1 | //! # Enum Flags |
2 | //! `enumflags2` implements the classic bitflags datastructure. Annotate an enum |
3 | //! with `#[bitflags]`, and `BitFlags<YourEnum>` will be able to hold arbitrary combinations |
4 | //! of your enum within the space of a single integer. |
5 | //! |
6 | //! Unlike other crates, `enumflags2` makes the type-level distinction between |
7 | //! a single flag (`YourEnum`) and a set of flags (`BitFlags<YourEnum>`). |
8 | //! This allows idiomatic handling of bitflags, such as with `match` and `iter`. |
9 | //! |
10 | //! ## Example |
11 | //! ``` |
12 | //! use enumflags2::{bitflags, make_bitflags, BitFlags}; |
13 | //! |
14 | //! #[bitflags] |
15 | //! #[repr(u8)] |
16 | //! #[derive(Copy, Clone, Debug, PartialEq)] |
17 | //! enum Test { |
18 | //! A = 0b0001, |
19 | //! B = 0b0010, |
20 | //! C, // unspecified variants pick unused bits automatically |
21 | //! D = 0b1000, |
22 | //! } |
23 | //! |
24 | //! // Flags can be combined with |, this creates a BitFlags of your type: |
25 | //! let a_b: BitFlags<Test> = Test::A | Test::B; |
26 | //! let a_c = Test::A | Test::C; |
27 | //! let b_c_d = make_bitflags!(Test::{B | C | D}); |
28 | //! |
29 | //! // The debug output lets you inspect both the numeric value and |
30 | //! // the actual flags: |
31 | //! assert_eq!(format!("{:?}" , a_b), "BitFlags<Test>(0b11, A | B)" ); |
32 | //! |
33 | //! // But if you'd rather see only one of those, that's available too: |
34 | //! assert_eq!(format!("{}" , a_b), "A | B" ); |
35 | //! assert_eq!(format!("{:04b}" , a_b), "0011" ); |
36 | //! |
37 | //! // Iterate over the flags like a normal set |
38 | //! assert_eq!(a_b.iter().collect::<Vec<_>>(), &[Test::A, Test::B]); |
39 | //! |
40 | //! // Query the contents with contains and intersects |
41 | //! assert!(a_b.contains(Test::A)); |
42 | //! assert!(b_c_d.contains(Test::B | Test::C)); |
43 | //! assert!(!(b_c_d.contains(a_b))); |
44 | //! |
45 | //! assert!(a_b.intersects(a_c)); |
46 | //! assert!(!(a_b.intersects(Test::C | Test::D))); |
47 | //! ``` |
48 | //! |
49 | //! ## Optional Feature Flags |
50 | //! |
51 | //! - [`serde`](https://serde.rs/) implements `Serialize` and `Deserialize` |
52 | //! for `BitFlags<T>`. |
53 | //! - `std` implements `std::error::Error` for `FromBitsError`. |
54 | //! |
55 | //! ## `const fn`-compatible APIs |
56 | //! |
57 | //! **Background:** The subset of `const fn` features currently stabilized is pretty limited. |
58 | //! Most notably, [const traits are still at the RFC stage][const-trait-rfc], |
59 | //! which makes it impossible to use any overloaded operators in a const |
60 | //! context. |
61 | //! |
62 | //! **Naming convention:** If a separate, more limited function is provided |
63 | //! for usage in a `const fn`, the name is suffixed with `_c`. |
64 | //! |
65 | //! Apart from functions whose name ends with `_c`, the [`make_bitflags!`] macro |
66 | //! is often useful for many `const` and `const fn` usecases. |
67 | //! |
68 | //! **Blanket implementations:** If you attempt to write a `const fn` ranging |
69 | //! over `T: BitFlag`, you will be met with an error explaining that currently, |
70 | //! the only allowed trait bound for a `const fn` is `?Sized`. You will probably |
71 | //! want to write a separate implementation for `BitFlags<T, u8>`, |
72 | //! `BitFlags<T, u16>`, etc — best accomplished by a simple macro. |
73 | //! |
74 | //! **Documentation considerations:** The strategy described above is often used |
75 | //! by `enumflags2` itself. To avoid clutter in the auto-generated documentation, |
76 | //! the implementations for widths other than `u8` are marked with `#[doc(hidden)]`. |
77 | //! |
78 | //! ## Customizing `Default` |
79 | //! |
80 | //! By default, creating an instance of `BitFlags<T>` with `Default` will result in an empty |
81 | //! set. If that's undesirable, you may customize this: |
82 | //! |
83 | //! ``` |
84 | //! # use enumflags2::{BitFlags, bitflags}; |
85 | //! #[bitflags(default = B | C)] |
86 | //! #[repr(u8)] |
87 | //! #[derive(Copy, Clone, Debug, PartialEq)] |
88 | //! enum Test { |
89 | //! A = 0b0001, |
90 | //! B = 0b0010, |
91 | //! C = 0b0100, |
92 | //! D = 0b1000, |
93 | //! } |
94 | //! |
95 | //! assert_eq!(BitFlags::default(), Test::B | Test::C); |
96 | //! ``` |
97 | //! |
98 | //! [const-trait-rfc]: https://github.com/rust-lang/rfcs/pull/2632 |
99 | #![warn (missing_docs)] |
100 | #![cfg_attr (all(not(test), not(feature = "std" )), no_std)] |
101 | |
102 | use core::hash::{Hash, Hasher}; |
103 | use core::marker::PhantomData; |
104 | use core::{cmp, ops}; |
105 | |
106 | #[allow (unused_imports)] |
107 | #[macro_use ] |
108 | extern crate enumflags2_derive; |
109 | |
110 | #[doc (hidden)] |
111 | pub use enumflags2_derive::bitflags_internal as bitflags; |
112 | |
113 | // Internal macro: expand into a separate copy for each supported numeric type. |
114 | macro_rules! for_each_uint { |
115 | ( $d:tt $tyvar:ident $dd:tt $docattr:ident => $($input:tt)* ) => { |
116 | macro_rules! implement { |
117 | ( $d $tyvar:ty => $d($d $docattr:meta)? ) => { |
118 | $($input)* |
119 | } |
120 | } |
121 | |
122 | implement! { u8 => } |
123 | implement! { u16 => doc(hidden) } |
124 | implement! { u32 => doc(hidden) } |
125 | implement! { u64 => doc(hidden) } |
126 | implement! { u128 => doc(hidden) } |
127 | } |
128 | } |
129 | |
130 | /// A trait automatically implemented by `#[bitflags]` to make the enum |
131 | /// a valid type parameter for `BitFlags<T>`. |
132 | pub trait BitFlag: Copy + Clone + 'static + _internal::RawBitFlags { |
133 | /// Create a `BitFlags` with no flags set (in other words, with a value of 0). |
134 | /// |
135 | /// This is a convenience reexport of [`BitFlags::empty`]. It can be called with |
136 | /// `MyFlag::empty()`, thus bypassing the need for type hints in some situations. |
137 | /// |
138 | /// ``` |
139 | /// # use enumflags2::{bitflags, BitFlags}; |
140 | /// #[bitflags] |
141 | /// #[repr(u8)] |
142 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
143 | /// enum MyFlag { |
144 | /// One = 1 << 0, |
145 | /// Two = 1 << 1, |
146 | /// Three = 1 << 2, |
147 | /// } |
148 | /// |
149 | /// use enumflags2::BitFlag; |
150 | /// |
151 | /// let empty = MyFlag::empty(); |
152 | /// assert!(empty.is_empty()); |
153 | /// assert_eq!(empty.contains(MyFlag::One), false); |
154 | /// assert_eq!(empty.contains(MyFlag::Two), false); |
155 | /// assert_eq!(empty.contains(MyFlag::Three), false); |
156 | /// ``` |
157 | #[inline ] |
158 | fn empty() -> BitFlags<Self> { |
159 | BitFlags::empty() |
160 | } |
161 | |
162 | /// Create a `BitFlags` with all flags set. |
163 | /// |
164 | /// This is a convenience reexport of [`BitFlags::all`]. It can be called with |
165 | /// `MyFlag::all()`, thus bypassing the need for type hints in some situations. |
166 | /// |
167 | /// ``` |
168 | /// # use enumflags2::{bitflags, BitFlags}; |
169 | /// #[bitflags] |
170 | /// #[repr(u8)] |
171 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
172 | /// enum MyFlag { |
173 | /// One = 1 << 0, |
174 | /// Two = 1 << 1, |
175 | /// Three = 1 << 2, |
176 | /// } |
177 | /// |
178 | /// use enumflags2::BitFlag; |
179 | /// |
180 | /// let all = MyFlag::all(); |
181 | /// assert!(all.is_all()); |
182 | /// assert_eq!(all.contains(MyFlag::One), true); |
183 | /// assert_eq!(all.contains(MyFlag::Two), true); |
184 | /// assert_eq!(all.contains(MyFlag::Three), true); |
185 | /// ``` |
186 | #[inline ] |
187 | fn all() -> BitFlags<Self> { |
188 | BitFlags::all() |
189 | } |
190 | |
191 | /// Create a `BitFlags` if the raw value provided does not contain |
192 | /// any illegal flags. |
193 | /// |
194 | /// This is a convenience reexport of [`BitFlags::from_bits`]. It can be called |
195 | /// with `MyFlag::from_bits(bits)`, thus bypassing the need for type hints in |
196 | /// some situations. |
197 | /// |
198 | /// ``` |
199 | /// # use enumflags2::{bitflags, BitFlags}; |
200 | /// #[bitflags] |
201 | /// #[repr(u8)] |
202 | /// #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
203 | /// enum MyFlag { |
204 | /// One = 1 << 0, |
205 | /// Two = 1 << 1, |
206 | /// Three = 1 << 2, |
207 | /// } |
208 | /// |
209 | /// use enumflags2::BitFlag; |
210 | /// |
211 | /// let flags = MyFlag::from_bits(0b11).unwrap(); |
212 | /// assert_eq!(flags.contains(MyFlag::One), true); |
213 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
214 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
215 | /// let invalid = MyFlag::from_bits(1 << 3); |
216 | /// assert!(invalid.is_err()); |
217 | /// ``` |
218 | #[inline ] |
219 | fn from_bits(bits: Self::Numeric) -> Result<BitFlags<Self>, FromBitsError<Self>> { |
220 | BitFlags::from_bits(bits) |
221 | } |
222 | |
223 | /// Create a `BitFlags` from an underlying bitwise value. If any |
224 | /// invalid bits are set, ignore them. |
225 | /// |
226 | /// This is a convenience reexport of [`BitFlags::from_bits_truncate`]. It can be |
227 | /// called with `MyFlag::from_bits_truncate(bits)`, thus bypassing the need for |
228 | /// type hints in some situations. |
229 | /// |
230 | /// ``` |
231 | /// # use enumflags2::{bitflags, BitFlags}; |
232 | /// #[bitflags] |
233 | /// #[repr(u8)] |
234 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
235 | /// enum MyFlag { |
236 | /// One = 1 << 0, |
237 | /// Two = 1 << 1, |
238 | /// Three = 1 << 2, |
239 | /// } |
240 | /// |
241 | /// use enumflags2::BitFlag; |
242 | /// |
243 | /// let flags = MyFlag::from_bits_truncate(0b1_1011); |
244 | /// assert_eq!(flags.contains(MyFlag::One), true); |
245 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
246 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
247 | /// ``` |
248 | #[inline ] |
249 | fn from_bits_truncate(bits: Self::Numeric) -> BitFlags<Self> { |
250 | BitFlags::from_bits_truncate(bits) |
251 | } |
252 | |
253 | /// Create a `BitFlags` unsafely, without checking if the bits form |
254 | /// a valid bit pattern for the type. |
255 | /// |
256 | /// Consider using [`from_bits`][BitFlag::from_bits] |
257 | /// or [`from_bits_truncate`][BitFlag::from_bits_truncate] instead. |
258 | /// |
259 | /// # Safety |
260 | /// |
261 | /// All bits set in `val` must correspond to a value of the enum. |
262 | /// |
263 | /// # Example |
264 | /// |
265 | /// This is a convenience reexport of [`BitFlags::from_bits_unchecked`]. It can be |
266 | /// called with `MyFlag::from_bits_unchecked(bits)`, thus bypassing the need for |
267 | /// type hints in some situations. |
268 | /// |
269 | /// ``` |
270 | /// # use enumflags2::{bitflags, BitFlags}; |
271 | /// #[bitflags] |
272 | /// #[repr(u8)] |
273 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
274 | /// enum MyFlag { |
275 | /// One = 1 << 0, |
276 | /// Two = 1 << 1, |
277 | /// Three = 1 << 2, |
278 | /// } |
279 | /// |
280 | /// use enumflags2::BitFlag; |
281 | /// |
282 | /// let flags = unsafe { |
283 | /// MyFlag::from_bits_unchecked(0b011) |
284 | /// }; |
285 | /// |
286 | /// assert_eq!(flags.contains(MyFlag::One), true); |
287 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
288 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
289 | /// ``` |
290 | #[inline ] |
291 | unsafe fn from_bits_unchecked(bits: Self::Numeric) -> BitFlags<Self> { |
292 | BitFlags::from_bits_unchecked(bits) |
293 | } |
294 | } |
295 | |
296 | /// While the module is public, this is only the case because it needs to be |
297 | /// accessed by the macro. Do not use this directly. Stability guarantees |
298 | /// don't apply. |
299 | #[doc (hidden)] |
300 | pub mod _internal { |
301 | /// A trait automatically implemented by `#[bitflags]` to make the enum |
302 | /// a valid type parameter for `BitFlags<T>`. |
303 | /// |
304 | /// # Safety |
305 | /// |
306 | /// The values should reflect reality, like they do if the implementation |
307 | /// is generated by the procmacro. |
308 | /// |
309 | /// `bits` must return the same value as |
310 | /// [`transmute_copy`][std::mem::transmute_copy]. |
311 | /// |
312 | /// Representations for all values of `T` must have exactly one bit set. |
313 | pub unsafe trait RawBitFlags: Copy + Clone + 'static { |
314 | /// The underlying integer type. |
315 | type Numeric: BitFlagNum; |
316 | |
317 | /// A value with no bits set. |
318 | const EMPTY: Self::Numeric; |
319 | |
320 | /// The value used by the Default implementation. Equivalent to EMPTY, unless |
321 | /// customized. |
322 | const DEFAULT: Self::Numeric; |
323 | |
324 | /// A value with all flag bits set. |
325 | const ALL_BITS: Self::Numeric; |
326 | |
327 | /// The name of the type for debug formatting purposes. |
328 | /// |
329 | /// This is typically `BitFlags<EnumName>` |
330 | const BITFLAGS_TYPE_NAME: &'static str; |
331 | |
332 | /// Return the bits as a number type. |
333 | fn bits(self) -> Self::Numeric; |
334 | } |
335 | |
336 | use ::core::fmt; |
337 | use ::core::ops::{BitAnd, BitOr, BitXor, Not, Sub}; |
338 | use ::core::hash::Hash; |
339 | |
340 | pub trait BitFlagNum: |
341 | Default |
342 | + BitOr<Self, Output = Self> |
343 | + BitAnd<Self, Output = Self> |
344 | + BitXor<Self, Output = Self> |
345 | + Sub<Self, Output = Self> |
346 | + Not<Output = Self> |
347 | + PartialOrd<Self> |
348 | + Ord |
349 | + Hash |
350 | + fmt::Debug |
351 | + fmt::Binary |
352 | + Copy |
353 | + Clone |
354 | { |
355 | const ONE: Self; |
356 | |
357 | fn is_power_of_two(self) -> bool; |
358 | fn count_ones(self) -> u32; |
359 | fn wrapping_neg(self) -> Self; |
360 | } |
361 | |
362 | for_each_uint! { $ty $hide_docs => |
363 | impl BitFlagNum for $ty { |
364 | const ONE: Self = 1; |
365 | |
366 | fn is_power_of_two(self) -> bool { |
367 | <$ty>::is_power_of_two(self) |
368 | } |
369 | |
370 | fn count_ones(self) -> u32 { |
371 | <$ty>::count_ones(self) |
372 | } |
373 | |
374 | fn wrapping_neg(self) -> Self { |
375 | <$ty>::wrapping_neg(self) |
376 | } |
377 | } |
378 | } |
379 | |
380 | // Re-export libcore so the macro doesn't inject "extern crate" downstream. |
381 | pub mod core { |
382 | pub use core::{convert, ops, option}; |
383 | } |
384 | |
385 | pub struct AssertionSucceeded; |
386 | pub struct AssertionFailed; |
387 | pub trait ExactlyOneBitSet { |
388 | type X; |
389 | } |
390 | impl ExactlyOneBitSet for AssertionSucceeded { |
391 | type X = (); |
392 | } |
393 | |
394 | pub trait AssertionHelper { |
395 | type Status; |
396 | } |
397 | |
398 | impl AssertionHelper for [(); 1] { |
399 | type Status = AssertionSucceeded; |
400 | } |
401 | |
402 | impl AssertionHelper for [(); 0] { |
403 | type Status = AssertionFailed; |
404 | } |
405 | |
406 | pub const fn next_bit(x: u128) -> u128 { |
407 | 1 << x.trailing_ones() |
408 | } |
409 | } |
410 | |
411 | use _internal::BitFlagNum; |
412 | |
413 | // Internal debug formatting implementations |
414 | mod formatting; |
415 | |
416 | // impl TryFrom<T::Numeric> for BitFlags<T> |
417 | mod fallible; |
418 | pub use crate::fallible::FromBitsError; |
419 | |
420 | mod iter; |
421 | pub use crate::iter::Iter; |
422 | |
423 | mod const_api; |
424 | pub use crate::const_api::ConstToken; |
425 | |
426 | /// Represents a set of flags of some type `T`. |
427 | /// `T` must have the `#[bitflags]` attribute applied. |
428 | /// |
429 | /// A `BitFlags<T>` is as large as the `T` itself, |
430 | /// and stores one flag per bit. |
431 | /// |
432 | /// ## Comparison operators, [`PartialOrd`] and [`Ord`] |
433 | /// |
434 | /// To make it possible to use `BitFlags` as the key of a |
435 | /// [`BTreeMap`][std::collections::BTreeMap], `BitFlags` implements |
436 | /// [`Ord`]. There is no meaningful total order for bitflags, |
437 | /// so the implementation simply compares the integer values of the bits. |
438 | /// |
439 | /// Unfortunately, this means that comparing `BitFlags` with an operator |
440 | /// like `<=` will compile, and return values that are probably useless |
441 | /// and not what you expect. In particular, `<=` does *not* check whether |
442 | /// one value is a subset of the other. Use [`BitFlags::contains`] for that. |
443 | /// |
444 | /// ## Customizing `Default` |
445 | /// |
446 | /// By default, creating an instance of `BitFlags<T>` with `Default` will result |
447 | /// in an empty set. If that's undesirable, you may customize this: |
448 | /// |
449 | /// ``` |
450 | /// # use enumflags2::{BitFlags, bitflags}; |
451 | /// #[bitflags(default = B | C)] |
452 | /// #[repr(u8)] |
453 | /// #[derive(Copy, Clone, Debug, PartialEq)] |
454 | /// enum MyFlag { |
455 | /// A = 0b0001, |
456 | /// B = 0b0010, |
457 | /// C = 0b0100, |
458 | /// D = 0b1000, |
459 | /// } |
460 | /// |
461 | /// assert_eq!(BitFlags::default(), MyFlag::B | MyFlag::C); |
462 | /// ``` |
463 | /// |
464 | /// ## Memory layout |
465 | /// |
466 | /// `BitFlags<T>` is marked with the `#[repr(transparent)]` trait, meaning |
467 | /// it can be safely transmuted into the corresponding numeric type. |
468 | /// |
469 | /// Usually, the same can be achieved by using [`BitFlags::bits`] in one |
470 | /// direction, and [`BitFlags::from_bits`], [`BitFlags::from_bits_truncate`], |
471 | /// or [`BitFlags::from_bits_unchecked`] in the other direction. However, |
472 | /// transmuting might still be useful if, for example, you're dealing with |
473 | /// an entire array of `BitFlags`. |
474 | /// |
475 | /// When transmuting *into* a `BitFlags`, make sure that each set bit |
476 | /// corresponds to an existing flag |
477 | /// (cf. [`from_bits_unchecked`][BitFlags::from_bits_unchecked]). |
478 | /// |
479 | /// For example: |
480 | /// |
481 | /// ``` |
482 | /// # use enumflags2::{BitFlags, bitflags}; |
483 | /// #[bitflags] |
484 | /// #[repr(u8)] // <-- the repr determines the numeric type |
485 | /// #[derive(Copy, Clone)] |
486 | /// enum TransmuteMe { |
487 | /// One = 1 << 0, |
488 | /// Two = 1 << 1, |
489 | /// } |
490 | /// |
491 | /// # use std::slice; |
492 | /// // NOTE: we use a small, self-contained function to handle the slice |
493 | /// // conversion to make sure the lifetimes are right. |
494 | /// fn transmute_slice<'a>(input: &'a [BitFlags<TransmuteMe>]) -> &'a [u8] { |
495 | /// unsafe { |
496 | /// slice::from_raw_parts(input.as_ptr() as *const u8, input.len()) |
497 | /// } |
498 | /// } |
499 | /// |
500 | /// let many_flags = &[ |
501 | /// TransmuteMe::One.into(), |
502 | /// TransmuteMe::One | TransmuteMe::Two, |
503 | /// ]; |
504 | /// |
505 | /// let as_nums = transmute_slice(many_flags); |
506 | /// assert_eq!(as_nums, &[0b01, 0b11]); |
507 | /// ``` |
508 | /// |
509 | /// ## Implementation notes |
510 | /// |
511 | /// You might expect this struct to be defined as |
512 | /// |
513 | /// ```ignore |
514 | /// struct BitFlags<T: BitFlag> { |
515 | /// value: T::Numeric |
516 | /// } |
517 | /// ``` |
518 | /// |
519 | /// Ideally, that would be the case. However, because `const fn`s cannot |
520 | /// have trait bounds in current Rust, this would prevent us from providing |
521 | /// most `const fn` APIs. As a workaround, we define `BitFlags` with two |
522 | /// type parameters, with a default for the second one: |
523 | /// |
524 | /// ```ignore |
525 | /// struct BitFlags<T, N = <T as BitFlag>::Numeric> { |
526 | /// value: N, |
527 | /// marker: PhantomData<T>, |
528 | /// } |
529 | /// ``` |
530 | /// |
531 | /// Manually providing a type for the `N` type parameter shouldn't ever |
532 | /// be necessary. |
533 | /// |
534 | /// The types substituted for `T` and `N` must always match, creating a |
535 | /// `BitFlags` value where that isn't the case is only possible with |
536 | /// incorrect unsafe code. |
537 | #[derive (Copy, Clone)] |
538 | #[repr (transparent)] |
539 | pub struct BitFlags<T, N = <T as _internal::RawBitFlags>::Numeric> { |
540 | val: N, |
541 | marker: PhantomData<T>, |
542 | } |
543 | |
544 | /// `make_bitflags!` provides a succint syntax for creating instances of |
545 | /// `BitFlags<T>`. Instead of repeating the name of your type for each flag |
546 | /// you want to add, try `make_bitflags!(Flags::{Foo | Bar})`. |
547 | /// ``` |
548 | /// # use enumflags2::{bitflags, BitFlags, make_bitflags}; |
549 | /// # #[bitflags] |
550 | /// # #[repr (u8)] |
551 | /// # #[derive(Clone, Copy, Debug)] |
552 | /// # enum Test { |
553 | /// # A = 1 << 0, |
554 | /// # B = 1 << 1, |
555 | /// # C = 1 << 2, |
556 | /// # } |
557 | /// let x = make_bitflags!(Test::{A | C}); |
558 | /// assert_eq!(x, Test::A | Test::C); |
559 | /// |
560 | /// // Also works in const contexts: |
561 | /// const X: BitFlags<Test> = make_bitflags!(Test::A); |
562 | /// ``` |
563 | #[macro_export ] |
564 | macro_rules! make_bitflags { |
565 | ( $enum:ident ::{ $($variant:ident)|* } ) => { |
566 | { |
567 | let mut n = 0; |
568 | $( |
569 | { |
570 | let flag: $enum = $enum::$variant; |
571 | n |= flag as <$enum as $crate::_internal::RawBitFlags>::Numeric; |
572 | } |
573 | )* |
574 | // SAFETY: The value has been created from numeric values of the underlying |
575 | // enum, so only valid bits are set. |
576 | unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c( |
577 | n, $crate::BitFlags::CONST_TOKEN) } |
578 | } |
579 | }; |
580 | ( $enum:ident :: $variant:ident ) => { |
581 | { |
582 | let flag: $enum = $enum::$variant; |
583 | let n = flag as <$enum as $crate::_internal::RawBitFlags>::Numeric; |
584 | // SAFETY: The value has been created from the numeric value of |
585 | // the underlying enum, so only valid bits are set. |
586 | unsafe { $crate::BitFlags::<$enum>::from_bits_unchecked_c( |
587 | n, $crate::BitFlags::CONST_TOKEN) } |
588 | } |
589 | }; |
590 | } |
591 | |
592 | /// The default value returned is one with all flags unset, i. e. [`empty`][Self::empty], |
593 | /// unless [customized](index.html#customizing-default). |
594 | impl<T> Default for BitFlags<T> |
595 | where |
596 | T: BitFlag, |
597 | { |
598 | #[inline (always)] |
599 | fn default() -> Self { |
600 | BitFlags { |
601 | val: T::DEFAULT, |
602 | marker: PhantomData, |
603 | } |
604 | } |
605 | } |
606 | |
607 | impl<T: BitFlag> From<T> for BitFlags<T> { |
608 | #[inline (always)] |
609 | fn from(t: T) -> BitFlags<T> { |
610 | Self::from_flag(t) |
611 | } |
612 | } |
613 | |
614 | impl<T> BitFlags<T> |
615 | where |
616 | T: BitFlag, |
617 | { |
618 | /// Create a `BitFlags` if the raw value provided does not contain |
619 | /// any illegal flags. |
620 | /// |
621 | /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits], |
622 | /// which can help avoid the need for type hints. |
623 | /// |
624 | /// ``` |
625 | /// # use enumflags2::{bitflags, BitFlags}; |
626 | /// #[bitflags] |
627 | /// #[repr(u8)] |
628 | /// #[derive(Clone, Copy, PartialEq, Eq, Debug)] |
629 | /// enum MyFlag { |
630 | /// One = 1 << 0, |
631 | /// Two = 1 << 1, |
632 | /// Three = 1 << 2, |
633 | /// } |
634 | /// |
635 | /// let flags: BitFlags<MyFlag> = BitFlags::from_bits(0b11).unwrap(); |
636 | /// assert_eq!(flags.contains(MyFlag::One), true); |
637 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
638 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
639 | /// let invalid = BitFlags::<MyFlag>::from_bits(1 << 3); |
640 | /// assert!(invalid.is_err()); |
641 | /// ``` |
642 | #[inline ] |
643 | pub fn from_bits(bits: T::Numeric) -> Result<Self, FromBitsError<T>> { |
644 | let flags = Self::from_bits_truncate(bits); |
645 | if flags.bits() == bits { |
646 | Ok(flags) |
647 | } else { |
648 | Err(FromBitsError { |
649 | flags, |
650 | invalid: bits & !flags.bits(), |
651 | }) |
652 | } |
653 | } |
654 | |
655 | /// Create a `BitFlags` from an underlying bitwise value. If any |
656 | /// invalid bits are set, ignore them. |
657 | /// |
658 | /// See also: [a convenience re-export in the `BitFlag` trait][BitFlag::from_bits_truncate], |
659 | /// which can help avoid the need for type hints. |
660 | /// |
661 | /// ``` |
662 | /// # use enumflags2::{bitflags, BitFlags}; |
663 | /// #[bitflags] |
664 | /// #[repr(u8)] |
665 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
666 | /// enum MyFlag { |
667 | /// One = 1 << 0, |
668 | /// Two = 1 << 1, |
669 | /// Three = 1 << 2, |
670 | /// } |
671 | /// |
672 | /// let flags: BitFlags<MyFlag> = BitFlags::from_bits_truncate(0b1_1011); |
673 | /// assert_eq!(flags.contains(MyFlag::One), true); |
674 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
675 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
676 | /// ``` |
677 | #[must_use ] |
678 | #[inline (always)] |
679 | pub fn from_bits_truncate(bits: T::Numeric) -> Self { |
680 | // SAFETY: We're truncating out all the invalid bits, so the remaining |
681 | // ones must be valid. |
682 | unsafe { BitFlags::from_bits_unchecked(bits & T::ALL_BITS) } |
683 | } |
684 | |
685 | /// Create a new BitFlags unsafely, without checking if the bits form |
686 | /// a valid bit pattern for the type. |
687 | /// |
688 | /// Consider using [`from_bits`][BitFlags::from_bits] |
689 | /// or [`from_bits_truncate`][BitFlags::from_bits_truncate] instead. |
690 | /// |
691 | /// # Safety |
692 | /// |
693 | /// All bits set in `val` must correspond to a value of the enum. |
694 | /// |
695 | /// # Example |
696 | /// |
697 | /// ``` |
698 | /// # use enumflags2::{bitflags, BitFlags}; |
699 | /// #[bitflags] |
700 | /// #[repr(u8)] |
701 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
702 | /// enum MyFlag { |
703 | /// One = 1 << 0, |
704 | /// Two = 1 << 1, |
705 | /// Three = 1 << 2, |
706 | /// } |
707 | /// |
708 | /// let flags: BitFlags<MyFlag> = unsafe { |
709 | /// BitFlags::from_bits_unchecked(0b011) |
710 | /// }; |
711 | /// |
712 | /// assert_eq!(flags.contains(MyFlag::One), true); |
713 | /// assert_eq!(flags.contains(MyFlag::Two), true); |
714 | /// assert_eq!(flags.contains(MyFlag::Three), false); |
715 | /// ``` |
716 | #[must_use ] |
717 | #[inline (always)] |
718 | pub unsafe fn from_bits_unchecked(val: T::Numeric) -> Self { |
719 | BitFlags { |
720 | val, |
721 | marker: PhantomData, |
722 | } |
723 | } |
724 | |
725 | /// Turn a `T` into a `BitFlags<T>`. Also available as `flag.into()`. |
726 | #[must_use ] |
727 | #[inline (always)] |
728 | pub fn from_flag(flag: T) -> Self { |
729 | // SAFETY: A value of the underlying enum is valid by definition. |
730 | unsafe { Self::from_bits_unchecked(flag.bits()) } |
731 | } |
732 | |
733 | /// Create a `BitFlags` with no flags set (in other words, with a value of `0`). |
734 | /// |
735 | /// See also: [`BitFlag::empty`], a convenience reexport; |
736 | /// [`BitFlags::EMPTY`], the same functionality available |
737 | /// as a constant for `const fn` code. |
738 | /// |
739 | /// ``` |
740 | /// # use enumflags2::{bitflags, BitFlags}; |
741 | /// #[bitflags] |
742 | /// #[repr(u8)] |
743 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
744 | /// enum MyFlag { |
745 | /// One = 1 << 0, |
746 | /// Two = 1 << 1, |
747 | /// Three = 1 << 2, |
748 | /// } |
749 | /// |
750 | /// let empty: BitFlags<MyFlag> = BitFlags::empty(); |
751 | /// assert!(empty.is_empty()); |
752 | /// assert_eq!(empty.contains(MyFlag::One), false); |
753 | /// assert_eq!(empty.contains(MyFlag::Two), false); |
754 | /// assert_eq!(empty.contains(MyFlag::Three), false); |
755 | /// ``` |
756 | #[inline (always)] |
757 | pub fn empty() -> Self { |
758 | Self::EMPTY |
759 | } |
760 | |
761 | /// Create a `BitFlags` with all flags set. |
762 | /// |
763 | /// See also: [`BitFlag::all`], a convenience reexport; |
764 | /// [`BitFlags::ALL`], the same functionality available |
765 | /// as a constant for `const fn` code. |
766 | /// |
767 | /// ``` |
768 | /// # use enumflags2::{bitflags, BitFlags}; |
769 | /// #[bitflags] |
770 | /// #[repr(u8)] |
771 | /// #[derive(Clone, Copy, PartialEq, Eq)] |
772 | /// enum MyFlag { |
773 | /// One = 1 << 0, |
774 | /// Two = 1 << 1, |
775 | /// Three = 1 << 2, |
776 | /// } |
777 | /// |
778 | /// let empty: BitFlags<MyFlag> = BitFlags::all(); |
779 | /// assert!(empty.is_all()); |
780 | /// assert_eq!(empty.contains(MyFlag::One), true); |
781 | /// assert_eq!(empty.contains(MyFlag::Two), true); |
782 | /// assert_eq!(empty.contains(MyFlag::Three), true); |
783 | /// ``` |
784 | #[inline (always)] |
785 | pub fn all() -> Self { |
786 | Self::ALL |
787 | } |
788 | |
789 | /// Returns true if all flags are set |
790 | #[inline (always)] |
791 | pub fn is_all(self) -> bool { |
792 | self.val == T::ALL_BITS |
793 | } |
794 | |
795 | /// Returns true if no flag is set |
796 | #[inline (always)] |
797 | pub fn is_empty(self) -> bool { |
798 | self.val == T::EMPTY |
799 | } |
800 | |
801 | /// Returns the number of flags set. |
802 | #[inline (always)] |
803 | pub fn len(self) -> usize { |
804 | self.val.count_ones() as usize |
805 | } |
806 | |
807 | /// If exactly one flag is set, the flag is returned. Otherwise, returns `None`. |
808 | /// |
809 | /// See also [`Itertools::exactly_one`](https://docs.rs/itertools/latest/itertools/trait.Itertools.html#method.exactly_one). |
810 | #[inline (always)] |
811 | pub fn exactly_one(self) -> Option<T> { |
812 | if self.val.is_power_of_two() { |
813 | // SAFETY: By the invariant of the BitFlags type, all bits are valid |
814 | // in isolation for the underlying enum. |
815 | Some(unsafe { core::mem::transmute_copy(&self.val) }) |
816 | } else { |
817 | None |
818 | } |
819 | } |
820 | |
821 | /// Returns the underlying bitwise value. |
822 | /// |
823 | /// ``` |
824 | /// # use enumflags2::{bitflags, BitFlags}; |
825 | /// #[bitflags] |
826 | /// #[repr(u8)] |
827 | /// #[derive(Clone, Copy)] |
828 | /// enum Flags { |
829 | /// Foo = 1 << 0, |
830 | /// Bar = 1 << 1, |
831 | /// } |
832 | /// |
833 | /// let both_flags = Flags::Foo | Flags::Bar; |
834 | /// assert_eq!(both_flags.bits(), 0b11); |
835 | /// ``` |
836 | #[inline (always)] |
837 | pub fn bits(self) -> T::Numeric { |
838 | self.val |
839 | } |
840 | |
841 | /// Returns true if at least one flag is shared. |
842 | #[inline (always)] |
843 | pub fn intersects<B: Into<BitFlags<T>>>(self, other: B) -> bool { |
844 | (self.bits() & other.into().bits()) != Self::EMPTY.val |
845 | } |
846 | |
847 | /// Returns true if all flags are contained. |
848 | #[inline (always)] |
849 | pub fn contains<B: Into<BitFlags<T>>>(self, other: B) -> bool { |
850 | let other = other.into(); |
851 | (self.bits() & other.bits()) == other.bits() |
852 | } |
853 | |
854 | /// Toggles the matching bits |
855 | #[inline (always)] |
856 | pub fn toggle<B: Into<BitFlags<T>>>(&mut self, other: B) { |
857 | *self ^= other.into(); |
858 | } |
859 | |
860 | /// Inserts the flags into the BitFlag |
861 | #[inline (always)] |
862 | pub fn insert<B: Into<BitFlags<T>>>(&mut self, other: B) { |
863 | *self |= other.into(); |
864 | } |
865 | |
866 | /// Removes the matching flags |
867 | #[inline (always)] |
868 | pub fn remove<B: Into<BitFlags<T>>>(&mut self, other: B) { |
869 | *self &= !other.into(); |
870 | } |
871 | |
872 | /// Inserts if `cond` holds, else removes |
873 | /// |
874 | /// ``` |
875 | /// # use enumflags2::bitflags; |
876 | /// #[bitflags] |
877 | /// #[derive(Clone, Copy, PartialEq, Debug)] |
878 | /// #[repr(u8)] |
879 | /// enum MyFlag { |
880 | /// A = 1 << 0, |
881 | /// B = 1 << 1, |
882 | /// C = 1 << 2, |
883 | /// } |
884 | /// |
885 | /// let mut state = MyFlag::A | MyFlag::C; |
886 | /// state.set(MyFlag::A | MyFlag::B, false); |
887 | /// |
888 | /// // Because the condition was false, both |
889 | /// // `A` and `B` are removed from the set |
890 | /// assert_eq!(state, MyFlag::C); |
891 | /// ``` |
892 | #[inline (always)] |
893 | pub fn set<B: Into<BitFlags<T>>>(&mut self, other: B, cond: bool) { |
894 | if cond { |
895 | self.insert(other); |
896 | } else { |
897 | self.remove(other); |
898 | } |
899 | } |
900 | } |
901 | |
902 | impl<T, N: PartialEq> PartialEq for BitFlags<T, N> { |
903 | #[inline (always)] |
904 | fn eq(&self, other: &Self) -> bool { |
905 | self.val == other.val |
906 | } |
907 | } |
908 | |
909 | impl<T, N: Eq> Eq for BitFlags<T, N> {} |
910 | |
911 | impl<T, N: PartialOrd> PartialOrd for BitFlags<T, N> { |
912 | #[inline (always)] |
913 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
914 | self.val.partial_cmp(&other.val) |
915 | } |
916 | } |
917 | |
918 | impl<T, N: Ord> Ord for BitFlags<T, N> { |
919 | #[inline (always)] |
920 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
921 | self.val.cmp(&other.val) |
922 | } |
923 | } |
924 | |
925 | // Clippy complains when Hash is derived while PartialEq is implemented manually |
926 | impl<T, N: Hash> Hash for BitFlags<T, N> { |
927 | #[inline (always)] |
928 | fn hash<H: Hasher>(&self, state: &mut H) { |
929 | self.val.hash(state) |
930 | } |
931 | } |
932 | |
933 | impl<T> cmp::PartialEq<T> for BitFlags<T> |
934 | where |
935 | T: BitFlag, |
936 | { |
937 | #[inline (always)] |
938 | fn eq(&self, other: &T) -> bool { |
939 | self.bits() == Into::<Self>::into(*other).bits() |
940 | } |
941 | } |
942 | |
943 | impl<T, B> ops::BitOr<B> for BitFlags<T> |
944 | where |
945 | T: BitFlag, |
946 | B: Into<BitFlags<T>>, |
947 | { |
948 | type Output = BitFlags<T>; |
949 | #[inline (always)] |
950 | fn bitor(self, other: B) -> BitFlags<T> { |
951 | // SAFETY: The two operands are known to be composed of valid bits, |
952 | // and 0 | 0 = 0 in the columns of the invalid bits. |
953 | unsafe { BitFlags::from_bits_unchecked(self.bits() | other.into().bits()) } |
954 | } |
955 | } |
956 | |
957 | impl<T, B> ops::BitAnd<B> for BitFlags<T> |
958 | where |
959 | T: BitFlag, |
960 | B: Into<BitFlags<T>>, |
961 | { |
962 | type Output = BitFlags<T>; |
963 | #[inline (always)] |
964 | fn bitand(self, other: B) -> BitFlags<T> { |
965 | // SAFETY: The two operands are known to be composed of valid bits, |
966 | // and 0 & 0 = 0 in the columns of the invalid bits. |
967 | unsafe { BitFlags::from_bits_unchecked(self.bits() & other.into().bits()) } |
968 | } |
969 | } |
970 | |
971 | impl<T, B> ops::BitXor<B> for BitFlags<T> |
972 | where |
973 | T: BitFlag, |
974 | B: Into<BitFlags<T>>, |
975 | { |
976 | type Output = BitFlags<T>; |
977 | #[inline (always)] |
978 | fn bitxor(self, other: B) -> BitFlags<T> { |
979 | // SAFETY: The two operands are known to be composed of valid bits, |
980 | // and 0 ^ 0 = 0 in the columns of the invalid bits. |
981 | unsafe { BitFlags::from_bits_unchecked(self.bits() ^ other.into().bits()) } |
982 | } |
983 | } |
984 | |
985 | impl<T, B> ops::BitOrAssign<B> for BitFlags<T> |
986 | where |
987 | T: BitFlag, |
988 | B: Into<BitFlags<T>>, |
989 | { |
990 | #[inline (always)] |
991 | fn bitor_assign(&mut self, other: B) { |
992 | *self = *self | other; |
993 | } |
994 | } |
995 | |
996 | impl<T, B> ops::BitAndAssign<B> for BitFlags<T> |
997 | where |
998 | T: BitFlag, |
999 | B: Into<BitFlags<T>>, |
1000 | { |
1001 | #[inline (always)] |
1002 | fn bitand_assign(&mut self, other: B) { |
1003 | *self = *self & other; |
1004 | } |
1005 | } |
1006 | impl<T, B> ops::BitXorAssign<B> for BitFlags<T> |
1007 | where |
1008 | T: BitFlag, |
1009 | B: Into<BitFlags<T>>, |
1010 | { |
1011 | #[inline (always)] |
1012 | fn bitxor_assign(&mut self, other: B) { |
1013 | *self = *self ^ other; |
1014 | } |
1015 | } |
1016 | |
1017 | impl<T> ops::Not for BitFlags<T> |
1018 | where |
1019 | T: BitFlag, |
1020 | { |
1021 | type Output = BitFlags<T>; |
1022 | #[inline (always)] |
1023 | fn not(self) -> BitFlags<T> { |
1024 | BitFlags::from_bits_truncate(!self.bits()) |
1025 | } |
1026 | } |
1027 | |
1028 | #[cfg (feature = "serde" )] |
1029 | mod impl_serde { |
1030 | use super::{BitFlag, BitFlags}; |
1031 | use serde::de::{Error, Unexpected}; |
1032 | use serde::{Deserialize, Serialize}; |
1033 | |
1034 | impl<'a, T> Deserialize<'a> for BitFlags<T> |
1035 | where |
1036 | T: BitFlag, |
1037 | T::Numeric: Deserialize<'a> + Into<u64>, |
1038 | { |
1039 | fn deserialize<D: serde::Deserializer<'a>>(d: D) -> Result<Self, D::Error> { |
1040 | let val = T::Numeric::deserialize(d)?; |
1041 | Self::from_bits(val).map_err(|_| { |
1042 | D::Error::invalid_value( |
1043 | Unexpected::Unsigned(val.into()), |
1044 | &"valid bit representation" , |
1045 | ) |
1046 | }) |
1047 | } |
1048 | } |
1049 | |
1050 | impl<T> Serialize for BitFlags<T> |
1051 | where |
1052 | T: BitFlag, |
1053 | T::Numeric: Serialize, |
1054 | { |
1055 | fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> { |
1056 | T::Numeric::serialize(&self.val, s) |
1057 | } |
1058 | } |
1059 | } |
1060 | |