1 | // Copyright 2014-2020 Optimal Computing (NZ) Ltd. |
2 | // Licensed under the MIT license. See LICENSE for details. |
3 | |
4 | use core::cmp::PartialOrd; |
5 | use core::ops::{Sub, Div, Neg}; |
6 | use num_traits::Zero; |
7 | |
8 | /// ApproxEqRatio is a trait for approximate equality comparisons bounding the ratio |
9 | /// of the difference to the larger. |
10 | pub trait ApproxEqRatio : Div<Output = Self> + Sub<Output = Self> + Neg<Output = Self> |
11 | + PartialOrd + Zero + Sized + Copy |
12 | { |
13 | /// This method tests if `self` and `other` are nearly equal by bounding the |
14 | /// difference between them to some number much less than the larger of the two. |
15 | /// This bound is set as the ratio of the difference to the larger. |
16 | fn approx_eq_ratio(&self, other: &Self, ratio: Self) -> bool { |
17 | |
18 | // Not equal if signs are not equal |
19 | if *self < Self::zero() && *other > Self::zero() { return false; } |
20 | if *self > Self::zero() && *other < Self::zero() { return false; } |
21 | |
22 | // Handle all zero cases |
23 | match (*self == Self::zero(), *other == Self::zero()) { |
24 | (true,true) => return true, |
25 | (true,false) => return false, |
26 | (false,true) => return false, |
27 | _ => { } |
28 | } |
29 | |
30 | // abs |
31 | let (s,o) = if *self < Self::zero() { |
32 | (-*self, -*other) |
33 | } else { |
34 | (*self, *other) |
35 | }; |
36 | |
37 | let (smaller,larger) = if s < o { |
38 | (s,o) |
39 | } else { |
40 | (o,s) |
41 | }; |
42 | let difference: Self = larger.sub(smaller); |
43 | let actual_ratio: Self = difference.div(larger); |
44 | actual_ratio < ratio |
45 | } |
46 | |
47 | /// This method tests if `self` and `other` are not nearly equal by bounding the |
48 | /// difference between them to some number much less than the larger of the two. |
49 | /// This bound is set as the ratio of the difference to the larger. |
50 | #[inline ] |
51 | fn approx_ne_ratio(&self, other: &Self, ratio: Self) -> bool { |
52 | !self.approx_eq_ratio(other, ratio) |
53 | } |
54 | } |
55 | |
56 | impl ApproxEqRatio for f32 { } |
57 | |
58 | #[test ] |
59 | fn f32_approx_eq_ratio_test1() { |
60 | let x: f32 = 0.00004_f32; |
61 | let y: f32 = 0.00004001_f32; |
62 | assert!(x.approx_eq_ratio(&y, 0.00025)); |
63 | assert!(y.approx_eq_ratio(&x, 0.00025)); |
64 | assert!(x.approx_ne_ratio(&y, 0.00024)); |
65 | assert!(y.approx_ne_ratio(&x, 0.00024)); |
66 | } |
67 | |
68 | #[test ] |
69 | fn f32_approx_eq_ratio_test2() { |
70 | let x: f32 = 0.00000000001_f32; |
71 | let y: f32 = 0.00000000005_f32; |
72 | assert!(x.approx_eq_ratio(&y, 0.81)); |
73 | assert!(y.approx_ne_ratio(&x, 0.79)); |
74 | } |
75 | |
76 | #[test ] |
77 | fn f32_approx_eq_ratio_test_zero_eq_zero_returns_true() { |
78 | let x: f32 = 0.0_f32; |
79 | assert!(x.approx_eq_ratio(&x,0.1) == true); |
80 | } |
81 | |
82 | #[test ] |
83 | fn f32_approx_eq_ratio_test_zero_ne_zero_returns_false() { |
84 | let x: f32 = 0.0_f32; |
85 | assert!(x.approx_ne_ratio(&x,0.1) == false); |
86 | } |
87 | |
88 | #[test ] |
89 | fn f32_approx_eq_ratio_test_against_a_zero_is_false() { |
90 | let x: f32 = 0.0_f32; |
91 | let y: f32 = 0.1_f32; |
92 | assert!(x.approx_eq_ratio(&y,0.1) == false); |
93 | assert!(y.approx_eq_ratio(&x,0.1) == false); |
94 | } |
95 | |
96 | #[test ] |
97 | fn f32_approx_eq_ratio_test_negative_numbers() { |
98 | let x: f32 = -3.0_f32; |
99 | let y: f32 = -4.0_f32; |
100 | // -3 and -4 should not be equal at a ratio of 0.1 |
101 | assert!(x.approx_eq_ratio(&y,0.1) == false); |
102 | } |
103 | |
104 | impl ApproxEqRatio for f64 { } |
105 | |
106 | #[test ] |
107 | fn f64_approx_eq_ratio_test1() { |
108 | let x: f64 = 0.000000004_f64; |
109 | let y: f64 = 0.000000004001_f64; |
110 | assert!(x.approx_eq_ratio(&y, 0.00025)); |
111 | assert!(y.approx_eq_ratio(&x, 0.00025)); |
112 | assert!(x.approx_ne_ratio(&y, 0.00024)); |
113 | assert!(y.approx_ne_ratio(&x, 0.00024)); |
114 | } |
115 | |
116 | #[test ] |
117 | fn f64_approx_eq_ratio_test2() { |
118 | let x: f64 = 0.0000000000000001_f64; |
119 | let y: f64 = 0.0000000000000005_f64; |
120 | assert!(x.approx_eq_ratio(&y, 0.81)); |
121 | assert!(y.approx_ne_ratio(&x, 0.79)); |
122 | } |
123 | |
124 | #[test ] |
125 | fn f64_approx_eq_ratio_test_zero_eq_zero_returns_true() { |
126 | let x: f64 = 0.0_f64; |
127 | assert!(x.approx_eq_ratio(&x,0.1) == true); |
128 | } |
129 | |
130 | #[test ] |
131 | fn f64_approx_eq_ratio_test_zero_ne_zero_returns_false() { |
132 | let x: f64 = 0.0_f64; |
133 | assert!(x.approx_ne_ratio(&x,0.1) == false); |
134 | } |
135 | |
136 | #[test ] |
137 | fn f64_approx_eq_ratio_test_negative_numbers() { |
138 | let x: f64 = -3.0_f64; |
139 | let y: f64 = -4.0_f64; |
140 | // -3 and -4 should not be equal at a ratio of 0.1 |
141 | assert!(x.approx_eq_ratio(&y,0.1) == false); |
142 | } |
143 | |