1 | //! # Enum Flags |
2 | //! `enumflags2` implements the classic bitflags datastructure. Annotate an enum |
3 | //! with `#[bitflags]`, and `BitFlags<YourEnum>` will be able to hold arbitrary combinations |
4 | //! of your enum within the space of a single integer. |
5 | //! |
6 | //! ## Example |
7 | //! ``` |
8 | //! use enumflags2::{bitflags, make_bitflags, BitFlags}; |
9 | //! |
10 | //! #[bitflags] |
11 | //! #[repr(u8)] |
12 | //! #[derive(Copy, Clone, Debug, PartialEq)] |
13 | //! enum Test { |
14 | //! A = 0b0001, |
15 | //! B = 0b0010, |
16 | //! C, // unspecified variants pick unused bits automatically |
17 | //! D = 0b1000, |
18 | //! } |
19 | //! |
20 | //! // Flags can be combined with |, this creates a BitFlags of your type: |
21 | //! let a_b: BitFlags<Test> = Test::A | Test::B; |
22 | //! let a_c = Test::A | Test::C; |
23 | //! let b_c_d = make_bitflags!(Test::{B | C | D}); |
24 | //! |
25 | //! // The debug output lets you inspect both the numeric value and |
26 | //! // the actual flags: |
27 | //! assert_eq!(format!("{:?}" , a_b), "BitFlags<Test>(0b11, A | B)" ); |
28 | //! |
29 | //! // But if you'd rather see only one of those, that's available too: |
30 | //! assert_eq!(format!("{}" , a_b), "A | B" ); |
31 | //! assert_eq!(format!("{:04b}" , a_b), "0011" ); |
32 | //! |
33 | //! // Iterate over the flags like a normal set |
34 | //! assert_eq!(a_b.iter().collect::<Vec<_>>(), &[Test::A, Test::B]); |
35 | //! |
36 | //! // Query the contents with contains and intersects |
37 | //! assert!(a_b.contains(Test::A)); |
38 | //! assert!(b_c_d.contains(Test::B | Test::C)); |
39 | //! assert!(!(b_c_d.contains(a_b))); |
40 | //! |
41 | //! assert!(a_b.intersects(a_c)); |
42 | //! assert!(!(a_b.intersects(Test::C | Test::D))); |
43 | //! ``` |
44 | //! |
45 | //! ## Optional Feature Flags |
46 | //! |
47 | //! - [`serde`](https://serde.rs/) implements `Serialize` and `Deserialize` |
48 | //! for `BitFlags<T>`. |
49 | //! - `std` implements `std::error::Error` for `FromBitsError`. |
50 | //! |
51 | //! ## `const fn`-compatible APIs |
52 | //! |
53 | //! **Background:** The subset of `const fn` features currently stabilized is pretty limited. |
54 | //! Most notably, [const traits are still at the RFC stage][const-trait-rfc], |
55 | //! which makes it impossible to use any overloaded operators in a const |
56 | //! context. |
57 | //! |
58 | //! **Naming convention:** If a separate, more limited function is provided |
59 | //! for usage in a `const fn`, the name is suffixed with `_c`. |
60 | //! |
61 | //! **Blanket implementations:** If you attempt to write a `const fn` ranging |
62 | //! over `T: BitFlag`, you will be met with an error explaining that currently, |
63 | //! the only allowed trait bound for a `const fn` is `?Sized`. You will probably |
64 | //! want to write a separate implementation for `BitFlags<T, u8>`, |
65 | //! `BitFlags<T, u16>`, etc — best accomplished by a simple macro. |
66 | //! |
67 | //! **Documentation considerations:** The strategy described above is often used |
68 | //! by `enumflags2` itself. To avoid clutter in the auto-generated documentation, |
69 | //! the implementations for widths other than `u8` are marked with `#[doc(hidden)]`. |
70 | //! |
71 | //! ## Customizing `Default` |
72 | //! |
73 | //! By default, creating an instance of `BitFlags<T>` with `Default` will result in an empty |
74 | //! set. If that's undesirable, you may customize this: |
75 | //! |
76 | //! ``` |
77 | //! # use enumflags2::{BitFlags, bitflags}; |
78 | //! #[bitflags(default = B | C)] |
79 | //! #[repr(u8)] |
80 | //! #[derive(Copy, Clone, Debug, PartialEq)] |
81 | //! enum Test { |
82 | //! A = 0b0001, |
83 | //! B = 0b0010, |
84 | //! C = 0b0100, |
85 | //! D = 0b1000, |
86 | //! } |
87 | //! |
88 | //! assert_eq!(BitFlags::default(), Test::B | Test::C); |
89 | //! ``` |
90 | //! |
91 | //! [const-trait-rfc]: https://github.com/rust-lang/rfcs/pull/2632 |
92 | #![warn (missing_docs)] |
93 | #![cfg_attr (all(not(test), not(feature = "std" )), no_std)] |
94 | |
95 | use core::hash::{Hash, Hasher}; |
96 | use core::marker::PhantomData; |
97 | use core::{cmp, ops}; |
98 | |
99 | #[allow (unused_imports)] |
100 | #[macro_use ] |
101 | extern crate enumflags2_derive; |
102 | |
103 | #[doc (hidden)] |
104 | pub use enumflags2_derive::bitflags_internal as bitflags; |
105 | |
106 | // Internal macro: expand into a separate copy for each supported numeric type. |
107 | macro_rules! for_each_uint { |
108 | ( $d:tt $tyvar:ident $dd:tt $docattr:ident => $($input:tt)* ) => { |
109 | macro_rules! implement { |
110 | ( $d $tyvar:ty => $d($d $docattr:meta)? ) => { |
111 | $($input)* |
112 | } |
113 | } |
114 | |
115 | implement! { u8 => } |
116 | implement! { u16 => doc(hidden) } |
117 | implement! { u32 => doc(hidden) } |
118 | implement! { u64 => doc(hidden) } |
119 | implement! { u128 => doc(hidden) } |
120 | } |
121 | } |
122 | |
123 | /// A trait automatically implemented by `#[bitflags]` to make the enum |
124 | /// a valid type parameter for `BitFlags<T>`. |
125 | pub trait BitFlag: Copy + Clone + 'static + _internal::RawBitFlags { |
126 | /// Create a `BitFlags` with no flags set (in other words, with a value of 0). |
127 | /// |
128 | /// This is a convenience reexport of [`BitFlags::empty`]. It can be called with |
129 | /// `MyFlag::empty()`, thus bypassing the need for type hints in some situations. |
130 | /// |
131 | /// ``` |
132 | /// # use enumflags2::{bitflags, BitFlags}; |
133 | /// #[bitflags] |
134 | /// #[repr(u8)] |
135 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
136 | /// enum MyFlag { |
137 | /// One = 1 << 0, |
138 | /// Two = 1 << 1, |
139 | /// Three = 1 << 2, |
140 | /// } |
141 | /// |
142 | /// use enumflags2::BitFlag; |
143 | /// |
144 | /// let empty = MyFlag::empty(); |
145 | /// assert!(empty.is_empty()); |
146 | /// assert_eq!(empty.contains(MyFlag::One), false); |
147 | /// assert_eq!(empty.contains(MyFlag::Two), false); |
148 | /// assert_eq!(empty.contains(MyFlag::Three), false); |
149 | /// ``` |
150 | #[inline ] |
151 | fn empty() -> BitFlags<Self> { |
152 | BitFlags::empty() |
153 | } |
154 | |
155 | /// Create a `BitFlags` with all flags set. |
156 | /// |
157 | /// This is a convenience reexport of [`BitFlags::all`]. It can be called with |
158 | /// `MyFlag::all()`, thus bypassing the need for type hints in some situations. |
159 | /// |
160 | /// ``` |
161 | /// # use enumflags2::{bitflags, BitFlags}; |
162 | /// #[bitflags] |
163 | /// #[repr(u8)] |
164 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
165 | /// enum MyFlag { |
166 | /// One = 1 << 0, |
167 | /// Two = 1 << 1, |
168 | /// Three = 1 << 2, |
169 | /// } |
170 | /// |
171 | /// use enumflags2::BitFlag; |
172 | /// |
173 | /// let all = MyFlag::all(); |
174 | /// assert!(all.is_all()); |
175 | /// assert_eq!(all.contains(MyFlag::One), true); |
176 | /// assert_eq!(all.contains(MyFlag::Two), true); |
177 | /// assert_eq!(all.contains(MyFlag::Three), true); |
178 | /// ``` |
179 | #[inline ] |
180 | fn all() -> BitFlags<Self> { |
181 | BitFlags::all() |
182 | } |
183 | |
184 | /// Create a `BitFlags` if the raw value provided does not contain |
185 | /// any illegal flags. |
186 | /// |
187 | /// This is a convenience reexport of [`BitFlags::from_bits`]. It can be called |
188 | /// with `MyFlag::from_bits(bits)`, thus bypassing the need for type hints in |
189 | /// some situations. |
190 | /// |
191 | /// ``` |
192 | /// # use enumflags2::{bitflags, BitFlags}; |
193 | /// #[bitflags] |
194 | /// #[repr(u8)] |
195 | /// #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
196 | /// enum MyFlag { |
197 | /// One = 1 << 0, |
198 | /// Two = 1 << 1, |
199 | /// Three = 1 << 2, |
200 | /// } |
201 | /// |
202 | /// use enumflags2::BitFlag; |
203 | /// |
204 | /// let flags = MyFlag::from_bits(0b11).unwrap(); |
205 | /// assert_eq!(flags.contains(MyFlag::One), true); |
206 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
207 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
208 | /// let invalid = MyFlag::from_bits(1 << 3); |
209 | /// assert!(invalid.is_err()); |
210 | /// ``` |
211 | #[inline ] |
212 | fn from_bits(bits: Self::Numeric) -> Result<BitFlags<Self>, FromBitsError<Self>> { |
213 | BitFlags::from_bits(bits) |
214 | } |
215 | |
216 | /// Create a `BitFlags` from an underlying bitwise value. If any |
217 | /// invalid bits are set, ignore them. |
218 | /// |
219 | /// This is a convenience reexport of [`BitFlags::from_bits_truncate`]. It can be |
220 | /// called with `MyFlag::from_bits_truncate(bits)`, thus bypassing the need for |
221 | /// type hints in some situations. |
222 | /// |
223 | /// ``` |
224 | /// # use enumflags2::{bitflags, BitFlags}; |
225 | /// #[bitflags] |
226 | /// #[repr(u8)] |
227 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
228 | /// enum MyFlag { |
229 | /// One = 1 << 0, |
230 | /// Two = 1 << 1, |
231 | /// Three = 1 << 2, |
232 | /// } |
233 | /// |
234 | /// use enumflags2::BitFlag; |
235 | /// |
236 | /// let flags = MyFlag::from_bits_truncate(0b1_1011); |
237 | /// assert_eq!(flags.contains(MyFlag::One), true); |
238 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
239 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
240 | /// ``` |
241 | #[inline ] |
242 | fn from_bits_truncate(bits: Self::Numeric) -> BitFlags<Self> { |
243 | BitFlags::from_bits_truncate(bits) |
244 | } |
245 | |
246 | /// Create a `BitFlags` unsafely, without checking if the bits form |
247 | /// a valid bit pattern for the type. |
248 | /// |
249 | /// Consider using [`from_bits`][BitFlag::from_bits] |
250 | /// or [`from_bits_truncate`][BitFlag::from_bits_truncate] instead. |
251 | /// |
252 | /// # Safety |
253 | /// |
254 | /// All bits set in `val` must correspond to a value of the enum. |
255 | /// |
256 | /// # Example |
257 | /// |
258 | /// This is a convenience reexport of [`BitFlags::from_bits_unchecked`]. It can be |
259 | /// called with `MyFlag::from_bits_unchecked(bits)`, thus bypassing the need for |
260 | /// type hints in some situations. |
261 | /// |
262 | /// ``` |
263 | /// # use enumflags2::{bitflags, BitFlags}; |
264 | /// #[bitflags] |
265 | /// #[repr(u8)] |
266 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
267 | /// enum MyFlag { |
268 | /// One = 1 << 0, |
269 | /// Two = 1 << 1, |
270 | /// Three = 1 << 2, |
271 | /// } |
272 | /// |
273 | /// use enumflags2::BitFlag; |
274 | /// |
275 | /// let flags = unsafe { |
276 | /// MyFlag::from_bits_unchecked(0b011) |
277 | /// }; |
278 | /// |
279 | /// assert_eq!(flags.contains(MyFlag::One), true); |
280 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
281 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
282 | /// ``` |
283 | #[inline ] |
284 | unsafe fn from_bits_unchecked(bits: Self::Numeric) -> BitFlags<Self> { |
285 | BitFlags::from_bits_unchecked(bits) |
286 | } |
287 | } |
288 | |
289 | /// While the module is public, this is only the case because it needs to be |
290 | /// accessed by the macro. Do not use this directly. Stability guarantees |
291 | /// don't apply. |
292 | #[doc (hidden)] |
293 | pub mod _internal { |
294 | /// A trait automatically implemented by `#[bitflags]` to make the enum |
295 | /// a valid type parameter for `BitFlags<T>`. |
296 | /// |
297 | /// # Safety |
298 | /// |
299 | /// The values should reflect reality, like they do if the implementation |
300 | /// is generated by the procmacro. |
301 | pub unsafe trait RawBitFlags: Copy + Clone + 'static { |
302 | /// The underlying integer type. |
303 | type Numeric: BitFlagNum; |
304 | |
305 | /// A value with no bits set. |
306 | const EMPTY: Self::Numeric; |
307 | |
308 | /// The value used by the Default implementation. Equivalent to EMPTY, unless |
309 | /// customized. |
310 | const DEFAULT: Self::Numeric; |
311 | |
312 | /// A value with all flag bits set. |
313 | const ALL_BITS: Self::Numeric; |
314 | |
315 | /// The name of the type for debug formatting purposes. |
316 | /// |
317 | /// This is typically `BitFlags<EnumName>` |
318 | const BITFLAGS_TYPE_NAME: &'static str; |
319 | |
320 | /// Return the bits as a number type. |
321 | fn bits(self) -> Self::Numeric; |
322 | } |
323 | |
324 | use ::core::cmp::PartialOrd; |
325 | use ::core::fmt; |
326 | use ::core::ops::{BitAnd, BitOr, BitXor, Not, Sub}; |
327 | use ::core::hash::Hash; |
328 | |
329 | pub trait BitFlagNum: |
330 | Default |
331 | + BitOr<Self, Output = Self> |
332 | + BitAnd<Self, Output = Self> |
333 | + BitXor<Self, Output = Self> |
334 | + Sub<Self, Output = Self> |
335 | + Not<Output = Self> |
336 | + PartialOrd<Self> |
337 | + Ord |
338 | + Hash |
339 | + fmt::Debug |
340 | + fmt::Binary |
341 | + Copy |
342 | + Clone |
343 | { |
344 | const ONE: Self; |
345 | |
346 | fn is_power_of_two(self) -> bool; |
347 | fn count_ones(self) -> u32; |
348 | fn wrapping_neg(self) -> Self; |
349 | } |
350 | |
351 | for_each_uint! { $ty $hide_docs => |
352 | impl BitFlagNum for $ty { |
353 | const ONE: Self = 1; |
354 | |
355 | fn is_power_of_two(self) -> bool { |
356 | <$ty>::is_power_of_two(self) |
357 | } |
358 | |
359 | fn count_ones(self) -> u32 { |
360 | <$ty>::count_ones(self) |
361 | } |
362 | |
363 | fn wrapping_neg(self) -> Self { |
364 | <$ty>::wrapping_neg(self) |
365 | } |
366 | } |
367 | } |
368 | |
369 | // Re-export libcore so the macro doesn't inject "extern crate" downstream. |
370 | pub mod core { |
371 | pub use core::{convert, ops, option}; |
372 | } |
373 | |
374 | pub struct AssertionSucceeded; |
375 | pub struct AssertionFailed; |
376 | pub trait ExactlyOneBitSet { |
377 | type X; |
378 | } |
379 | impl ExactlyOneBitSet for AssertionSucceeded { |
380 | type X = (); |
381 | } |
382 | |
383 | pub trait AssertionHelper { |
384 | type Status; |
385 | } |
386 | |
387 | impl AssertionHelper for [(); 1] { |
388 | type Status = AssertionSucceeded; |
389 | } |
390 | |
391 | impl AssertionHelper for [(); 0] { |
392 | type Status = AssertionFailed; |
393 | } |
394 | |
395 | pub const fn next_bit(x: u128) -> u128 { |
396 | 1 << x.trailing_ones() |
397 | } |
398 | } |
399 | |
400 | use _internal::BitFlagNum; |
401 | |
402 | // Internal debug formatting implementations |
403 | mod formatting; |
404 | |
405 | // impl TryFrom<T::Numeric> for BitFlags<T> |
406 | mod fallible; |
407 | pub use crate::fallible::FromBitsError; |
408 | |
409 | mod iter; |
410 | pub use crate::iter::Iter; |
411 | |
412 | mod const_api; |
413 | pub use crate::const_api::ConstToken; |
414 | |
415 | /// Represents a set of flags of some type `T`. |
416 | /// `T` must have the `#[bitflags]` attribute applied. |
417 | /// |
418 | /// A `BitFlags<T>` is as large as the `T` itself, |
419 | /// and stores one flag per bit. |
420 | /// |
421 | /// ## Comparison operators, [`PartialOrd`] and [`Ord`] |
422 | /// |
423 | /// To make it possible to use `BitFlags` as the key of a |
424 | /// [`BTreeMap`][std::collections::BTreeMap], `BitFlags` implements |
425 | /// [`Ord`]. There is no meaningful total order for bitflags, |
426 | /// so the implementation simply compares the integer values of the bits. |
427 | /// |
428 | /// Unfortunately, this means that comparing `BitFlags` with an operator |
429 | /// like `<=` will compile, and return values that are probably useless |
430 | /// and not what you expect. In particular, `<=` does *not* check whether |
431 | /// one value is a subset of the other. Use [`BitFlags::contains`] for that. |
432 | /// |
433 | /// ## Customizing `Default` |
434 | /// |
435 | /// By default, creating an instance of `BitFlags<T>` with `Default` will result |
436 | /// in an empty set. If that's undesirable, you may customize this: |
437 | /// |
438 | /// ``` |
439 | /// # use enumflags2::{BitFlags, bitflags}; |
440 | /// #[bitflags(default = B | C)] |
441 | /// #[repr(u8)] |
442 | /// #[derive(Copy, Clone, Debug, PartialEq)] |
443 | /// enum MyFlag { |
444 | /// A = 0b0001, |
445 | /// B = 0b0010, |
446 | /// C = 0b0100, |
447 | /// D = 0b1000, |
448 | /// } |
449 | /// |
450 | /// assert_eq!(BitFlags::default(), MyFlag::B | MyFlag::C); |
451 | /// ``` |
452 | /// |
453 | /// ## Memory layout |
454 | /// |
455 | /// `BitFlags<T>` is marked with the `#[repr(transparent)]` trait, meaning |
456 | /// it can be safely transmuted into the corresponding numeric type. |
457 | /// |
458 | /// Usually, the same can be achieved by using [`BitFlags::bits`] in one |
459 | /// direction, and [`BitFlags::from_bits`], [`BitFlags::from_bits_truncate`], |
460 | /// or [`BitFlags::from_bits_unchecked`] in the other direction. However, |
461 | /// transmuting might still be useful if, for example, you're dealing with |
462 | /// an entire array of `BitFlags`. |
463 | /// |
464 | /// When transmuting *into* a `BitFlags`, make sure that each set bit |
465 | /// corresponds to an existing flag |
466 | /// (cf. [`from_bits_unchecked`][BitFlags::from_bits_unchecked]). |
467 | /// |
468 | /// For example: |
469 | /// |
470 | /// ``` |
471 | /// # use enumflags2::{BitFlags, bitflags}; |
472 | /// #[bitflags] |
473 | /// #[repr(u8)] // <-- the repr determines the numeric type |
474 | /// #[derive(Copy, Clone)] |
475 | /// enum TransmuteMe { |
476 | /// One = 1 << 0, |
477 | /// Two = 1 << 1, |
478 | /// } |
479 | /// |
480 | /// # use std::slice; |
481 | /// // NOTE: we use a small, self-contained function to handle the slice |
482 | /// // conversion to make sure the lifetimes are right. |
483 | /// fn transmute_slice<'a>(input: &'a [BitFlags<TransmuteMe>]) -> &'a [u8] { |
484 | /// unsafe { |
485 | /// slice::from_raw_parts(input.as_ptr() as *const u8, input.len()) |
486 | /// } |
487 | /// } |
488 | /// |
489 | /// let many_flags = &[ |
490 | /// TransmuteMe::One.into(), |
491 | /// TransmuteMe::One | TransmuteMe::Two, |
492 | /// ]; |
493 | /// |
494 | /// let as_nums = transmute_slice(many_flags); |
495 | /// assert_eq!(as_nums, &[0b01, 0b11]); |
496 | /// ``` |
497 | /// |
498 | /// ## Implementation notes |
499 | /// |
500 | /// You might expect this struct to be defined as |
501 | /// |
502 | /// ```ignore |
503 | /// struct BitFlags<T: BitFlag> { |
504 | /// value: T::Numeric |
505 | /// } |
506 | /// ``` |
507 | /// |
508 | /// Ideally, that would be the case. However, because `const fn`s cannot |
509 | /// have trait bounds in current Rust, this would prevent us from providing |
510 | /// most `const fn` APIs. As a workaround, we define `BitFlags` with two |
511 | /// type parameters, with a default for the second one: |
512 | /// |
513 | /// ```ignore |
514 | /// struct BitFlags<T, N = <T as BitFlag>::Numeric> { |
515 | /// value: N, |
516 | /// marker: PhantomData<T>, |
517 | /// } |
518 | /// ``` |
519 | /// |
520 | /// Manually providing a type for the `N` type parameter shouldn't ever |
521 | /// be necessary. |
522 | /// |
523 | /// The types substituted for `T` and `N` must always match, creating a |
524 | /// `BitFlags` value where that isn't the case is only possible with |
525 | /// incorrect unsafe code. |
526 | #[derive (Copy, Clone)] |
527 | #[repr (transparent)] |
528 | pub struct BitFlags<T, N = <T as _internal::RawBitFlags>::Numeric> { |
529 | val: N, |
530 | marker: PhantomData<T>, |
531 | } |
532 | |
533 | /// `make_bitflags!` provides a succint syntax for creating instances of |
534 | /// `BitFlags<T>`. Instead of repeating the name of your type for each flag |
535 | /// you want to add, try `make_bitflags!(Flags::{Foo | Bar})`. |
536 | /// ``` |
537 | /// use enumflags2::{bitflags, make_bitflags}; |
538 | /// #[bitflags] |
539 | /// #[repr(u8)] |
540 | /// #[derive(Clone, Copy, Debug)] |
541 | /// enum Test { |
542 | /// A = 1 << 0, |
543 | /// B = 1 << 1, |
544 | /// C = 1 << 2, |
545 | /// } |
546 | /// let x = make_bitflags!(Test::{A | C}); |
547 | /// assert_eq!(x, Test::A | Test::C); |
548 | /// ``` |
549 | #[macro_export ] |
550 | macro_rules! make_bitflags { |
551 | ( $enum:ident ::{ $($variant:ident)|* } ) => { |
552 | { |
553 | let mut n = 0; |
554 | $( |
555 | { |
556 | let flag: $enum = $enum::$variant; |
557 | n |= flag as <$enum as $crate::_internal::RawBitFlags>::Numeric; |
558 | } |
559 | )* |
560 | // SAFETY: The value has been created from numeric values of the underlying |
561 | // enum, so only valid bits are set. |
562 | unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c( |
563 | n, $crate::BitFlags::CONST_TOKEN) } |
564 | } |
565 | } |
566 | } |
567 | |
568 | /// The default value returned is one with all flags unset, i. e. [`empty`][Self::empty], |
569 | /// unless [customized](index.html#customizing-default). |
570 | impl<T> Default for BitFlags<T> |
571 | where |
572 | T: BitFlag, |
573 | { |
574 | #[inline (always)] |
575 | fn default() -> Self { |
576 | BitFlags { |
577 | val: T::DEFAULT, |
578 | marker: PhantomData, |
579 | } |
580 | } |
581 | } |
582 | |
583 | impl<T: BitFlag> From<T> for BitFlags<T> { |
584 | #[inline (always)] |
585 | fn from(t: T) -> BitFlags<T> { |
586 | Self::from_flag(t) |
587 | } |
588 | } |
589 | |
590 | impl<T> BitFlags<T> |
591 | where |
592 | T: BitFlag, |
593 | { |
594 | /// Create a `BitFlags` if the raw value provided does not contain |
595 | /// any illegal flags. |
596 | /// |
597 | /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits], |
598 | /// which can help avoid the need for type hints. |
599 | /// |
600 | /// ``` |
601 | /// # use enumflags2::{bitflags, BitFlags}; |
602 | /// #[bitflags] |
603 | /// #[repr(u8)] |
604 | /// #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
605 | /// enum MyFlag { |
606 | /// One = 1 << 0, |
607 | /// Two = 1 << 1, |
608 | /// Three = 1 << 2, |
609 | /// } |
610 | /// |
611 | /// let flags: BitFlags<MyFlag> = BitFlags::from_bits(0b11).unwrap(); |
612 | /// assert_eq!(flags.contains(MyFlag::One), true); |
613 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
614 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
615 | /// let invalid = BitFlags::<MyFlag>::from_bits(1 << 3); |
616 | /// assert!(invalid.is_err()); |
617 | /// ``` |
618 | #[inline ] |
619 | pub fn from_bits(bits: T::Numeric) -> Result<Self, FromBitsError<T>> { |
620 | let flags = Self::from_bits_truncate(bits); |
621 | if flags.bits() == bits { |
622 | Ok(flags) |
623 | } else { |
624 | Err(FromBitsError { |
625 | flags, |
626 | invalid: bits & !flags.bits(), |
627 | }) |
628 | } |
629 | } |
630 | |
631 | /// Create a `BitFlags` from an underlying bitwise value. If any |
632 | /// invalid bits are set, ignore them. |
633 | /// |
634 | /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits_truncate], |
635 | /// which can help avoid the need for type hints. |
636 | /// |
637 | /// ``` |
638 | /// # use enumflags2::{bitflags, BitFlags}; |
639 | /// #[bitflags] |
640 | /// #[repr(u8)] |
641 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
642 | /// enum MyFlag { |
643 | /// One = 1 << 0, |
644 | /// Two = 1 << 1, |
645 | /// Three = 1 << 2, |
646 | /// } |
647 | /// |
648 | /// let flags: BitFlags<MyFlag> = BitFlags::from_bits_truncate(0b1_1011); |
649 | /// assert_eq!(flags.contains(MyFlag::One), true); |
650 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
651 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
652 | /// ``` |
653 | #[must_use ] |
654 | #[inline (always)] |
655 | pub fn from_bits_truncate(bits: T::Numeric) -> Self { |
656 | // SAFETY: We're truncating out all the invalid bits, so the remaining |
657 | // ones must be valid. |
658 | unsafe { BitFlags::from_bits_unchecked(bits & T::ALL_BITS) } |
659 | } |
660 | |
661 | /// Create a new BitFlags unsafely, without checking if the bits form |
662 | /// a valid bit pattern for the type. |
663 | /// |
664 | /// Consider using [`from_bits`][BitFlags::from_bits] |
665 | /// or [`from_bits_truncate`][BitFlags::from_bits_truncate] instead. |
666 | /// |
667 | /// # Safety |
668 | /// |
669 | /// All bits set in `val` must correspond to a value of the enum. |
670 | /// |
671 | /// # Example |
672 | /// |
673 | /// ``` |
674 | /// # use enumflags2::{bitflags, BitFlags}; |
675 | /// #[bitflags] |
676 | /// #[repr(u8)] |
677 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
678 | /// enum MyFlag { |
679 | /// One = 1 << 0, |
680 | /// Two = 1 << 1, |
681 | /// Three = 1 << 2, |
682 | /// } |
683 | /// |
684 | /// let flags: BitFlags<MyFlag> = unsafe { |
685 | /// BitFlags::from_bits_unchecked(0b011) |
686 | /// }; |
687 | /// |
688 | /// assert_eq!(flags.contains(MyFlag::One), true); |
689 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
690 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
691 | /// ``` |
692 | #[must_use ] |
693 | #[inline (always)] |
694 | pub unsafe fn from_bits_unchecked(val: T::Numeric) -> Self { |
695 | BitFlags { |
696 | val, |
697 | marker: PhantomData, |
698 | } |
699 | } |
700 | |
701 | /// Turn a `T` into a `BitFlags<T>`. Also available as `flag.into()`. |
702 | #[must_use ] |
703 | #[inline (always)] |
704 | pub fn from_flag(flag: T) -> Self { |
705 | // SAFETY: A value of the underlying enum is valid by definition. |
706 | unsafe { Self::from_bits_unchecked(flag.bits()) } |
707 | } |
708 | |
709 | /// Create a `BitFlags` with no flags set (in other words, with a value of `0`). |
710 | /// |
711 | /// See also: [`BitFlag::empty`], a convenience reexport; |
712 | /// [`BitFlags::EMPTY`], the same functionality available |
713 | /// as a constant for `const fn` code. |
714 | /// |
715 | /// ``` |
716 | /// # use enumflags2::{bitflags, BitFlags}; |
717 | /// #[bitflags] |
718 | /// #[repr(u8)] |
719 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
720 | /// enum MyFlag { |
721 | /// One = 1 << 0, |
722 | /// Two = 1 << 1, |
723 | /// Three = 1 << 2, |
724 | /// } |
725 | /// |
726 | /// let empty: BitFlags<MyFlag> = BitFlags::empty(); |
727 | /// assert!(empty.is_empty()); |
728 | /// assert_eq!(empty.contains(MyFlag::One), false); |
729 | /// assert_eq!(empty.contains(MyFlag::Two), false); |
730 | /// assert_eq!(empty.contains(MyFlag::Three), false); |
731 | /// ``` |
732 | #[inline (always)] |
733 | pub fn empty() -> Self { |
734 | Self::EMPTY |
735 | } |
736 | |
737 | /// Create a `BitFlags` with all flags set. |
738 | /// |
739 | /// See also: [`BitFlag::all`], a convenience reexport; |
740 | /// [`BitFlags::ALL`], the same functionality available |
741 | /// as a constant for `const fn` code. |
742 | /// |
743 | /// ``` |
744 | /// # use enumflags2::{bitflags, BitFlags}; |
745 | /// #[bitflags] |
746 | /// #[repr(u8)] |
747 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
748 | /// enum MyFlag { |
749 | /// One = 1 << 0, |
750 | /// Two = 1 << 1, |
751 | /// Three = 1 << 2, |
752 | /// } |
753 | /// |
754 | /// let empty: BitFlags<MyFlag> = BitFlags::all(); |
755 | /// assert!(empty.is_all()); |
756 | /// assert_eq!(empty.contains(MyFlag::One), true); |
757 | /// assert_eq!(empty.contains(MyFlag::Two), true); |
758 | /// assert_eq!(empty.contains(MyFlag::Three), true); |
759 | /// ``` |
760 | #[inline (always)] |
761 | pub fn all() -> Self { |
762 | Self::ALL |
763 | } |
764 | |
765 | /// Returns true if all flags are set |
766 | #[inline (always)] |
767 | pub fn is_all(self) -> bool { |
768 | self.val == T::ALL_BITS |
769 | } |
770 | |
771 | /// Returns true if no flag is set |
772 | #[inline (always)] |
773 | pub fn is_empty(self) -> bool { |
774 | self.val == T::EMPTY |
775 | } |
776 | |
777 | /// Returns the number of flags set. |
778 | #[inline (always)] |
779 | pub fn len(self) -> usize { |
780 | self.val.count_ones() as usize |
781 | } |
782 | |
783 | /// If exactly one flag is set, the flag is returned. Otherwise, returns `None`. |
784 | /// |
785 | /// See also [`Itertools::exactly_one`](https://docs.rs/itertools/latest/itertools/trait.Itertools.html#method.exactly_one). |
786 | #[inline (always)] |
787 | pub fn exactly_one(self) -> Option<T> { |
788 | if self.val.is_power_of_two() { |
789 | // SAFETY: By the invariant of the BitFlags type, all bits are valid |
790 | // in isolation for the underlying enum. |
791 | Some(unsafe { core::mem::transmute_copy(&self.val) }) |
792 | } else { |
793 | None |
794 | } |
795 | } |
796 | |
797 | /// Returns the underlying bitwise value. |
798 | /// |
799 | /// ``` |
800 | /// # use enumflags2::{bitflags, BitFlags}; |
801 | /// #[bitflags] |
802 | /// #[repr(u8)] |
803 | /// #[derive(Clone, Copy)] |
804 | /// enum Flags { |
805 | /// Foo = 1 << 0, |
806 | /// Bar = 1 << 1, |
807 | /// } |
808 | /// |
809 | /// let both_flags = Flags::Foo | Flags::Bar; |
810 | /// assert_eq!(both_flags.bits(), 0b11); |
811 | /// ``` |
812 | #[inline (always)] |
813 | pub fn bits(self) -> T::Numeric { |
814 | self.val |
815 | } |
816 | |
817 | /// Returns true if at least one flag is shared. |
818 | #[inline (always)] |
819 | pub fn intersects<B: Into<BitFlags<T>>>(self, other: B) -> bool { |
820 | (self.bits() & other.into().bits()) != Self::EMPTY.val |
821 | } |
822 | |
823 | /// Returns true if all flags are contained. |
824 | #[inline (always)] |
825 | pub fn contains<B: Into<BitFlags<T>>>(self, other: B) -> bool { |
826 | let other = other.into(); |
827 | (self.bits() & other.bits()) == other.bits() |
828 | } |
829 | |
830 | /// Toggles the matching bits |
831 | #[inline (always)] |
832 | pub fn toggle<B: Into<BitFlags<T>>>(&mut self, other: B) { |
833 | *self ^= other.into(); |
834 | } |
835 | |
836 | /// Inserts the flags into the BitFlag |
837 | #[inline (always)] |
838 | pub fn insert<B: Into<BitFlags<T>>>(&mut self, other: B) { |
839 | *self |= other.into(); |
840 | } |
841 | |
842 | /// Removes the matching flags |
843 | #[inline (always)] |
844 | pub fn remove<B: Into<BitFlags<T>>>(&mut self, other: B) { |
845 | *self &= !other.into(); |
846 | } |
847 | |
848 | /// Inserts if `cond` holds, else removes |
849 | /// |
850 | /// ``` |
851 | /// # use enumflags2::bitflags; |
852 | /// #[bitflags] |
853 | /// #[derive(Clone, Copy, PartialEq, Debug)] |
854 | /// #[repr(u8)] |
855 | /// enum MyFlag { |
856 | /// A = 1 << 0, |
857 | /// B = 1 << 1, |
858 | /// C = 1 << 2, |
859 | /// } |
860 | /// |
861 | /// let mut state = MyFlag::A | MyFlag::C; |
862 | /// state.set(MyFlag::A | MyFlag::B, false); |
863 | /// |
864 | /// // Because the condition was false, both |
865 | /// // `A` and `B` are removed from the set |
866 | /// assert_eq!(state, MyFlag::C); |
867 | /// ``` |
868 | #[inline (always)] |
869 | pub fn set<B: Into<BitFlags<T>>>(&mut self, other: B, cond: bool) { |
870 | if cond { |
871 | self.insert(other); |
872 | } else { |
873 | self.remove(other); |
874 | } |
875 | } |
876 | } |
877 | |
878 | impl<T, N: PartialEq> PartialEq for BitFlags<T, N> { |
879 | #[inline (always)] |
880 | fn eq(&self, other: &Self) -> bool { |
881 | self.val == other.val |
882 | } |
883 | } |
884 | |
885 | impl<T, N: Eq> Eq for BitFlags<T, N> {} |
886 | |
887 | impl<T, N: PartialOrd> PartialOrd for BitFlags<T, N> { |
888 | #[inline (always)] |
889 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
890 | self.val.partial_cmp(&other.val) |
891 | } |
892 | } |
893 | |
894 | impl<T, N: Ord> Ord for BitFlags<T, N> { |
895 | #[inline (always)] |
896 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
897 | self.val.cmp(&other.val) |
898 | } |
899 | } |
900 | |
901 | // Clippy complains when Hash is derived while PartialEq is implemented manually |
902 | impl<T, N: Hash> Hash for BitFlags<T, N> { |
903 | #[inline (always)] |
904 | fn hash<H: Hasher>(&self, state: &mut H) { |
905 | self.val.hash(state) |
906 | } |
907 | } |
908 | |
909 | impl<T> cmp::PartialEq<T> for BitFlags<T> |
910 | where |
911 | T: BitFlag, |
912 | { |
913 | #[inline (always)] |
914 | fn eq(&self, other: &T) -> bool { |
915 | self.bits() == Into::<Self>::into(*other).bits() |
916 | } |
917 | } |
918 | |
919 | impl<T, B> ops::BitOr<B> for BitFlags<T> |
920 | where |
921 | T: BitFlag, |
922 | B: Into<BitFlags<T>>, |
923 | { |
924 | type Output = BitFlags<T>; |
925 | #[inline (always)] |
926 | fn bitor(self, other: B) -> BitFlags<T> { |
927 | // SAFETY: The two operands are known to be composed of valid bits, |
928 | // and 0 | 0 = 0 in the columns of the invalid bits. |
929 | unsafe { BitFlags::from_bits_unchecked(self.bits() | other.into().bits()) } |
930 | } |
931 | } |
932 | |
933 | impl<T, B> ops::BitAnd<B> for BitFlags<T> |
934 | where |
935 | T: BitFlag, |
936 | B: Into<BitFlags<T>>, |
937 | { |
938 | type Output = BitFlags<T>; |
939 | #[inline (always)] |
940 | fn bitand(self, other: B) -> BitFlags<T> { |
941 | // SAFETY: The two operands are known to be composed of valid bits, |
942 | // and 0 & 0 = 0 in the columns of the invalid bits. |
943 | unsafe { BitFlags::from_bits_unchecked(self.bits() & other.into().bits()) } |
944 | } |
945 | } |
946 | |
947 | impl<T, B> ops::BitXor<B> for BitFlags<T> |
948 | where |
949 | T: BitFlag, |
950 | B: Into<BitFlags<T>>, |
951 | { |
952 | type Output = BitFlags<T>; |
953 | #[inline (always)] |
954 | fn bitxor(self, other: B) -> BitFlags<T> { |
955 | // SAFETY: The two operands are known to be composed of valid bits, |
956 | // and 0 ^ 0 = 0 in the columns of the invalid bits. |
957 | unsafe { BitFlags::from_bits_unchecked(self.bits() ^ other.into().bits()) } |
958 | } |
959 | } |
960 | |
961 | impl<T, B> ops::BitOrAssign<B> for BitFlags<T> |
962 | where |
963 | T: BitFlag, |
964 | B: Into<BitFlags<T>>, |
965 | { |
966 | #[inline (always)] |
967 | fn bitor_assign(&mut self, other: B) { |
968 | *self = *self | other; |
969 | } |
970 | } |
971 | |
972 | impl<T, B> ops::BitAndAssign<B> for BitFlags<T> |
973 | where |
974 | T: BitFlag, |
975 | B: Into<BitFlags<T>>, |
976 | { |
977 | #[inline (always)] |
978 | fn bitand_assign(&mut self, other: B) { |
979 | *self = *self & other; |
980 | } |
981 | } |
982 | impl<T, B> ops::BitXorAssign<B> for BitFlags<T> |
983 | where |
984 | T: BitFlag, |
985 | B: Into<BitFlags<T>>, |
986 | { |
987 | #[inline (always)] |
988 | fn bitxor_assign(&mut self, other: B) { |
989 | *self = *self ^ other; |
990 | } |
991 | } |
992 | |
993 | impl<T> ops::Not for BitFlags<T> |
994 | where |
995 | T: BitFlag, |
996 | { |
997 | type Output = BitFlags<T>; |
998 | #[inline (always)] |
999 | fn not(self) -> BitFlags<T> { |
1000 | BitFlags::from_bits_truncate(!self.bits()) |
1001 | } |
1002 | } |
1003 | |
1004 | #[cfg (feature = "serde" )] |
1005 | mod impl_serde { |
1006 | use super::{BitFlag, BitFlags}; |
1007 | use serde::de::{Error, Unexpected}; |
1008 | use serde::{Deserialize, Serialize}; |
1009 | |
1010 | impl<'a, T> Deserialize<'a> for BitFlags<T> |
1011 | where |
1012 | T: BitFlag, |
1013 | T::Numeric: Deserialize<'a> + Into<u64>, |
1014 | { |
1015 | fn deserialize<D: serde::Deserializer<'a>>(d: D) -> Result<Self, D::Error> { |
1016 | let val = T::Numeric::deserialize(d)?; |
1017 | Self::from_bits(val).map_err(|_| { |
1018 | D::Error::invalid_value( |
1019 | Unexpected::Unsigned(val.into()), |
1020 | &"valid bit representation" , |
1021 | ) |
1022 | }) |
1023 | } |
1024 | } |
1025 | |
1026 | impl<T> Serialize for BitFlags<T> |
1027 | where |
1028 | T: BitFlag, |
1029 | T::Numeric: Serialize, |
1030 | { |
1031 | fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> { |
1032 | T::Numeric::serialize(&self.val, s) |
1033 | } |
1034 | } |
1035 | } |
1036 | |