | }; |
406 | |
407 | trace!(" index={}" , index); |
408 | |
409 | let state = &self.instance.state.ep_states[index]; |
410 | if D::dir() == Direction::Out { |
411 | // Buffer capacity check was done above, now allocation cannot fail |
412 | unsafe { |
413 | *state.out_buffer.get() = self.ep_out_buffer.as_mut_ptr().offset(self.ep_out_buffer_offset as _); |
414 | } |
415 | self.ep_out_buffer_offset += max_packet_size as usize; |
416 | } |
417 | |
418 | Ok(Endpoint { |
419 | _phantom: PhantomData, |
420 | regs: self.instance.regs, |
421 | state, |
422 | info: EndpointInfo { |
423 | addr: EndpointAddress::from_parts(index, D::dir()), |
424 | ep_type, |
425 | max_packet_size, |
426 | interval_ms, |
427 | }, |
428 | }) |
429 | } |
430 | } |
431 | |
432 | impl<'d, const MAX_EP_COUNT: usize> embassy_usb_driver::Driver<'d> for Driver<'d, MAX_EP_COUNT> { |
433 | type EndpointOut = Endpoint<'d, Out>; |
434 | type EndpointIn = Endpoint<'d, In>; |
435 | type ControlPipe = ControlPipe<'d>; |
436 | type Bus = Bus<'d, MAX_EP_COUNT>; |
437 | |
438 | fn alloc_endpoint_in( |
439 | &mut self, |
440 | ep_type: EndpointType, |
441 | max_packet_size: u16, |
442 | interval_ms: u8, |
443 | ) -> Result<Self::EndpointIn, EndpointAllocError> { |
444 | self.alloc_endpoint(ep_type, max_packet_size, interval_ms) |
445 | } |
446 | |
447 | fn alloc_endpoint_out( |
448 | &mut self, |
449 | ep_type: EndpointType, |
450 | max_packet_size: u16, |
451 | interval_ms: u8, |
452 | ) -> Result<Self::EndpointOut, EndpointAllocError> { |
453 | self.alloc_endpoint(ep_type, max_packet_size, interval_ms) |
454 | } |
455 | |
456 | fn start(mut self, control_max_packet_size: u16) -> (Self::Bus, Self::ControlPipe) { |
457 | let ep_out = self |
458 | .alloc_endpoint(EndpointType::Control, control_max_packet_size, 0) |
459 | .unwrap(); |
460 | let ep_in = self |
461 | .alloc_endpoint(EndpointType::Control, control_max_packet_size, 0) |
462 | .unwrap(); |
463 | assert_eq!(ep_out.info.addr.index(), 0); |
464 | assert_eq!(ep_in.info.addr.index(), 0); |
465 | |
466 | trace!("start" ); |
467 | |
468 | let regs = self.instance.regs; |
469 | let cp_setup_state = &self.instance.state.cp_state; |
470 | ( |
471 | Bus { |
472 | config: self.config, |
473 | ep_in: self.ep_in, |
474 | ep_out: self.ep_out, |
475 | inited: false, |
476 | instance: self.instance, |
477 | }, |
478 | ControlPipe { |
479 | max_packet_size: control_max_packet_size, |
480 | setup_state: cp_setup_state, |
481 | ep_out, |
482 | ep_in, |
483 | regs, |
484 | }, |
485 | ) |
486 | } |
487 | } |
488 | |
489 | /// USB bus. |
490 | pub struct Bus<'d, const MAX_EP_COUNT: usize> { |
491 | config: Config, |
492 | ep_in: [Option<EndpointData>; MAX_EP_COUNT], |
493 | ep_out: [Option<EndpointData>; MAX_EP_COUNT], |
494 | instance: OtgInstance<'d, MAX_EP_COUNT>, |
495 | inited: bool, |
496 | } |
497 | |
498 | impl<'d, const MAX_EP_COUNT: usize> Bus<'d, MAX_EP_COUNT> { |
499 | fn restore_irqs(&mut self) { |
500 | self.instance.regs.gintmsk().write(|w| { |
501 | w.set_usbrst(true); |
502 | w.set_enumdnem(true); |
503 | w.set_usbsuspm(true); |
504 | w.set_wuim(true); |
505 | w.set_iepint(true); |
506 | w.set_oepint(true); |
507 | w.set_rxflvlm(true); |
508 | w.set_srqim(true); |
509 | w.set_otgint(true); |
510 | }); |
511 | } |
512 | |
513 | /// Returns the PHY type. |
514 | pub fn phy_type(&self) -> PhyType { |
515 | self.instance.phy_type |
516 | } |
517 | |
518 | /// Configures the PHY as a device. |
519 | pub fn configure_as_device(&mut self) { |
520 | let r = self.instance.regs; |
521 | let phy_type = self.instance.phy_type; |
522 | r.gusbcfg().write(|w| { |
523 | // Force device mode |
524 | w.set_fdmod(true); |
525 | // Enable internal full-speed PHY |
526 | w.set_physel(phy_type.internal() && !phy_type.high_speed()); |
527 | }); |
528 | } |
529 | |
530 | /// Applies configuration specific to |
531 | /// Core ID 0x0000_1100 and 0x0000_1200 |
532 | pub fn config_v1(&mut self) { |
533 | let r = self.instance.regs; |
534 | let phy_type = self.instance.phy_type; |
535 | assert!(phy_type != PhyType::InternalHighSpeed); |
536 | |
537 | r.gccfg_v1().modify(|w| { |
538 | // Enable internal full-speed PHY, logic is inverted |
539 | w.set_pwrdwn(phy_type.internal()); |
540 | }); |
541 | |
542 | // F429-like chips have the GCCFG.NOVBUSSENS bit |
543 | r.gccfg_v1().modify(|w| { |
544 | w.set_novbussens(!self.config.vbus_detection); |
545 | w.set_vbusasen(false); |
546 | w.set_vbusbsen(self.config.vbus_detection); |
547 | w.set_sofouten(false); |
548 | }); |
549 | } |
550 | |
551 | /// Applies configuration specific to |
552 | /// Core ID 0x0000_2000, 0x0000_2100, 0x0000_2300, 0x0000_3000 and 0x0000_3100 |
553 | pub fn config_v2v3(&mut self) { |
554 | let r = self.instance.regs; |
555 | let phy_type = self.instance.phy_type; |
556 | |
557 | // F446-like chips have the GCCFG.VBDEN bit with the opposite meaning |
558 | r.gccfg_v2().modify(|w| { |
559 | // Enable internal full-speed PHY, logic is inverted |
560 | w.set_pwrdwn(phy_type.internal() && !phy_type.high_speed()); |
561 | w.set_phyhsen(phy_type.internal() && phy_type.high_speed()); |
562 | }); |
563 | |
564 | r.gccfg_v2().modify(|w| { |
565 | w.set_vbden(self.config.vbus_detection); |
566 | }); |
567 | |
568 | // Force B-peripheral session |
569 | r.gotgctl().modify(|w| { |
570 | w.set_bvaloen(!self.config.vbus_detection); |
571 | w.set_bvaloval(true); |
572 | }); |
573 | } |
574 | |
575 | /// Applies configuration specific to |
576 | /// Core ID 0x0000_5000 |
577 | pub fn config_v5(&mut self) { |
578 | let r = self.instance.regs; |
579 | let phy_type = self.instance.phy_type; |
580 | |
581 | if phy_type == PhyType::InternalHighSpeed { |
582 | r.gccfg_v3().modify(|w| { |
583 | w.set_vbvaloven(!self.config.vbus_detection); |
584 | w.set_vbvaloval(!self.config.vbus_detection); |
585 | w.set_vbden(self.config.vbus_detection); |
586 | }); |
587 | } else { |
588 | r.gotgctl().modify(|w| { |
589 | w.set_bvaloen(!self.config.vbus_detection); |
590 | w.set_bvaloval(!self.config.vbus_detection); |
591 | }); |
592 | r.gccfg_v3().modify(|w| { |
593 | w.set_vbden(self.config.vbus_detection); |
594 | }); |
595 | } |
596 | } |
597 | |
598 | fn init(&mut self) { |
599 | let r = self.instance.regs; |
600 | let phy_type = self.instance.phy_type; |
601 | |
602 | // Soft disconnect. |
603 | r.dctl().write(|w| w.set_sdis(true)); |
604 | |
605 | // Set speed. |
606 | r.dcfg().write(|w| { |
607 | w.set_pfivl(vals::Pfivl::FRAME_INTERVAL_80); |
608 | w.set_dspd(phy_type.to_dspd()); |
609 | if self.config.xcvrdly { |
610 | w.set_xcvrdly(true); |
611 | } |
612 | }); |
613 | |
614 | // Unmask transfer complete EP interrupt |
615 | r.diepmsk().write(|w| { |
616 | w.set_xfrcm(true); |
617 | }); |
618 | |
619 | // Unmask SETUP received EP interrupt |
620 | r.doepmsk().write(|w| { |
621 | w.set_stupm(true); |
622 | }); |
623 | |
624 | // Unmask and clear core interrupts |
625 | self.restore_irqs(); |
626 | r.gintsts().write_value(regs::Gintsts(0xFFFF_FFFF)); |
627 | |
628 | // Unmask global interrupt |
629 | r.gahbcfg().write(|w| { |
630 | w.set_gint(true); // unmask global interrupt |
631 | }); |
632 | |
633 | // Connect |
634 | r.dctl().write(|w| w.set_sdis(false)); |
635 | } |
636 | |
637 | fn init_fifo(&mut self) { |
638 | trace!("init_fifo" ); |
639 | |
640 | let regs = self.instance.regs; |
641 | // ERRATA NOTE: Don't interrupt FIFOs being written to. The interrupt |
642 | // handler COULD interrupt us here and do FIFO operations, so ensure |
643 | // the interrupt does not occur. |
644 | critical_section::with(|_| { |
645 | // Configure RX fifo size. All endpoints share the same FIFO area. |
646 | let rx_fifo_size_words = self.instance.extra_rx_fifo_words + ep_fifo_size(&self.ep_out); |
647 | trace!("configuring rx fifo size={}" , rx_fifo_size_words); |
648 | |
649 | regs.grxfsiz().modify(|w| w.set_rxfd(rx_fifo_size_words)); |
650 | |
651 | // Configure TX (USB in direction) fifo size for each endpoint |
652 | let mut fifo_top = rx_fifo_size_words; |
653 | for i in 0..self.instance.endpoint_count { |
654 | if let Some(ep) = self.ep_in[i] { |
655 | trace!( |
656 | "configuring tx fifo ep={}, offset={}, size={}" , |
657 | i, |
658 | fifo_top, |
659 | ep.fifo_size_words |
660 | ); |
661 | |
662 | let dieptxf = if i == 0 { regs.dieptxf0() } else { regs.dieptxf(i - 1) }; |
663 | |
664 | dieptxf.write(|w| { |
665 | w.set_fd(ep.fifo_size_words); |
666 | w.set_sa(fifo_top); |
667 | }); |
668 | |
669 | fifo_top += ep.fifo_size_words; |
670 | } |
671 | } |
672 | |
673 | assert!( |
674 | fifo_top <= self.instance.fifo_depth_words, |
675 | "FIFO allocations exceeded maximum capacity" |
676 | ); |
677 | |
678 | // Flush fifos |
679 | regs.grstctl().write(|w| { |
680 | w.set_rxfflsh(true); |
681 | w.set_txfflsh(true); |
682 | w.set_txfnum(0x10); |
683 | }); |
684 | }); |
685 | |
686 | loop { |
687 | let x = regs.grstctl().read(); |
688 | if !x.rxfflsh() && !x.txfflsh() { |
689 | break; |
690 | } |
691 | } |
692 | } |
693 | |
694 | fn configure_endpoints(&mut self) { |
695 | trace!("configure_endpoints" ); |
696 | |
697 | let regs = self.instance.regs; |
698 | |
699 | // Configure IN endpoints |
700 | for (index, ep) in self.ep_in.iter().enumerate() { |
701 | if let Some(ep) = ep { |
702 | critical_section::with(|_| { |
703 | regs.diepctl(index).write(|w| { |
704 | if index == 0 { |
705 | w.set_mpsiz(ep0_mpsiz(ep.max_packet_size)); |
706 | } else { |
707 | w.set_mpsiz(ep.max_packet_size); |
708 | w.set_eptyp(to_eptyp(ep.ep_type)); |
709 | w.set_sd0pid_sevnfrm(true); |
710 | w.set_txfnum(index as _); |
711 | w.set_snak(true); |
712 | } |
713 | }); |
714 | }); |
715 | } |
716 | } |
717 | |
718 | // Configure OUT endpoints |
719 | for (index, ep) in self.ep_out.iter().enumerate() { |
720 | if let Some(ep) = ep { |
721 | critical_section::with(|_| { |
722 | regs.doepctl(index).write(|w| { |
723 | if index == 0 { |
724 | w.set_mpsiz(ep0_mpsiz(ep.max_packet_size)); |
725 | } else { |
726 | w.set_mpsiz(ep.max_packet_size); |
727 | w.set_eptyp(to_eptyp(ep.ep_type)); |
728 | w.set_sd0pid_sevnfrm(true); |
729 | } |
730 | }); |
731 | |
732 | regs.doeptsiz(index).modify(|w| { |
733 | w.set_xfrsiz(ep.max_packet_size as _); |
734 | if index == 0 { |
735 | w.set_rxdpid_stupcnt(3); |
736 | } else { |
737 | w.set_pktcnt(1); |
738 | } |
739 | }); |
740 | }); |
741 | } |
742 | } |
743 | |
744 | // Enable IRQs for allocated endpoints |
745 | regs.daintmsk().modify(|w| { |
746 | w.set_iepm(ep_irq_mask(&self.ep_in)); |
747 | w.set_oepm(ep_irq_mask(&self.ep_out)); |
748 | }); |
749 | } |
750 | |
751 | fn disable_all_endpoints(&mut self) { |
752 | for i in 0..self.instance.endpoint_count { |
753 | self.endpoint_set_enabled(EndpointAddress::from_parts(i, Direction::In), false); |
754 | self.endpoint_set_enabled(EndpointAddress::from_parts(i, Direction::Out), false); |
755 | } |
756 | } |
757 | } |
758 | |
759 | impl<'d, const MAX_EP_COUNT: usize> embassy_usb_driver::Bus for Bus<'d, MAX_EP_COUNT> { |
760 | async fn poll(&mut self) -> Event { |
761 | poll_fn(move |cx| { |
762 | if !self.inited { |
763 | self.init(); |
764 | self.inited = true; |
765 | |
766 | // If no vbus detection, just return a single PowerDetected event at startup. |
767 | if !self.config.vbus_detection { |
768 | return Poll::Ready(Event::PowerDetected); |
769 | } |
770 | } |
771 | |
772 | let regs = self.instance.regs; |
773 | self.instance.state.bus_waker.register(cx.waker()); |
774 | |
775 | let ints = regs.gintsts().read(); |
776 | |
777 | if ints.srqint() { |
778 | trace!("vbus detected" ); |
779 | |
780 | regs.gintsts().write(|w| w.set_srqint(true)); // clear |
781 | self.restore_irqs(); |
782 | |
783 | if self.config.vbus_detection { |
784 | return Poll::Ready(Event::PowerDetected); |
785 | } |
786 | } |
787 | |
788 | if ints.otgint() { |
789 | let otgints = regs.gotgint().read(); |
790 | regs.gotgint().write_value(otgints); // clear all |
791 | self.restore_irqs(); |
792 | |
793 | if otgints.sedet() { |
794 | trace!("vbus removed" ); |
795 | if self.config.vbus_detection { |
796 | self.disable_all_endpoints(); |
797 | return Poll::Ready(Event::PowerRemoved); |
798 | } |
799 | } |
800 | } |
801 | |
802 | if ints.usbrst() { |
803 | trace!("reset" ); |
804 | |
805 | self.init_fifo(); |
806 | self.configure_endpoints(); |
807 | |
808 | // Reset address |
809 | critical_section::with(|_| { |
810 | regs.dcfg().modify(|w| { |
811 | w.set_dad(0); |
812 | }); |
813 | }); |
814 | |
815 | regs.gintsts().write(|w| w.set_usbrst(true)); // clear |
816 | self.restore_irqs(); |
817 | } |
818 | |
819 | if ints.enumdne() { |
820 | trace!("enumdne" ); |
821 | |
822 | let speed = regs.dsts().read().enumspd(); |
823 | let trdt = (self.instance.calculate_trdt_fn)(speed); |
824 | trace!(" speed={} trdt={}" , speed.to_bits(), trdt); |
825 | regs.gusbcfg().modify(|w| w.set_trdt(trdt)); |
826 | |
827 | regs.gintsts().write(|w| w.set_enumdne(true)); // clear |
828 | self.restore_irqs(); |
829 | |
830 | return Poll::Ready(Event::Reset); |
831 | } |
832 | |
833 | if ints.usbsusp() { |
834 | trace!("suspend" ); |
835 | regs.gintsts().write(|w| w.set_usbsusp(true)); // clear |
836 | self.restore_irqs(); |
837 | return Poll::Ready(Event::Suspend); |
838 | } |
839 | |
840 | if ints.wkupint() { |
841 | trace!("resume" ); |
842 | regs.gintsts().write(|w| w.set_wkupint(true)); // clear |
843 | self.restore_irqs(); |
844 | return Poll::Ready(Event::Resume); |
845 | } |
846 | |
847 | Poll::Pending |
848 | }) |
849 | .await |
850 | } |
851 | |
852 | fn endpoint_set_stalled(&mut self, ep_addr: EndpointAddress, stalled: bool) { |
853 | trace!("endpoint_set_stalled ep={:?} en={}" , ep_addr, stalled); |
854 | |
855 | assert!( |
856 | ep_addr.index() < self.instance.endpoint_count, |
857 | "endpoint_set_stalled index {} out of range" , |
858 | ep_addr.index() |
859 | ); |
860 | |
861 | let regs = self.instance.regs; |
862 | let state = self.instance.state; |
863 | match ep_addr.direction() { |
864 | Direction::Out => { |
865 | critical_section::with(|_| { |
866 | regs.doepctl(ep_addr.index()).modify(|w| { |
867 | w.set_stall(stalled); |
868 | }); |
869 | }); |
870 | |
871 | state.ep_states[ep_addr.index()].out_waker.wake(); |
872 | } |
873 | Direction::In => { |
874 | critical_section::with(|_| { |
875 | regs.diepctl(ep_addr.index()).modify(|w| { |
876 | w.set_stall(stalled); |
877 | }); |
878 | }); |
879 | |
880 | state.ep_states[ep_addr.index()].in_waker.wake(); |
881 | } |
882 | } |
883 | } |
884 | |
885 | fn endpoint_is_stalled(&mut self, ep_addr: EndpointAddress) -> bool { |
886 | assert!( |
887 | ep_addr.index() < self.instance.endpoint_count, |
888 | "endpoint_is_stalled index {} out of range" , |
889 | ep_addr.index() |
890 | ); |
891 | |
892 | let regs = self.instance.regs; |
893 | match ep_addr.direction() { |
894 | Direction::Out => regs.doepctl(ep_addr.index()).read().stall(), |
895 | Direction::In => regs.diepctl(ep_addr.index()).read().stall(), |
896 | } |
897 | } |
898 | |
899 | fn endpoint_set_enabled(&mut self, ep_addr: EndpointAddress, enabled: bool) { |
900 | trace!("endpoint_set_enabled ep={:?} en={}" , ep_addr, enabled); |
901 | |
902 | assert!( |
903 | ep_addr.index() < self.instance.endpoint_count, |
904 | "endpoint_set_enabled index {} out of range" , |
905 | ep_addr.index() |
906 | ); |
907 | |
908 | let regs = self.instance.regs; |
909 | let state = self.instance.state; |
910 | match ep_addr.direction() { |
911 | Direction::Out => { |
912 | critical_section::with(|_| { |
913 | // cancel transfer if active |
914 | if !enabled && regs.doepctl(ep_addr.index()).read().epena() { |
915 | regs.doepctl(ep_addr.index()).modify(|w| { |
916 | w.set_snak(true); |
917 | w.set_epdis(true); |
918 | }) |
919 | } |
920 | |
921 | regs.doepctl(ep_addr.index()).modify(|w| { |
922 | w.set_usbaep(enabled); |
923 | }); |
924 | |
925 | // Flush tx fifo |
926 | regs.grstctl().write(|w| { |
927 | w.set_txfflsh(true); |
928 | w.set_txfnum(ep_addr.index() as _); |
929 | }); |
930 | loop { |
931 | let x = regs.grstctl().read(); |
932 | if !x.txfflsh() { |
933 | break; |
934 | } |
935 | } |
936 | }); |
937 | |
938 | // Wake `Endpoint::wait_enabled()` |
939 | state.ep_states[ep_addr.index()].out_waker.wake(); |
940 | } |
941 | Direction::In => { |
942 | critical_section::with(|_| { |
943 | // cancel transfer if active |
944 | if !enabled && regs.diepctl(ep_addr.index()).read().epena() { |
945 | regs.diepctl(ep_addr.index()).modify(|w| { |
946 | w.set_snak(true); // set NAK |
947 | w.set_epdis(true); |
948 | }) |
949 | } |
950 | |
951 | regs.diepctl(ep_addr.index()).modify(|w| { |
952 | w.set_usbaep(enabled); |
953 | w.set_cnak(enabled); // clear NAK that might've been set by SNAK above. |
954 | }) |
955 | }); |
956 | |
957 | // Wake `Endpoint::wait_enabled()` |
958 | state.ep_states[ep_addr.index()].in_waker.wake(); |
959 | } |
960 | } |
961 | } |
962 | |
963 | async fn enable(&mut self) { |
964 | trace!("enable" ); |
965 | // TODO: enable the peripheral once enable/disable semantics are cleared up in embassy-usb |
966 | } |
967 | |
968 | async fn disable(&mut self) { |
969 | trace!("disable" ); |
970 | |
971 | // TODO: disable the peripheral once enable/disable semantics are cleared up in embassy-usb |
972 | //Bus::disable(self); |
973 | } |
974 | |
975 | async fn remote_wakeup(&mut self) -> Result<(), Unsupported> { |
976 | Err(Unsupported) |
977 | } |
978 | } |
979 | |
980 | /// USB endpoint direction. |
981 | trait Dir { |
982 | /// Returns the direction value. |
983 | fn dir() -> Direction; |
984 | } |
985 | |
986 | /// Marker type for the "IN" direction. |
987 | pub enum In {} |
988 | impl Dir for In { |
989 | fn dir() -> Direction { |
990 | Direction::In |
991 | } |
992 | } |
993 | |
994 | /// Marker type for the "OUT" direction. |
995 | pub enum Out {} |
996 | impl Dir for Out { |
997 | fn dir() -> Direction { |
998 | Direction::Out |
999 | } |
1000 | } |
1001 | |
1002 | /// USB endpoint. |
1003 | pub struct Endpoint<'d, D> { |
1004 | _phantom: PhantomData<D>, |
1005 | regs: Otg, |
1006 | info: EndpointInfo, |
1007 | state: &'d EpState, |
1008 | } |
1009 | |
1010 | impl<'d> embassy_usb_driver::Endpoint for Endpoint<'d, In> { |
1011 | fn info(&self) -> &EndpointInfo { |
1012 | &self.info |
1013 | } |
1014 | |
1015 | async fn wait_enabled(&mut self) { |
1016 | poll_fnPollFn) -> …>(|cx: &mut Context<'_>| { |
1017 | let ep_index: usize = self.info.addr.index(); |
1018 | |
1019 | self.state.in_waker.register(cx.waker()); |
1020 | |
1021 | if self.regs.diepctl(ep_index).read().usbaep() { |
1022 | Poll::Ready(()) |
1023 | } else { |
1024 | Poll::Pending |
1025 | } |
1026 | }) |
1027 | .await |
1028 | } |
1029 | } |
1030 | |
1031 | impl<'d> embassy_usb_driver::Endpoint for Endpoint<'d, Out> { |
1032 | fn info(&self) -> &EndpointInfo { |
1033 | &self.info |
1034 | } |
1035 | |
1036 | async fn wait_enabled(&mut self) { |
1037 | poll_fnPollFn) -> …>(|cx: &mut Context<'_>| { |
1038 | let ep_index: usize = self.info.addr.index(); |
1039 | |
1040 | self.state.out_waker.register(cx.waker()); |
1041 | |
1042 | if self.regs.doepctl(ep_index).read().usbaep() { |
1043 | Poll::Ready(()) |
1044 | } else { |
1045 | Poll::Pending |
1046 | } |
1047 | }) |
1048 | .await |
1049 | } |
1050 | } |
1051 | |
1052 | impl<'d> embassy_usb_driver::EndpointOut for Endpoint<'d, Out> { |
1053 | async fn read(&mut self, buf: &mut [u8]) -> Result<usize, EndpointError> { |
1054 | trace!("read start len={}" , buf.len()); |
1055 | |
1056 | poll_fn(|cx| { |
1057 | let index = self.info.addr.index(); |
1058 | self.state.out_waker.register(cx.waker()); |
1059 | |
1060 | let doepctl = self.regs.doepctl(index).read(); |
1061 | trace!("read ep={:?}: doepctl {:08x}" , self.info.addr, doepctl.0,); |
1062 | if !doepctl.usbaep() { |
1063 | trace!("read ep={:?} error disabled" , self.info.addr); |
1064 | return Poll::Ready(Err(EndpointError::Disabled)); |
1065 | } |
1066 | |
1067 | let len = self.state.out_size.load(Ordering::Relaxed); |
1068 | if len != EP_OUT_BUFFER_EMPTY { |
1069 | trace!("read ep={:?} done len={}" , self.info.addr, len); |
1070 | |
1071 | if len as usize > buf.len() { |
1072 | return Poll::Ready(Err(EndpointError::BufferOverflow)); |
1073 | } |
1074 | |
1075 | // SAFETY: exclusive access ensured by `out_size` atomic variable |
1076 | let data = unsafe { core::slice::from_raw_parts(*self.state.out_buffer.get(), len as usize) }; |
1077 | buf[..len as usize].copy_from_slice(data); |
1078 | |
1079 | // Release buffer |
1080 | self.state.out_size.store(EP_OUT_BUFFER_EMPTY, Ordering::Release); |
1081 | |
1082 | critical_section::with(|_| { |
1083 | // Receive 1 packet |
1084 | self.regs.doeptsiz(index).modify(|w| { |
1085 | w.set_xfrsiz(self.info.max_packet_size as _); |
1086 | w.set_pktcnt(1); |
1087 | }); |
1088 | |
1089 | if self.info.ep_type == EndpointType::Isochronous { |
1090 | // Isochronous endpoints must set the correct even/odd frame bit to |
1091 | // correspond with the next frame's number. |
1092 | let frame_number = self.regs.dsts().read().fnsof(); |
1093 | let frame_is_odd = frame_number & 0x01 == 1; |
1094 | |
1095 | self.regs.doepctl(index).modify(|r| { |
1096 | if frame_is_odd { |
1097 | r.set_sd0pid_sevnfrm(true); |
1098 | } else { |
1099 | r.set_sd1pid_soddfrm(true); |
1100 | } |
1101 | }); |
1102 | } |
1103 | |
1104 | // Clear NAK to indicate we are ready to receive more data |
1105 | self.regs.doepctl(index).modify(|w| { |
1106 | w.set_cnak(true); |
1107 | }); |
1108 | }); |
1109 | |
1110 | Poll::Ready(Ok(len as usize)) |
1111 | } else { |
1112 | Poll::Pending |
1113 | } |
1114 | }) |
1115 | .await |
1116 | } |
1117 | } |
1118 | |
1119 | impl<'d> embassy_usb_driver::EndpointIn for Endpoint<'d, In> { |
1120 | async fn write(&mut self, buf: &[u8]) -> Result<(), EndpointError> { |
1121 | trace!("write ep={:?} data={:?}" , self.info.addr, Bytes(buf)); |
1122 | |
1123 | if buf.len() > self.info.max_packet_size as usize { |
1124 | return Err(EndpointError::BufferOverflow); |
1125 | } |
1126 | |
1127 | let index = self.info.addr.index(); |
1128 | // Wait for previous transfer to complete and check if endpoint is disabled |
1129 | poll_fn(|cx| { |
1130 | self.state.in_waker.register(cx.waker()); |
1131 | |
1132 | let diepctl = self.regs.diepctl(index).read(); |
1133 | let dtxfsts = self.regs.dtxfsts(index).read(); |
1134 | trace!( |
1135 | "write ep={:?}: diepctl {:08x} ftxfsts {:08x}" , |
1136 | self.info.addr, |
1137 | diepctl.0, |
1138 | dtxfsts.0 |
1139 | ); |
1140 | if !diepctl.usbaep() { |
1141 | trace!("write ep={:?} wait for prev: error disabled" , self.info.addr); |
1142 | Poll::Ready(Err(EndpointError::Disabled)) |
1143 | } else if !diepctl.epena() { |
1144 | trace!("write ep={:?} wait for prev: ready" , self.info.addr); |
1145 | Poll::Ready(Ok(())) |
1146 | } else { |
1147 | trace!("write ep={:?} wait for prev: pending" , self.info.addr); |
1148 | Poll::Pending |
1149 | } |
1150 | }) |
1151 | .await?; |
1152 | |
1153 | if buf.len() > 0 { |
1154 | poll_fn(|cx| { |
1155 | self.state.in_waker.register(cx.waker()); |
1156 | |
1157 | let size_words = (buf.len() + 3) / 4; |
1158 | |
1159 | let fifo_space = self.regs.dtxfsts(index).read().ineptfsav() as usize; |
1160 | if size_words > fifo_space { |
1161 | // Not enough space in fifo, enable tx fifo empty interrupt |
1162 | critical_section::with(|_| { |
1163 | self.regs.diepempmsk().modify(|w| { |
1164 | w.set_ineptxfem(w.ineptxfem() | (1 << index)); |
1165 | }); |
1166 | }); |
1167 | |
1168 | trace!("tx fifo for ep={} full, waiting for txfe" , index); |
1169 | |
1170 | Poll::Pending |
1171 | } else { |
1172 | trace!("write ep={:?} wait for fifo: ready" , self.info.addr); |
1173 | Poll::Ready(()) |
1174 | } |
1175 | }) |
1176 | .await |
1177 | } |
1178 | |
1179 | // ERRATA: Transmit data FIFO is corrupted when a write sequence to the FIFO is interrupted with |
1180 | // accesses to certain OTG_FS registers. |
1181 | // |
1182 | // Prevent the interrupt (which might poke FIFOs) from executing while copying data to FIFOs. |
1183 | critical_section::with(|_| { |
1184 | // Setup transfer size |
1185 | self.regs.dieptsiz(index).write(|w| { |
1186 | w.set_mcnt(1); |
1187 | w.set_pktcnt(1); |
1188 | w.set_xfrsiz(buf.len() as _); |
1189 | }); |
1190 | |
1191 | if self.info.ep_type == EndpointType::Isochronous { |
1192 | // Isochronous endpoints must set the correct even/odd frame bit to |
1193 | // correspond with the next frame's number. |
1194 | let frame_number = self.regs.dsts().read().fnsof(); |
1195 | let frame_is_odd = frame_number & 0x01 == 1; |
1196 | |
1197 | self.regs.diepctl(index).modify(|r| { |
1198 | if frame_is_odd { |
1199 | r.set_sd0pid_sevnfrm(true); |
1200 | } else { |
1201 | r.set_sd1pid_soddfrm(true); |
1202 | } |
1203 | }); |
1204 | } |
1205 | |
1206 | // Enable endpoint |
1207 | self.regs.diepctl(index).modify(|w| { |
1208 | w.set_cnak(true); |
1209 | w.set_epena(true); |
1210 | }); |
1211 | |
1212 | // Write data to FIFO |
1213 | for chunk in buf.chunks(4) { |
1214 | let mut tmp = [0u8; 4]; |
1215 | tmp[0..chunk.len()].copy_from_slice(chunk); |
1216 | self.regs.fifo(index).write_value(regs::Fifo(u32::from_ne_bytes(tmp))); |
1217 | } |
1218 | }); |
1219 | |
1220 | trace!("write done ep={:?}" , self.info.addr); |
1221 | |
1222 | Ok(()) |
1223 | } |
1224 | } |
1225 | |
1226 | /// USB control pipe. |
1227 | pub struct ControlPipe<'d> { |
1228 | max_packet_size: u16, |
1229 | regs: Otg, |
1230 | setup_state: &'d ControlPipeSetupState, |
1231 | ep_in: Endpoint<'d, In>, |
1232 | ep_out: Endpoint<'d, Out>, |
1233 | } |
1234 | |
1235 | impl<'d> embassy_usb_driver::ControlPipe for ControlPipe<'d> { |
1236 | fn max_packet_size(&self) -> usize { |
1237 | usize::from(self.max_packet_size) |
1238 | } |
1239 | |
1240 | async fn setup(&mut self) -> [u8; 8] { |
1241 | poll_fn(|cx| { |
1242 | self.ep_out.state.out_waker.register(cx.waker()); |
1243 | |
1244 | if self.setup_state.setup_ready.load(Ordering::Relaxed) { |
1245 | let mut data = [0; 8]; |
1246 | data[0..4].copy_from_slice(&self.setup_state.setup_data[0].load(Ordering::Relaxed).to_ne_bytes()); |
1247 | data[4..8].copy_from_slice(&self.setup_state.setup_data[1].load(Ordering::Relaxed).to_ne_bytes()); |
1248 | self.setup_state.setup_ready.store(false, Ordering::Release); |
1249 | |
1250 | // EP0 should not be controlled by `Bus` so this RMW does not need a critical section |
1251 | self.regs.doeptsiz(self.ep_out.info.addr.index()).modify(|w| { |
1252 | w.set_rxdpid_stupcnt(3); |
1253 | }); |
1254 | |
1255 | // Clear NAK to indicate we are ready to receive more data |
1256 | self.regs |
1257 | .doepctl(self.ep_out.info.addr.index()) |
1258 | .modify(|w| w.set_cnak(true)); |
1259 | |
1260 | trace!("SETUP received: {:?}" , Bytes(&data)); |
1261 | Poll::Ready(data) |
1262 | } else { |
1263 | trace!("SETUP waiting" ); |
1264 | Poll::Pending |
1265 | } |
1266 | }) |
1267 | .await |
1268 | } |
1269 | |
1270 | async fn data_out(&mut self, buf: &mut [u8], _first: bool, _last: bool) -> Result<usize, EndpointError> { |
1271 | trace!("control: data_out" ); |
1272 | let len = self.ep_out.read(buf).await?; |
1273 | trace!("control: data_out read: {:?}" , Bytes(&buf[..len])); |
1274 | Ok(len) |
1275 | } |
1276 | |
1277 | async fn data_in(&mut self, data: &[u8], _first: bool, last: bool) -> Result<(), EndpointError> { |
1278 | trace!("control: data_in write: {:?}" , Bytes(data)); |
1279 | self.ep_in.write(data).await?; |
1280 | |
1281 | // wait for status response from host after sending the last packet |
1282 | if last { |
1283 | trace!("control: data_in waiting for status" ); |
1284 | self.ep_out.read(&mut []).await?; |
1285 | trace!("control: complete" ); |
1286 | } |
1287 | |
1288 | Ok(()) |
1289 | } |
1290 | |
1291 | async fn accept(&mut self) { |
1292 | trace!("control: accept" ); |
1293 | |
1294 | self.ep_in.write(&[]).await.ok(); |
1295 | |
1296 | trace!("control: accept OK" ); |
1297 | } |
1298 | |
1299 | async fn reject(&mut self) { |
1300 | trace!("control: reject" ); |
1301 | |
1302 | // EP0 should not be controlled by `Bus` so this RMW does not need a critical section |
1303 | self.regs.diepctl(self.ep_in.info.addr.index()).modify(|w| { |
1304 | w.set_stall(true); |
1305 | }); |
1306 | self.regs.doepctl(self.ep_out.info.addr.index()).modify(|w| { |
1307 | w.set_stall(true); |
1308 | }); |
1309 | } |
1310 | |
1311 | async fn accept_set_address(&mut self, addr: u8) { |
1312 | trace!("setting addr: {}" , addr); |
1313 | critical_section::with(|_| { |
1314 | self.regs.dcfg().modify(|w| { |
1315 | w.set_dad(addr); |
1316 | }); |
1317 | }); |
1318 | |
1319 | // synopsys driver requires accept to be sent after changing address |
1320 | self.accept().await |
1321 | } |
1322 | } |
1323 | |
1324 | /// Translates HAL [EndpointType] into PAC [vals::Eptyp] |
1325 | fn to_eptyp(ep_type: EndpointType) -> vals::Eptyp { |
1326 | match ep_type { |
1327 | EndpointType::Control => vals::Eptyp::CONTROL, |
1328 | EndpointType::Isochronous => vals::Eptyp::ISOCHRONOUS, |
1329 | EndpointType::Bulk => vals::Eptyp::BULK, |
1330 | EndpointType::Interrupt => vals::Eptyp::INTERRUPT, |
1331 | } |
1332 | } |
1333 | |
1334 | /// Calculates total allocated FIFO size in words |
1335 | fn ep_fifo_size(eps: &[Option<EndpointData>]) -> u16 { |
1336 | eps.iter().map(|ep: &Option| ep.map(|ep| ep.fifo_size_words).unwrap_or(default:0)).sum() |
1337 | } |
1338 | |
1339 | /// Generates IRQ mask for enabled endpoints |
1340 | fn ep_irq_mask(eps: &[Option<EndpointData>]) -> u16 { |
1341 | eps.iter().enumerate().fold( |
1342 | init:0, |
1343 | |mask: u16, (index: usize, ep: &Option)| { |
1344 | if ep.is_some() { |
1345 | mask | (1 << index) |
1346 | } else { |
1347 | mask |
1348 | } |
1349 | }, |
1350 | ) |
1351 | } |
1352 | |
1353 | /// Calculates MPSIZ value for EP0, which uses special values. |
1354 | fn ep0_mpsiz(max_packet_size: u16) -> u16 { |
1355 | match max_packet_size { |
1356 | 8 => 0b11, |
1357 | 16 => 0b10, |
1358 | 32 => 0b01, |
1359 | 64 => 0b00, |
1360 | other: u16 => panic!("Unsupported EP0 size: {}" , other), |
1361 | } |
1362 | } |
1363 | |
1364 | /// Hardware-dependent USB IP configuration. |
1365 | pub struct OtgInstance<'d, const MAX_EP_COUNT: usize> { |
1366 | /// The USB peripheral. |
1367 | pub regs: Otg, |
1368 | /// The USB state. |
1369 | pub state: &'d State<MAX_EP_COUNT>, |
1370 | /// FIFO depth in words. |
1371 | pub fifo_depth_words: u16, |
1372 | /// Number of used endpoints. |
1373 | pub endpoint_count: usize, |
1374 | /// The PHY type. |
1375 | pub phy_type: PhyType, |
1376 | /// Extra RX FIFO words needed by some implementations. |
1377 | pub extra_rx_fifo_words: u16, |
1378 | /// Function to calculate TRDT value based on some internal clock speed. |
1379 | pub calculate_trdt_fn: fn(speed: vals::Dspd) -> u8, |
1380 | } |
1381 | |