| 1 | //! # Enum Flags |
| 2 | //! `enumflags2` implements the classic bitflags datastructure. Annotate an enum |
| 3 | //! with `#[bitflags]`, and `BitFlags<YourEnum>` will be able to hold arbitrary combinations |
| 4 | //! of your enum within the space of a single integer. |
| 5 | //! |
| 6 | //! Unlike other crates, `enumflags2` makes the type-level distinction between |
| 7 | //! a single flag (`YourEnum`) and a set of flags (`BitFlags<YourEnum>`). |
| 8 | //! This allows idiomatic handling of bitflags, such as with `match` and `iter`. |
| 9 | //! |
| 10 | //! ## Example |
| 11 | //! ``` |
| 12 | //! use enumflags2::{bitflags, make_bitflags, BitFlags}; |
| 13 | //! |
| 14 | //! #[bitflags] |
| 15 | //! #[repr(u8)] |
| 16 | //! #[derive(Copy, Clone, Debug, PartialEq)] |
| 17 | //! enum Test { |
| 18 | //! A = 0b0001, |
| 19 | //! B = 0b0010, |
| 20 | //! C, // unspecified variants pick unused bits automatically |
| 21 | //! D = 0b1000, |
| 22 | //! } |
| 23 | //! |
| 24 | //! // Flags can be combined with |, this creates a BitFlags of your type: |
| 25 | //! let a_b: BitFlags<Test> = Test::A | Test::B; |
| 26 | //! let a_c = Test::A | Test::C; |
| 27 | //! let b_c_d = make_bitflags!(Test::{B | C | D}); |
| 28 | //! |
| 29 | //! // The debug output lets you inspect both the numeric value and |
| 30 | //! // the actual flags: |
| 31 | //! assert_eq!(format!("{:?}" , a_b), "BitFlags<Test>(0b11, A | B)" ); |
| 32 | //! |
| 33 | //! // But if you'd rather see only one of those, that's available too: |
| 34 | //! assert_eq!(format!("{}" , a_b), "A | B" ); |
| 35 | //! assert_eq!(format!("{:04b}" , a_b), "0011" ); |
| 36 | //! |
| 37 | //! // Iterate over the flags like a normal set |
| 38 | //! assert_eq!(a_b.iter().collect::<Vec<_>>(), &[Test::A, Test::B]); |
| 39 | //! |
| 40 | //! // Query the contents with contains and intersects |
| 41 | //! assert!(a_b.contains(Test::A)); |
| 42 | //! assert!(b_c_d.contains(Test::B | Test::C)); |
| 43 | //! assert!(!(b_c_d.contains(a_b))); |
| 44 | //! |
| 45 | //! assert!(a_b.intersects(a_c)); |
| 46 | //! assert!(!(a_b.intersects(Test::C | Test::D))); |
| 47 | //! ``` |
| 48 | //! |
| 49 | //! ## Optional Feature Flags |
| 50 | //! |
| 51 | //! - [`serde`](https://serde.rs/) implements `Serialize` and `Deserialize` |
| 52 | //! for `BitFlags<T>`. |
| 53 | //! - `std` implements `std::error::Error` for `FromBitsError`. |
| 54 | //! |
| 55 | //! ## `const fn`-compatible APIs |
| 56 | //! |
| 57 | //! **Background:** The subset of `const fn` features currently stabilized is pretty limited. |
| 58 | //! Most notably, [const traits are still at the RFC stage][const-trait-rfc], |
| 59 | //! which makes it impossible to use any overloaded operators in a const |
| 60 | //! context. |
| 61 | //! |
| 62 | //! **Naming convention:** If a separate, more limited function is provided |
| 63 | //! for usage in a `const fn`, the name is suffixed with `_c`. |
| 64 | //! |
| 65 | //! Apart from functions whose name ends with `_c`, the [`make_bitflags!`] macro |
| 66 | //! is often useful for many `const` and `const fn` usecases. |
| 67 | //! |
| 68 | //! **Blanket implementations:** If you attempt to write a `const fn` ranging |
| 69 | //! over `T: BitFlag`, you will be met with an error explaining that currently, |
| 70 | //! the only allowed trait bound for a `const fn` is `?Sized`. You will probably |
| 71 | //! want to write a separate implementation for `BitFlags<T, u8>`, |
| 72 | //! `BitFlags<T, u16>`, etc — best accomplished by a simple macro. |
| 73 | //! |
| 74 | //! **Documentation considerations:** The strategy described above is often used |
| 75 | //! by `enumflags2` itself. To avoid clutter in the auto-generated documentation, |
| 76 | //! the implementations for widths other than `u8` are marked with `#[doc(hidden)]`. |
| 77 | //! |
| 78 | //! ## Customizing `Default` |
| 79 | //! |
| 80 | //! By default, creating an instance of `BitFlags<T>` with `Default` will result in an empty |
| 81 | //! set. If that's undesirable, you may customize this: |
| 82 | //! |
| 83 | //! ``` |
| 84 | //! # use enumflags2::{BitFlags, bitflags}; |
| 85 | //! #[bitflags(default = B | C)] |
| 86 | //! #[repr(u8)] |
| 87 | //! #[derive(Copy, Clone, Debug, PartialEq)] |
| 88 | //! enum Test { |
| 89 | //! A = 0b0001, |
| 90 | //! B = 0b0010, |
| 91 | //! C = 0b0100, |
| 92 | //! D = 0b1000, |
| 93 | //! } |
| 94 | //! |
| 95 | //! assert_eq!(BitFlags::default(), Test::B | Test::C); |
| 96 | //! ``` |
| 97 | //! |
| 98 | //! [const-trait-rfc]: https://github.com/rust-lang/rfcs/pull/2632 |
| 99 | #![warn (missing_docs)] |
| 100 | #![cfg_attr (all(not(test), not(feature = "std" )), no_std)] |
| 101 | |
| 102 | use core::hash::{Hash, Hasher}; |
| 103 | use core::marker::PhantomData; |
| 104 | use core::{cmp, ops}; |
| 105 | |
| 106 | #[allow (unused_imports)] |
| 107 | #[macro_use ] |
| 108 | extern crate enumflags2_derive; |
| 109 | |
| 110 | #[doc (hidden)] |
| 111 | pub use enumflags2_derive::bitflags_internal as bitflags; |
| 112 | |
| 113 | // Internal macro: expand into a separate copy for each supported numeric type. |
| 114 | macro_rules! for_each_uint { |
| 115 | ( $d:tt $tyvar:ident $dd:tt $docattr:ident => $($input:tt)* ) => { |
| 116 | macro_rules! implement { |
| 117 | ( $d $tyvar:ty => $d($d $docattr:meta)? ) => { |
| 118 | $($input)* |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | implement! { u8 => } |
| 123 | implement! { u16 => doc(hidden) } |
| 124 | implement! { u32 => doc(hidden) } |
| 125 | implement! { u64 => doc(hidden) } |
| 126 | implement! { u128 => doc(hidden) } |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | /// A trait automatically implemented by `#[bitflags]` to make the enum |
| 131 | /// a valid type parameter for `BitFlags<T>`. |
| 132 | pub trait BitFlag: Copy + Clone + 'static + _internal::RawBitFlags { |
| 133 | /// Create a `BitFlags` with no flags set (in other words, with a value of 0). |
| 134 | /// |
| 135 | /// This is a convenience reexport of [`BitFlags::empty`]. It can be called with |
| 136 | /// `MyFlag::empty()`, thus bypassing the need for type hints in some situations. |
| 137 | /// |
| 138 | /// ``` |
| 139 | /// # use enumflags2::{bitflags, BitFlags}; |
| 140 | /// #[bitflags] |
| 141 | /// #[repr(u8)] |
| 142 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 143 | /// enum MyFlag { |
| 144 | /// One = 1 << 0, |
| 145 | /// Two = 1 << 1, |
| 146 | /// Three = 1 << 2, |
| 147 | /// } |
| 148 | /// |
| 149 | /// use enumflags2::BitFlag; |
| 150 | /// |
| 151 | /// let empty = MyFlag::empty(); |
| 152 | /// assert!(empty.is_empty()); |
| 153 | /// assert_eq!(empty.contains(MyFlag::One), false); |
| 154 | /// assert_eq!(empty.contains(MyFlag::Two), false); |
| 155 | /// assert_eq!(empty.contains(MyFlag::Three), false); |
| 156 | /// ``` |
| 157 | #[inline ] |
| 158 | fn empty() -> BitFlags<Self> { |
| 159 | BitFlags::empty() |
| 160 | } |
| 161 | |
| 162 | /// Create a `BitFlags` with all flags set. |
| 163 | /// |
| 164 | /// This is a convenience reexport of [`BitFlags::all`]. It can be called with |
| 165 | /// `MyFlag::all()`, thus bypassing the need for type hints in some situations. |
| 166 | /// |
| 167 | /// ``` |
| 168 | /// # use enumflags2::{bitflags, BitFlags}; |
| 169 | /// #[bitflags] |
| 170 | /// #[repr(u8)] |
| 171 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 172 | /// enum MyFlag { |
| 173 | /// One = 1 << 0, |
| 174 | /// Two = 1 << 1, |
| 175 | /// Three = 1 << 2, |
| 176 | /// } |
| 177 | /// |
| 178 | /// use enumflags2::BitFlag; |
| 179 | /// |
| 180 | /// let all = MyFlag::all(); |
| 181 | /// assert!(all.is_all()); |
| 182 | /// assert_eq!(all.contains(MyFlag::One), true); |
| 183 | /// assert_eq!(all.contains(MyFlag::Two), true); |
| 184 | /// assert_eq!(all.contains(MyFlag::Three), true); |
| 185 | /// ``` |
| 186 | #[inline ] |
| 187 | fn all() -> BitFlags<Self> { |
| 188 | BitFlags::all() |
| 189 | } |
| 190 | |
| 191 | /// Create a `BitFlags` if the raw value provided does not contain |
| 192 | /// any illegal flags. |
| 193 | /// |
| 194 | /// This is a convenience reexport of [`BitFlags::from_bits`]. It can be called |
| 195 | /// with `MyFlag::from_bits(bits)`, thus bypassing the need for type hints in |
| 196 | /// some situations. |
| 197 | /// |
| 198 | /// ``` |
| 199 | /// # use enumflags2::{bitflags, BitFlags}; |
| 200 | /// #[bitflags] |
| 201 | /// #[repr(u8)] |
| 202 | /// #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
| 203 | /// enum MyFlag { |
| 204 | /// One = 1 << 0, |
| 205 | /// Two = 1 << 1, |
| 206 | /// Three = 1 << 2, |
| 207 | /// } |
| 208 | /// |
| 209 | /// use enumflags2::BitFlag; |
| 210 | /// |
| 211 | /// let flags = MyFlag::from_bits(0b11).unwrap(); |
| 212 | /// assert_eq!(flags.contains(MyFlag::One), true); |
| 213 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
| 214 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
| 215 | /// let invalid = MyFlag::from_bits(1 << 3); |
| 216 | /// assert!(invalid.is_err()); |
| 217 | /// ``` |
| 218 | #[inline ] |
| 219 | fn from_bits(bits: Self::Numeric) -> Result<BitFlags<Self>, FromBitsError<Self>> { |
| 220 | BitFlags::from_bits(bits) |
| 221 | } |
| 222 | |
| 223 | /// Create a `BitFlags` from an underlying bitwise value. If any |
| 224 | /// invalid bits are set, ignore them. |
| 225 | /// |
| 226 | /// This is a convenience reexport of [`BitFlags::from_bits_truncate`]. It can be |
| 227 | /// called with `MyFlag::from_bits_truncate(bits)`, thus bypassing the need for |
| 228 | /// type hints in some situations. |
| 229 | /// |
| 230 | /// ``` |
| 231 | /// # use enumflags2::{bitflags, BitFlags}; |
| 232 | /// #[bitflags] |
| 233 | /// #[repr(u8)] |
| 234 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 235 | /// enum MyFlag { |
| 236 | /// One = 1 << 0, |
| 237 | /// Two = 1 << 1, |
| 238 | /// Three = 1 << 2, |
| 239 | /// } |
| 240 | /// |
| 241 | /// use enumflags2::BitFlag; |
| 242 | /// |
| 243 | /// let flags = MyFlag::from_bits_truncate(0b1_1011); |
| 244 | /// assert_eq!(flags.contains(MyFlag::One), true); |
| 245 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
| 246 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
| 247 | /// ``` |
| 248 | #[inline ] |
| 249 | fn from_bits_truncate(bits: Self::Numeric) -> BitFlags<Self> { |
| 250 | BitFlags::from_bits_truncate(bits) |
| 251 | } |
| 252 | |
| 253 | /// Create a `BitFlags` unsafely, without checking if the bits form |
| 254 | /// a valid bit pattern for the type. |
| 255 | /// |
| 256 | /// Consider using [`from_bits`][BitFlag::from_bits] |
| 257 | /// or [`from_bits_truncate`][BitFlag::from_bits_truncate] instead. |
| 258 | /// |
| 259 | /// # Safety |
| 260 | /// |
| 261 | /// All bits set in `val` must correspond to a value of the enum. |
| 262 | /// |
| 263 | /// # Example |
| 264 | /// |
| 265 | /// This is a convenience reexport of [`BitFlags::from_bits_unchecked`]. It can be |
| 266 | /// called with `MyFlag::from_bits_unchecked(bits)`, thus bypassing the need for |
| 267 | /// type hints in some situations. |
| 268 | /// |
| 269 | /// ``` |
| 270 | /// # use enumflags2::{bitflags, BitFlags}; |
| 271 | /// #[bitflags] |
| 272 | /// #[repr(u8)] |
| 273 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 274 | /// enum MyFlag { |
| 275 | /// One = 1 << 0, |
| 276 | /// Two = 1 << 1, |
| 277 | /// Three = 1 << 2, |
| 278 | /// } |
| 279 | /// |
| 280 | /// use enumflags2::BitFlag; |
| 281 | /// |
| 282 | /// let flags = unsafe { |
| 283 | /// MyFlag::from_bits_unchecked(0b011) |
| 284 | /// }; |
| 285 | /// |
| 286 | /// assert_eq!(flags.contains(MyFlag::One), true); |
| 287 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
| 288 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
| 289 | /// ``` |
| 290 | #[inline ] |
| 291 | unsafe fn from_bits_unchecked(bits: Self::Numeric) -> BitFlags<Self> { |
| 292 | BitFlags::from_bits_unchecked(bits) |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /// While the module is public, this is only the case because it needs to be |
| 297 | /// accessed by the macro. Do not use this directly. Stability guarantees |
| 298 | /// don't apply. |
| 299 | #[doc (hidden)] |
| 300 | pub mod _internal { |
| 301 | /// A trait automatically implemented by `#[bitflags]` to make the enum |
| 302 | /// a valid type parameter for `BitFlags<T>`. |
| 303 | /// |
| 304 | /// # Safety |
| 305 | /// |
| 306 | /// The values should reflect reality, like they do if the implementation |
| 307 | /// is generated by the procmacro. |
| 308 | /// |
| 309 | /// `bits` must return the same value as |
| 310 | /// [`transmute_copy`][std::mem::transmute_copy]. |
| 311 | /// |
| 312 | /// Representations for all values of `T` must have exactly one bit set. |
| 313 | pub unsafe trait RawBitFlags: Copy + Clone + 'static { |
| 314 | /// The underlying integer type. |
| 315 | type Numeric: BitFlagNum; |
| 316 | |
| 317 | /// A value with no bits set. |
| 318 | const EMPTY: Self::Numeric; |
| 319 | |
| 320 | /// The value used by the Default implementation. Equivalent to EMPTY, unless |
| 321 | /// customized. |
| 322 | const DEFAULT: Self::Numeric; |
| 323 | |
| 324 | /// A value with all flag bits set. |
| 325 | const ALL_BITS: Self::Numeric; |
| 326 | |
| 327 | /// The name of the type for debug formatting purposes. |
| 328 | /// |
| 329 | /// This is typically `BitFlags<EnumName>` |
| 330 | const BITFLAGS_TYPE_NAME: &'static str; |
| 331 | |
| 332 | /// Return the bits as a number type. |
| 333 | fn bits(self) -> Self::Numeric; |
| 334 | } |
| 335 | |
| 336 | use ::core::fmt; |
| 337 | use ::core::ops::{BitAnd, BitOr, BitXor, Not, Sub}; |
| 338 | use ::core::hash::Hash; |
| 339 | |
| 340 | pub trait BitFlagNum: |
| 341 | Default |
| 342 | + BitOr<Self, Output = Self> |
| 343 | + BitAnd<Self, Output = Self> |
| 344 | + BitXor<Self, Output = Self> |
| 345 | + Sub<Self, Output = Self> |
| 346 | + Not<Output = Self> |
| 347 | + PartialOrd<Self> |
| 348 | + Ord |
| 349 | + Hash |
| 350 | + fmt::Debug |
| 351 | + fmt::Binary |
| 352 | + Copy |
| 353 | + Clone |
| 354 | { |
| 355 | const ONE: Self; |
| 356 | |
| 357 | fn is_power_of_two(self) -> bool; |
| 358 | fn count_ones(self) -> u32; |
| 359 | fn wrapping_neg(self) -> Self; |
| 360 | } |
| 361 | |
| 362 | for_each_uint! { $ty $hide_docs => |
| 363 | impl BitFlagNum for $ty { |
| 364 | const ONE: Self = 1; |
| 365 | |
| 366 | fn is_power_of_two(self) -> bool { |
| 367 | <$ty>::is_power_of_two(self) |
| 368 | } |
| 369 | |
| 370 | fn count_ones(self) -> u32 { |
| 371 | <$ty>::count_ones(self) |
| 372 | } |
| 373 | |
| 374 | fn wrapping_neg(self) -> Self { |
| 375 | <$ty>::wrapping_neg(self) |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // Re-export libcore so the macro doesn't inject "extern crate" downstream. |
| 381 | pub mod core { |
| 382 | pub use core::{convert, ops, option}; |
| 383 | } |
| 384 | |
| 385 | pub struct AssertionSucceeded; |
| 386 | pub struct AssertionFailed; |
| 387 | pub trait ExactlyOneBitSet { |
| 388 | type X; |
| 389 | } |
| 390 | impl ExactlyOneBitSet for AssertionSucceeded { |
| 391 | type X = (); |
| 392 | } |
| 393 | |
| 394 | pub trait AssertionHelper { |
| 395 | type Status; |
| 396 | } |
| 397 | |
| 398 | impl AssertionHelper for [(); 1] { |
| 399 | type Status = AssertionSucceeded; |
| 400 | } |
| 401 | |
| 402 | impl AssertionHelper for [(); 0] { |
| 403 | type Status = AssertionFailed; |
| 404 | } |
| 405 | |
| 406 | pub const fn next_bit(x: u128) -> u128 { |
| 407 | 1 << x.trailing_ones() |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | use _internal::BitFlagNum; |
| 412 | |
| 413 | // Internal debug formatting implementations |
| 414 | mod formatting; |
| 415 | |
| 416 | // impl TryFrom<T::Numeric> for BitFlags<T> |
| 417 | mod fallible; |
| 418 | pub use crate::fallible::FromBitsError; |
| 419 | |
| 420 | mod iter; |
| 421 | pub use crate::iter::Iter; |
| 422 | |
| 423 | mod const_api; |
| 424 | pub use crate::const_api::ConstToken; |
| 425 | |
| 426 | /// Represents a set of flags of some type `T`. |
| 427 | /// `T` must have the `#[bitflags]` attribute applied. |
| 428 | /// |
| 429 | /// A `BitFlags<T>` is as large as the `T` itself, |
| 430 | /// and stores one flag per bit. |
| 431 | /// |
| 432 | /// ## Comparison operators, [`PartialOrd`] and [`Ord`] |
| 433 | /// |
| 434 | /// To make it possible to use `BitFlags` as the key of a |
| 435 | /// [`BTreeMap`][std::collections::BTreeMap], `BitFlags` implements |
| 436 | /// [`Ord`]. There is no meaningful total order for bitflags, |
| 437 | /// so the implementation simply compares the integer values of the bits. |
| 438 | /// |
| 439 | /// Unfortunately, this means that comparing `BitFlags` with an operator |
| 440 | /// like `<=` will compile, and return values that are probably useless |
| 441 | /// and not what you expect. In particular, `<=` does *not* check whether |
| 442 | /// one value is a subset of the other. Use [`BitFlags::contains`] for that. |
| 443 | /// |
| 444 | /// ## Customizing `Default` |
| 445 | /// |
| 446 | /// By default, creating an instance of `BitFlags<T>` with `Default` will result |
| 447 | /// in an empty set. If that's undesirable, you may customize this: |
| 448 | /// |
| 449 | /// ``` |
| 450 | /// # use enumflags2::{BitFlags, bitflags}; |
| 451 | /// #[bitflags(default = B | C)] |
| 452 | /// #[repr(u8)] |
| 453 | /// #[derive(Copy, Clone, Debug, PartialEq)] |
| 454 | /// enum MyFlag { |
| 455 | /// A = 0b0001, |
| 456 | /// B = 0b0010, |
| 457 | /// C = 0b0100, |
| 458 | /// D = 0b1000, |
| 459 | /// } |
| 460 | /// |
| 461 | /// assert_eq!(BitFlags::default(), MyFlag::B | MyFlag::C); |
| 462 | /// ``` |
| 463 | /// |
| 464 | /// ## Memory layout |
| 465 | /// |
| 466 | /// `BitFlags<T>` is marked with the `#[repr(transparent)]` trait, meaning |
| 467 | /// it can be safely transmuted into the corresponding numeric type. |
| 468 | /// |
| 469 | /// Usually, the same can be achieved by using [`BitFlags::bits`] in one |
| 470 | /// direction, and [`BitFlags::from_bits`], [`BitFlags::from_bits_truncate`], |
| 471 | /// or [`BitFlags::from_bits_unchecked`] in the other direction. However, |
| 472 | /// transmuting might still be useful if, for example, you're dealing with |
| 473 | /// an entire array of `BitFlags`. |
| 474 | /// |
| 475 | /// When transmuting *into* a `BitFlags`, make sure that each set bit |
| 476 | /// corresponds to an existing flag |
| 477 | /// (cf. [`from_bits_unchecked`][BitFlags::from_bits_unchecked]). |
| 478 | /// |
| 479 | /// For example: |
| 480 | /// |
| 481 | /// ``` |
| 482 | /// # use enumflags2::{BitFlags, bitflags}; |
| 483 | /// #[bitflags] |
| 484 | /// #[repr(u8)] // <-- the repr determines the numeric type |
| 485 | /// #[derive(Copy, Clone)] |
| 486 | /// enum TransmuteMe { |
| 487 | /// One = 1 << 0, |
| 488 | /// Two = 1 << 1, |
| 489 | /// } |
| 490 | /// |
| 491 | /// # use std::slice; |
| 492 | /// // NOTE: we use a small, self-contained function to handle the slice |
| 493 | /// // conversion to make sure the lifetimes are right. |
| 494 | /// fn transmute_slice<'a>(input: &'a [BitFlags<TransmuteMe>]) -> &'a [u8] { |
| 495 | /// unsafe { |
| 496 | /// slice::from_raw_parts(input.as_ptr() as *const u8, input.len()) |
| 497 | /// } |
| 498 | /// } |
| 499 | /// |
| 500 | /// let many_flags = &[ |
| 501 | /// TransmuteMe::One.into(), |
| 502 | /// TransmuteMe::One | TransmuteMe::Two, |
| 503 | /// ]; |
| 504 | /// |
| 505 | /// let as_nums = transmute_slice(many_flags); |
| 506 | /// assert_eq!(as_nums, &[0b01, 0b11]); |
| 507 | /// ``` |
| 508 | /// |
| 509 | /// ## Implementation notes |
| 510 | /// |
| 511 | /// You might expect this struct to be defined as |
| 512 | /// |
| 513 | /// ```ignore |
| 514 | /// struct BitFlags<T: BitFlag> { |
| 515 | /// value: T::Numeric |
| 516 | /// } |
| 517 | /// ``` |
| 518 | /// |
| 519 | /// Ideally, that would be the case. However, because `const fn`s cannot |
| 520 | /// have trait bounds in current Rust, this would prevent us from providing |
| 521 | /// most `const fn` APIs. As a workaround, we define `BitFlags` with two |
| 522 | /// type parameters, with a default for the second one: |
| 523 | /// |
| 524 | /// ```ignore |
| 525 | /// struct BitFlags<T, N = <T as BitFlag>::Numeric> { |
| 526 | /// value: N, |
| 527 | /// marker: PhantomData<T>, |
| 528 | /// } |
| 529 | /// ``` |
| 530 | /// |
| 531 | /// Manually providing a type for the `N` type parameter shouldn't ever |
| 532 | /// be necessary. |
| 533 | /// |
| 534 | /// The types substituted for `T` and `N` must always match, creating a |
| 535 | /// `BitFlags` value where that isn't the case is only possible with |
| 536 | /// incorrect unsafe code. |
| 537 | #[derive (Copy, Clone)] |
| 538 | #[repr (transparent)] |
| 539 | pub struct BitFlags<T, N = <T as _internal::RawBitFlags>::Numeric> { |
| 540 | val: N, |
| 541 | marker: PhantomData<T>, |
| 542 | } |
| 543 | |
| 544 | /// `make_bitflags!` provides a succint syntax for creating instances of |
| 545 | /// `BitFlags<T>`. Instead of repeating the name of your type for each flag |
| 546 | /// you want to add, try `make_bitflags!(Flags::{Foo | Bar})`. |
| 547 | /// ``` |
| 548 | /// # use enumflags2::{bitflags, BitFlags, make_bitflags}; |
| 549 | /// # #[bitflags] |
| 550 | /// # #[repr (u8)] |
| 551 | /// # #[derive(Clone, Copy, Debug)] |
| 552 | /// # enum Test { |
| 553 | /// # A = 1 << 0, |
| 554 | /// # B = 1 << 1, |
| 555 | /// # C = 1 << 2, |
| 556 | /// # } |
| 557 | /// let x = make_bitflags!(Test::{A | C}); |
| 558 | /// assert_eq!(x, Test::A | Test::C); |
| 559 | /// |
| 560 | /// // Also works in const contexts: |
| 561 | /// const X: BitFlags<Test> = make_bitflags!(Test::A); |
| 562 | /// ``` |
| 563 | #[macro_export ] |
| 564 | macro_rules! make_bitflags { |
| 565 | ( $enum:ident ::{ $($variant:ident)|* } ) => { |
| 566 | { |
| 567 | let mut n = 0; |
| 568 | $( |
| 569 | { |
| 570 | let flag: $enum = $enum::$variant; |
| 571 | n |= flag as <$enum as $crate::_internal::RawBitFlags>::Numeric; |
| 572 | } |
| 573 | )* |
| 574 | // SAFETY: The value has been created from numeric values of the underlying |
| 575 | // enum, so only valid bits are set. |
| 576 | unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c( |
| 577 | n, $crate::BitFlags::CONST_TOKEN) } |
| 578 | } |
| 579 | }; |
| 580 | ( $enum:ident :: $variant:ident ) => { |
| 581 | { |
| 582 | let flag: $enum = $enum::$variant; |
| 583 | let n = flag as <$enum as $crate::_internal::RawBitFlags>::Numeric; |
| 584 | // SAFETY: The value has been created from the numeric value of |
| 585 | // the underlying enum, so only valid bits are set. |
| 586 | unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c( |
| 587 | n, $crate::BitFlags::CONST_TOKEN) } |
| 588 | } |
| 589 | }; |
| 590 | } |
| 591 | |
| 592 | /// The default value returned is one with all flags unset, i. e. [`empty`][Self::empty], |
| 593 | /// unless [customized](index.html#customizing-default). |
| 594 | impl<T> Default for BitFlags<T> |
| 595 | where |
| 596 | T: BitFlag, |
| 597 | { |
| 598 | #[inline (always)] |
| 599 | fn default() -> Self { |
| 600 | BitFlags { |
| 601 | val: T::DEFAULT, |
| 602 | marker: PhantomData, |
| 603 | } |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | impl<T: BitFlag> From<T> for BitFlags<T> { |
| 608 | #[inline (always)] |
| 609 | fn from(t: T) -> BitFlags<T> { |
| 610 | Self::from_flag(t) |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | impl<T> BitFlags<T> |
| 615 | where |
| 616 | T: BitFlag, |
| 617 | { |
| 618 | /// Create a `BitFlags` if the raw value provided does not contain |
| 619 | /// any illegal flags. |
| 620 | /// |
| 621 | /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits], |
| 622 | /// which can help avoid the need for type hints. |
| 623 | /// |
| 624 | /// ``` |
| 625 | /// # use enumflags2::{bitflags, BitFlags}; |
| 626 | /// #[bitflags] |
| 627 | /// #[repr(u8)] |
| 628 | /// #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
| 629 | /// enum MyFlag { |
| 630 | /// One = 1 << 0, |
| 631 | /// Two = 1 << 1, |
| 632 | /// Three = 1 << 2, |
| 633 | /// } |
| 634 | /// |
| 635 | /// let flags: BitFlags<MyFlag> = BitFlags::from_bits(0b11).unwrap(); |
| 636 | /// assert_eq!(flags.contains(MyFlag::One), true); |
| 637 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
| 638 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
| 639 | /// let invalid = BitFlags::<MyFlag>::from_bits(1 << 3); |
| 640 | /// assert!(invalid.is_err()); |
| 641 | /// ``` |
| 642 | #[inline ] |
| 643 | pub fn from_bits(bits: T::Numeric) -> Result<Self, FromBitsError<T>> { |
| 644 | let flags = Self::from_bits_truncate(bits); |
| 645 | if flags.bits() == bits { |
| 646 | Ok(flags) |
| 647 | } else { |
| 648 | Err(FromBitsError { |
| 649 | flags, |
| 650 | invalid: bits & !flags.bits(), |
| 651 | }) |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | /// Create a `BitFlags` from an underlying bitwise value. If any |
| 656 | /// invalid bits are set, ignore them. |
| 657 | /// |
| 658 | /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits_truncate], |
| 659 | /// which can help avoid the need for type hints. |
| 660 | /// |
| 661 | /// ``` |
| 662 | /// # use enumflags2::{bitflags, BitFlags}; |
| 663 | /// #[bitflags] |
| 664 | /// #[repr(u8)] |
| 665 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 666 | /// enum MyFlag { |
| 667 | /// One = 1 << 0, |
| 668 | /// Two = 1 << 1, |
| 669 | /// Three = 1 << 2, |
| 670 | /// } |
| 671 | /// |
| 672 | /// let flags: BitFlags<MyFlag> = BitFlags::from_bits_truncate(0b1_1011); |
| 673 | /// assert_eq!(flags.contains(MyFlag::One), true); |
| 674 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
| 675 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
| 676 | /// ``` |
| 677 | #[must_use ] |
| 678 | #[inline (always)] |
| 679 | pub fn from_bits_truncate(bits: T::Numeric) -> Self { |
| 680 | // SAFETY: We're truncating out all the invalid bits, so the remaining |
| 681 | // ones must be valid. |
| 682 | unsafe { BitFlags::from_bits_unchecked(bits & T::ALL_BITS) } |
| 683 | } |
| 684 | |
| 685 | /// Create a new BitFlags unsafely, without checking if the bits form |
| 686 | /// a valid bit pattern for the type. |
| 687 | /// |
| 688 | /// Consider using [`from_bits`][BitFlags::from_bits] |
| 689 | /// or [`from_bits_truncate`][BitFlags::from_bits_truncate] instead. |
| 690 | /// |
| 691 | /// # Safety |
| 692 | /// |
| 693 | /// All bits set in `val` must correspond to a value of the enum. |
| 694 | /// |
| 695 | /// # Example |
| 696 | /// |
| 697 | /// ``` |
| 698 | /// # use enumflags2::{bitflags, BitFlags}; |
| 699 | /// #[bitflags] |
| 700 | /// #[repr(u8)] |
| 701 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 702 | /// enum MyFlag { |
| 703 | /// One = 1 << 0, |
| 704 | /// Two = 1 << 1, |
| 705 | /// Three = 1 << 2, |
| 706 | /// } |
| 707 | /// |
| 708 | /// let flags: BitFlags<MyFlag> = unsafe { |
| 709 | /// BitFlags::from_bits_unchecked(0b011) |
| 710 | /// }; |
| 711 | /// |
| 712 | /// assert_eq!(flags.contains(MyFlag::One), true); |
| 713 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
| 714 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
| 715 | /// ``` |
| 716 | #[must_use ] |
| 717 | #[inline (always)] |
| 718 | pub unsafe fn from_bits_unchecked(val: T::Numeric) -> Self { |
| 719 | BitFlags { |
| 720 | val, |
| 721 | marker: PhantomData, |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /// Turn a `T` into a `BitFlags<T>`. Also available as `flag.into()`. |
| 726 | #[must_use ] |
| 727 | #[inline (always)] |
| 728 | pub fn from_flag(flag: T) -> Self { |
| 729 | // SAFETY: A value of the underlying enum is valid by definition. |
| 730 | unsafe { Self::from_bits_unchecked(flag.bits()) } |
| 731 | } |
| 732 | |
| 733 | /// Create a `BitFlags` with no flags set (in other words, with a value of `0`). |
| 734 | /// |
| 735 | /// See also: [`BitFlag::empty`], a convenience reexport; |
| 736 | /// [`BitFlags::EMPTY`], the same functionality available |
| 737 | /// as a constant for `const fn` code. |
| 738 | /// |
| 739 | /// ``` |
| 740 | /// # use enumflags2::{bitflags, BitFlags}; |
| 741 | /// #[bitflags] |
| 742 | /// #[repr(u8)] |
| 743 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 744 | /// enum MyFlag { |
| 745 | /// One = 1 << 0, |
| 746 | /// Two = 1 << 1, |
| 747 | /// Three = 1 << 2, |
| 748 | /// } |
| 749 | /// |
| 750 | /// let empty: BitFlags<MyFlag> = BitFlags::empty(); |
| 751 | /// assert!(empty.is_empty()); |
| 752 | /// assert_eq!(empty.contains(MyFlag::One), false); |
| 753 | /// assert_eq!(empty.contains(MyFlag::Two), false); |
| 754 | /// assert_eq!(empty.contains(MyFlag::Three), false); |
| 755 | /// ``` |
| 756 | #[inline (always)] |
| 757 | pub fn empty() -> Self { |
| 758 | Self::EMPTY |
| 759 | } |
| 760 | |
| 761 | /// Create a `BitFlags` with all flags set. |
| 762 | /// |
| 763 | /// See also: [`BitFlag::all`], a convenience reexport; |
| 764 | /// [`BitFlags::ALL`], the same functionality available |
| 765 | /// as a constant for `const fn` code. |
| 766 | /// |
| 767 | /// ``` |
| 768 | /// # use enumflags2::{bitflags, BitFlags}; |
| 769 | /// #[bitflags] |
| 770 | /// #[repr(u8)] |
| 771 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
| 772 | /// enum MyFlag { |
| 773 | /// One = 1 << 0, |
| 774 | /// Two = 1 << 1, |
| 775 | /// Three = 1 << 2, |
| 776 | /// } |
| 777 | /// |
| 778 | /// let empty: BitFlags<MyFlag> = BitFlags::all(); |
| 779 | /// assert!(empty.is_all()); |
| 780 | /// assert_eq!(empty.contains(MyFlag::One), true); |
| 781 | /// assert_eq!(empty.contains(MyFlag::Two), true); |
| 782 | /// assert_eq!(empty.contains(MyFlag::Three), true); |
| 783 | /// ``` |
| 784 | #[inline (always)] |
| 785 | pub fn all() -> Self { |
| 786 | Self::ALL |
| 787 | } |
| 788 | |
| 789 | /// Returns true if all flags are set |
| 790 | #[inline (always)] |
| 791 | pub fn is_all(self) -> bool { |
| 792 | self.val == T::ALL_BITS |
| 793 | } |
| 794 | |
| 795 | /// Returns true if no flag is set |
| 796 | #[inline (always)] |
| 797 | pub fn is_empty(self) -> bool { |
| 798 | self.val == T::EMPTY |
| 799 | } |
| 800 | |
| 801 | /// Returns the number of flags set. |
| 802 | #[inline (always)] |
| 803 | pub fn len(self) -> usize { |
| 804 | self.val.count_ones() as usize |
| 805 | } |
| 806 | |
| 807 | /// If exactly one flag is set, the flag is returned. Otherwise, returns `None`. |
| 808 | /// |
| 809 | /// See also [`Itertools::exactly_one`](https://docs.rs/itertools/latest/itertools/trait.Itertools.html#method.exactly_one). |
| 810 | #[inline (always)] |
| 811 | pub fn exactly_one(self) -> Option<T> { |
| 812 | if self.val.is_power_of_two() { |
| 813 | // SAFETY: By the invariant of the BitFlags type, all bits are valid |
| 814 | // in isolation for the underlying enum. |
| 815 | Some(unsafe { core::mem::transmute_copy(&self.val) }) |
| 816 | } else { |
| 817 | None |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | /// Returns the underlying bitwise value. |
| 822 | /// |
| 823 | /// ``` |
| 824 | /// # use enumflags2::{bitflags, BitFlags}; |
| 825 | /// #[bitflags] |
| 826 | /// #[repr(u8)] |
| 827 | /// #[derive(Clone, Copy)] |
| 828 | /// enum Flags { |
| 829 | /// Foo = 1 << 0, |
| 830 | /// Bar = 1 << 1, |
| 831 | /// } |
| 832 | /// |
| 833 | /// let both_flags = Flags::Foo | Flags::Bar; |
| 834 | /// assert_eq!(both_flags.bits(), 0b11); |
| 835 | /// ``` |
| 836 | #[inline (always)] |
| 837 | pub fn bits(self) -> T::Numeric { |
| 838 | self.val |
| 839 | } |
| 840 | |
| 841 | /// Returns true if at least one flag is shared. |
| 842 | #[inline (always)] |
| 843 | pub fn intersects<B: Into<BitFlags<T>>>(self, other: B) -> bool { |
| 844 | (self.bits() & other.into().bits()) != Self::EMPTY.val |
| 845 | } |
| 846 | |
| 847 | /// Returns true if all flags are contained. |
| 848 | #[inline (always)] |
| 849 | pub fn contains<B: Into<BitFlags<T>>>(self, other: B) -> bool { |
| 850 | let other = other.into(); |
| 851 | (self.bits() & other.bits()) == other.bits() |
| 852 | } |
| 853 | |
| 854 | /// Toggles the matching bits |
| 855 | #[inline (always)] |
| 856 | pub fn toggle<B: Into<BitFlags<T>>>(&mut self, other: B) { |
| 857 | *self ^= other.into(); |
| 858 | } |
| 859 | |
| 860 | /// Inserts the flags into the BitFlag |
| 861 | #[inline (always)] |
| 862 | pub fn insert<B: Into<BitFlags<T>>>(&mut self, other: B) { |
| 863 | *self |= other.into(); |
| 864 | } |
| 865 | |
| 866 | /// Removes the matching flags |
| 867 | #[inline (always)] |
| 868 | pub fn remove<B: Into<BitFlags<T>>>(&mut self, other: B) { |
| 869 | *self &= !other.into(); |
| 870 | } |
| 871 | |
| 872 | /// Inserts if `cond` holds, else removes |
| 873 | /// |
| 874 | /// ``` |
| 875 | /// # use enumflags2::bitflags; |
| 876 | /// #[bitflags] |
| 877 | /// #[derive(Clone, Copy, PartialEq, Debug)] |
| 878 | /// #[repr(u8)] |
| 879 | /// enum MyFlag { |
| 880 | /// A = 1 << 0, |
| 881 | /// B = 1 << 1, |
| 882 | /// C = 1 << 2, |
| 883 | /// } |
| 884 | /// |
| 885 | /// let mut state = MyFlag::A | MyFlag::C; |
| 886 | /// state.set(MyFlag::A | MyFlag::B, false); |
| 887 | /// |
| 888 | /// // Because the condition was false, both |
| 889 | /// // `A` and `B` are removed from the set |
| 890 | /// assert_eq!(state, MyFlag::C); |
| 891 | /// ``` |
| 892 | #[inline (always)] |
| 893 | pub fn set<B: Into<BitFlags<T>>>(&mut self, other: B, cond: bool) { |
| 894 | if cond { |
| 895 | self.insert(other); |
| 896 | } else { |
| 897 | self.remove(other); |
| 898 | } |
| 899 | } |
| 900 | } |
| 901 | |
| 902 | impl<T, N: PartialEq> PartialEq for BitFlags<T, N> { |
| 903 | #[inline (always)] |
| 904 | fn eq(&self, other: &Self) -> bool { |
| 905 | self.val == other.val |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | impl<T, N: Eq> Eq for BitFlags<T, N> {} |
| 910 | |
| 911 | impl<T, N: PartialOrd> PartialOrd for BitFlags<T, N> { |
| 912 | #[inline (always)] |
| 913 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
| 914 | self.val.partial_cmp(&other.val) |
| 915 | } |
| 916 | } |
| 917 | |
| 918 | impl<T, N: Ord> Ord for BitFlags<T, N> { |
| 919 | #[inline (always)] |
| 920 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
| 921 | self.val.cmp(&other.val) |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | // Clippy complains when Hash is derived while PartialEq is implemented manually |
| 926 | impl<T, N: Hash> Hash for BitFlags<T, N> { |
| 927 | #[inline (always)] |
| 928 | fn hash<H: Hasher>(&self, state: &mut H) { |
| 929 | self.val.hash(state) |
| 930 | } |
| 931 | } |
| 932 | |
| 933 | impl<T> cmp::PartialEq<T> for BitFlags<T> |
| 934 | where |
| 935 | T: BitFlag, |
| 936 | { |
| 937 | #[inline (always)] |
| 938 | fn eq(&self, other: &T) -> bool { |
| 939 | self.bits() == Into::<Self>::into(*other).bits() |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | impl<T, B> ops::BitOr<B> for BitFlags<T> |
| 944 | where |
| 945 | T: BitFlag, |
| 946 | B: Into<BitFlags<T>>, |
| 947 | { |
| 948 | type Output = BitFlags<T>; |
| 949 | #[inline (always)] |
| 950 | fn bitor(self, other: B) -> BitFlags<T> { |
| 951 | // SAFETY: The two operands are known to be composed of valid bits, |
| 952 | // and 0 | 0 = 0 in the columns of the invalid bits. |
| 953 | unsafe { BitFlags::from_bits_unchecked(self.bits() | other.into().bits()) } |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | impl<T, B> ops::BitAnd<B> for BitFlags<T> |
| 958 | where |
| 959 | T: BitFlag, |
| 960 | B: Into<BitFlags<T>>, |
| 961 | { |
| 962 | type Output = BitFlags<T>; |
| 963 | #[inline (always)] |
| 964 | fn bitand(self, other: B) -> BitFlags<T> { |
| 965 | // SAFETY: The two operands are known to be composed of valid bits, |
| 966 | // and 0 & 0 = 0 in the columns of the invalid bits. |
| 967 | unsafe { BitFlags::from_bits_unchecked(self.bits() & other.into().bits()) } |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | impl<T, B> ops::BitXor<B> for BitFlags<T> |
| 972 | where |
| 973 | T: BitFlag, |
| 974 | B: Into<BitFlags<T>>, |
| 975 | { |
| 976 | type Output = BitFlags<T>; |
| 977 | #[inline (always)] |
| 978 | fn bitxor(self, other: B) -> BitFlags<T> { |
| 979 | // SAFETY: The two operands are known to be composed of valid bits, |
| 980 | // and 0 ^ 0 = 0 in the columns of the invalid bits. |
| 981 | unsafe { BitFlags::from_bits_unchecked(self.bits() ^ other.into().bits()) } |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | impl<T, B> ops::BitOrAssign<B> for BitFlags<T> |
| 986 | where |
| 987 | T: BitFlag, |
| 988 | B: Into<BitFlags<T>>, |
| 989 | { |
| 990 | #[inline (always)] |
| 991 | fn bitor_assign(&mut self, other: B) { |
| 992 | *self = *self | other; |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | impl<T, B> ops::BitAndAssign<B> for BitFlags<T> |
| 997 | where |
| 998 | T: BitFlag, |
| 999 | B: Into<BitFlags<T>>, |
| 1000 | { |
| 1001 | #[inline (always)] |
| 1002 | fn bitand_assign(&mut self, other: B) { |
| 1003 | *self = *self & other; |
| 1004 | } |
| 1005 | } |
| 1006 | impl<T, B> ops::BitXorAssign<B> for BitFlags<T> |
| 1007 | where |
| 1008 | T: BitFlag, |
| 1009 | B: Into<BitFlags<T>>, |
| 1010 | { |
| 1011 | #[inline (always)] |
| 1012 | fn bitxor_assign(&mut self, other: B) { |
| 1013 | *self = *self ^ other; |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | impl<T> ops::Not for BitFlags<T> |
| 1018 | where |
| 1019 | T: BitFlag, |
| 1020 | { |
| 1021 | type Output = BitFlags<T>; |
| 1022 | #[inline (always)] |
| 1023 | fn not(self) -> BitFlags<T> { |
| 1024 | BitFlags::from_bits_truncate(!self.bits()) |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | #[cfg (feature = "serde" )] |
| 1029 | mod impl_serde { |
| 1030 | use super::{BitFlag, BitFlags}; |
| 1031 | use serde::de::{Error, Unexpected}; |
| 1032 | use serde::{Deserialize, Serialize}; |
| 1033 | |
| 1034 | impl<'a, T> Deserialize<'a> for BitFlags<T> |
| 1035 | where |
| 1036 | T: BitFlag, |
| 1037 | T::Numeric: Deserialize<'a> + Into<u64>, |
| 1038 | { |
| 1039 | fn deserialize<D: serde::Deserializer<'a>>(d: D) -> Result<Self, D::Error> { |
| 1040 | let val = T::Numeric::deserialize(d)?; |
| 1041 | Self::from_bits(val).map_err(|_| { |
| 1042 | D::Error::invalid_value( |
| 1043 | Unexpected::Unsigned(val.into()), |
| 1044 | &"valid bit representation" , |
| 1045 | ) |
| 1046 | }) |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | impl<T> Serialize for BitFlags<T> |
| 1051 | where |
| 1052 | T: BitFlag, |
| 1053 | T::Numeric: Serialize, |
| 1054 | { |
| 1055 | fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> { |
| 1056 | T::Numeric::serialize(&self.val, s) |
| 1057 | } |
| 1058 | } |
| 1059 | } |
| 1060 | |