| 1 | #[cfg (all(feature = "serde" , feature = "alloc" ))]
|
| 2 | #[allow (unused_imports)]
|
| 3 | use alloc::string::ToString;
|
| 4 | #[cfg (feature = "bytemuck" )]
|
| 5 | use bytemuck::{Pod, Zeroable};
|
| 6 | use core::{
|
| 7 | cmp::Ordering,
|
| 8 | iter::{Product, Sum},
|
| 9 | num::FpCategory,
|
| 10 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
|
| 11 | };
|
| 12 | #[cfg (not(target_arch = "spirv" ))]
|
| 13 | use core::{
|
| 14 | fmt::{
|
| 15 | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
|
| 16 | },
|
| 17 | num::ParseFloatError,
|
| 18 | str::FromStr,
|
| 19 | };
|
| 20 | #[cfg (feature = "serde" )]
|
| 21 | use serde::{Deserialize, Serialize};
|
| 22 | #[cfg (feature = "zerocopy" )]
|
| 23 | use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout};
|
| 24 |
|
| 25 | pub(crate) mod arch;
|
| 26 |
|
| 27 | /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half"
|
| 28 | /// format.
|
| 29 | ///
|
| 30 | /// This 16-bit floating point type is intended for efficient storage where the full range and
|
| 31 | /// precision of a larger floating point value is not required.
|
| 32 | ///
|
| 33 | /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
|
| 34 | #[allow (non_camel_case_types)]
|
| 35 | #[derive (Clone, Copy, Default)]
|
| 36 | #[repr (transparent)]
|
| 37 | #[cfg_attr (feature = "serde" , derive(Serialize))]
|
| 38 | #[cfg_attr (
|
| 39 | feature = "rkyv" ,
|
| 40 | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
|
| 41 | )]
|
| 42 | #[cfg_attr (feature = "rkyv" , rkyv(resolver = F16Resolver))]
|
| 43 | #[cfg_attr (feature = "bytemuck" , derive(Zeroable, Pod))]
|
| 44 | #[cfg_attr (
|
| 45 | feature = "zerocopy" ,
|
| 46 | derive(FromBytes, Immutable, IntoBytes, KnownLayout)
|
| 47 | )]
|
| 48 | #[cfg_attr (kani, derive(kani::Arbitrary))]
|
| 49 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))]
|
| 50 | pub struct f16(u16);
|
| 51 |
|
| 52 | impl f16 {
|
| 53 | /// Constructs a 16-bit floating point value from the raw bits.
|
| 54 | #[inline ]
|
| 55 | #[must_use ]
|
| 56 | pub const fn from_bits(bits: u16) -> f16 {
|
| 57 | f16(bits)
|
| 58 | }
|
| 59 |
|
| 60 | /// Constructs a 16-bit floating point value from a 32-bit floating point value.
|
| 61 | ///
|
| 62 | /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
|
| 63 | /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
|
| 64 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
| 65 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
| 66 | /// 16-bit value.
|
| 67 | #[inline ]
|
| 68 | #[must_use ]
|
| 69 | pub fn from_f32(value: f32) -> f16 {
|
| 70 | f16(arch::f32_to_f16(value))
|
| 71 | }
|
| 72 |
|
| 73 | /// Constructs a 16-bit floating point value from a 32-bit floating point value.
|
| 74 | ///
|
| 75 | /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
|
| 76 | /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
|
| 77 | /// in any non-`const` context.
|
| 78 | ///
|
| 79 | /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
|
| 80 | /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
|
| 81 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
| 82 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
| 83 | /// 16-bit value.
|
| 84 | #[inline ]
|
| 85 | #[must_use ]
|
| 86 | pub const fn from_f32_const(value: f32) -> f16 {
|
| 87 | f16(arch::f32_to_f16_fallback(value))
|
| 88 | }
|
| 89 |
|
| 90 | /// Constructs a 16-bit floating point value from a 64-bit floating point value.
|
| 91 | ///
|
| 92 | /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
|
| 93 | /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
|
| 94 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
| 95 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
| 96 | /// 16-bit value.
|
| 97 | #[inline ]
|
| 98 | #[must_use ]
|
| 99 | pub fn from_f64(value: f64) -> f16 {
|
| 100 | f16(arch::f64_to_f16(value))
|
| 101 | }
|
| 102 |
|
| 103 | /// Constructs a 16-bit floating point value from a 64-bit floating point value.
|
| 104 | ///
|
| 105 | /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
|
| 106 | /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
|
| 107 | /// in any non-`const` context.
|
| 108 | ///
|
| 109 | /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
|
| 110 | /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
|
| 111 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
| 112 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
| 113 | /// 16-bit value.
|
| 114 | #[inline ]
|
| 115 | #[must_use ]
|
| 116 | pub const fn from_f64_const(value: f64) -> f16 {
|
| 117 | f16(arch::f64_to_f16_fallback(value))
|
| 118 | }
|
| 119 |
|
| 120 | /// Converts a [`struct@f16`] into the underlying bit representation.
|
| 121 | #[inline ]
|
| 122 | #[must_use ]
|
| 123 | pub const fn to_bits(self) -> u16 {
|
| 124 | self.0
|
| 125 | }
|
| 126 |
|
| 127 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
| 128 | /// little-endian byte order.
|
| 129 | ///
|
| 130 | /// # Examples
|
| 131 | ///
|
| 132 | /// ```rust
|
| 133 | /// # use half::prelude::*;
|
| 134 | /// let bytes = f16::from_f32(12.5).to_le_bytes();
|
| 135 | /// assert_eq!(bytes, [0x40, 0x4A]);
|
| 136 | /// ```
|
| 137 | #[inline ]
|
| 138 | #[must_use ]
|
| 139 | pub const fn to_le_bytes(self) -> [u8; 2] {
|
| 140 | self.0.to_le_bytes()
|
| 141 | }
|
| 142 |
|
| 143 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
| 144 | /// big-endian (network) byte order.
|
| 145 | ///
|
| 146 | /// # Examples
|
| 147 | ///
|
| 148 | /// ```rust
|
| 149 | /// # use half::prelude::*;
|
| 150 | /// let bytes = f16::from_f32(12.5).to_be_bytes();
|
| 151 | /// assert_eq!(bytes, [0x4A, 0x40]);
|
| 152 | /// ```
|
| 153 | #[inline ]
|
| 154 | #[must_use ]
|
| 155 | pub const fn to_be_bytes(self) -> [u8; 2] {
|
| 156 | self.0.to_be_bytes()
|
| 157 | }
|
| 158 |
|
| 159 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
| 160 | /// native byte order.
|
| 161 | ///
|
| 162 | /// As the target platform's native endianness is used, portable code should use
|
| 163 | /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
|
| 164 | /// instead.
|
| 165 | ///
|
| 166 | /// # Examples
|
| 167 | ///
|
| 168 | /// ```rust
|
| 169 | /// # use half::prelude::*;
|
| 170 | /// let bytes = f16::from_f32(12.5).to_ne_bytes();
|
| 171 | /// assert_eq!(bytes, if cfg!(target_endian = "big" ) {
|
| 172 | /// [0x4A, 0x40]
|
| 173 | /// } else {
|
| 174 | /// [0x40, 0x4A]
|
| 175 | /// });
|
| 176 | /// ```
|
| 177 | #[inline ]
|
| 178 | #[must_use ]
|
| 179 | pub const fn to_ne_bytes(self) -> [u8; 2] {
|
| 180 | self.0.to_ne_bytes()
|
| 181 | }
|
| 182 |
|
| 183 | /// Creates a floating point value from its representation as a byte array in little endian.
|
| 184 | ///
|
| 185 | /// # Examples
|
| 186 | ///
|
| 187 | /// ```rust
|
| 188 | /// # use half::prelude::*;
|
| 189 | /// let value = f16::from_le_bytes([0x40, 0x4A]);
|
| 190 | /// assert_eq!(value, f16::from_f32(12.5));
|
| 191 | /// ```
|
| 192 | #[inline ]
|
| 193 | #[must_use ]
|
| 194 | pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
|
| 195 | f16::from_bits(u16::from_le_bytes(bytes))
|
| 196 | }
|
| 197 |
|
| 198 | /// Creates a floating point value from its representation as a byte array in big endian.
|
| 199 | ///
|
| 200 | /// # Examples
|
| 201 | ///
|
| 202 | /// ```rust
|
| 203 | /// # use half::prelude::*;
|
| 204 | /// let value = f16::from_be_bytes([0x4A, 0x40]);
|
| 205 | /// assert_eq!(value, f16::from_f32(12.5));
|
| 206 | /// ```
|
| 207 | #[inline ]
|
| 208 | #[must_use ]
|
| 209 | pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
|
| 210 | f16::from_bits(u16::from_be_bytes(bytes))
|
| 211 | }
|
| 212 |
|
| 213 | /// Creates a floating point value from its representation as a byte array in native endian.
|
| 214 | ///
|
| 215 | /// As the target platform's native endianness is used, portable code likely wants to use
|
| 216 | /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
|
| 217 | /// appropriate instead.
|
| 218 | ///
|
| 219 | /// # Examples
|
| 220 | ///
|
| 221 | /// ```rust
|
| 222 | /// # use half::prelude::*;
|
| 223 | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big" ) {
|
| 224 | /// [0x4A, 0x40]
|
| 225 | /// } else {
|
| 226 | /// [0x40, 0x4A]
|
| 227 | /// });
|
| 228 | /// assert_eq!(value, f16::from_f32(12.5));
|
| 229 | /// ```
|
| 230 | #[inline ]
|
| 231 | #[must_use ]
|
| 232 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
|
| 233 | f16::from_bits(u16::from_ne_bytes(bytes))
|
| 234 | }
|
| 235 |
|
| 236 | /// Converts a [`struct@f16`] value into a `f32` value.
|
| 237 | ///
|
| 238 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
| 239 | /// in 32-bit floating point.
|
| 240 | #[inline ]
|
| 241 | #[must_use ]
|
| 242 | pub fn to_f32(self) -> f32 {
|
| 243 | arch::f16_to_f32(self.0)
|
| 244 | }
|
| 245 |
|
| 246 | /// Converts a [`struct@f16`] value into a `f32` value.
|
| 247 | ///
|
| 248 | /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
|
| 249 | /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
|
| 250 | /// in any non-`const` context.
|
| 251 | ///
|
| 252 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
| 253 | /// in 32-bit floating point.
|
| 254 | #[inline ]
|
| 255 | #[must_use ]
|
| 256 | pub const fn to_f32_const(self) -> f32 {
|
| 257 | arch::f16_to_f32_fallback(self.0)
|
| 258 | }
|
| 259 |
|
| 260 | /// Converts a [`struct@f16`] value into a `f64` value.
|
| 261 | ///
|
| 262 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
| 263 | /// in 64-bit floating point.
|
| 264 | #[inline ]
|
| 265 | #[must_use ]
|
| 266 | pub fn to_f64(self) -> f64 {
|
| 267 | arch::f16_to_f64(self.0)
|
| 268 | }
|
| 269 |
|
| 270 | /// Converts a [`struct@f16`] value into a `f64` value.
|
| 271 | ///
|
| 272 | /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
|
| 273 | /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
|
| 274 | /// in any non-`const` context.
|
| 275 | ///
|
| 276 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
| 277 | /// in 64-bit floating point.
|
| 278 | #[inline ]
|
| 279 | #[must_use ]
|
| 280 | pub const fn to_f64_const(self) -> f64 {
|
| 281 | arch::f16_to_f64_fallback(self.0)
|
| 282 | }
|
| 283 |
|
| 284 | /// Returns `true` if this value is `NaN` and `false` otherwise.
|
| 285 | ///
|
| 286 | /// # Examples
|
| 287 | ///
|
| 288 | /// ```rust
|
| 289 | /// # use half::prelude::*;
|
| 290 | ///
|
| 291 | /// let nan = f16::NAN;
|
| 292 | /// let f = f16::from_f32(7.0_f32);
|
| 293 | ///
|
| 294 | /// assert!(nan.is_nan());
|
| 295 | /// assert!(!f.is_nan());
|
| 296 | /// ```
|
| 297 | #[inline ]
|
| 298 | #[must_use ]
|
| 299 | pub const fn is_nan(self) -> bool {
|
| 300 | self.0 & 0x7FFFu16 > 0x7C00u16
|
| 301 | }
|
| 302 |
|
| 303 | /// Returns `true` if this value is ±∞ and `false`.
|
| 304 | /// otherwise.
|
| 305 | ///
|
| 306 | /// # Examples
|
| 307 | ///
|
| 308 | /// ```rust
|
| 309 | /// # use half::prelude::*;
|
| 310 | ///
|
| 311 | /// let f = f16::from_f32(7.0f32);
|
| 312 | /// let inf = f16::INFINITY;
|
| 313 | /// let neg_inf = f16::NEG_INFINITY;
|
| 314 | /// let nan = f16::NAN;
|
| 315 | ///
|
| 316 | /// assert!(!f.is_infinite());
|
| 317 | /// assert!(!nan.is_infinite());
|
| 318 | ///
|
| 319 | /// assert!(inf.is_infinite());
|
| 320 | /// assert!(neg_inf.is_infinite());
|
| 321 | /// ```
|
| 322 | #[inline ]
|
| 323 | #[must_use ]
|
| 324 | pub const fn is_infinite(self) -> bool {
|
| 325 | self.0 & 0x7FFFu16 == 0x7C00u16
|
| 326 | }
|
| 327 |
|
| 328 | /// Returns `true` if this number is neither infinite nor `NaN`.
|
| 329 | ///
|
| 330 | /// # Examples
|
| 331 | ///
|
| 332 | /// ```rust
|
| 333 | /// # use half::prelude::*;
|
| 334 | ///
|
| 335 | /// let f = f16::from_f32(7.0f32);
|
| 336 | /// let inf = f16::INFINITY;
|
| 337 | /// let neg_inf = f16::NEG_INFINITY;
|
| 338 | /// let nan = f16::NAN;
|
| 339 | ///
|
| 340 | /// assert!(f.is_finite());
|
| 341 | ///
|
| 342 | /// assert!(!nan.is_finite());
|
| 343 | /// assert!(!inf.is_finite());
|
| 344 | /// assert!(!neg_inf.is_finite());
|
| 345 | /// ```
|
| 346 | #[inline ]
|
| 347 | #[must_use ]
|
| 348 | pub const fn is_finite(self) -> bool {
|
| 349 | self.0 & 0x7C00u16 != 0x7C00u16
|
| 350 | }
|
| 351 |
|
| 352 | /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
|
| 353 | ///
|
| 354 | /// # Examples
|
| 355 | ///
|
| 356 | /// ```rust
|
| 357 | /// # use half::prelude::*;
|
| 358 | ///
|
| 359 | /// let min = f16::MIN_POSITIVE;
|
| 360 | /// let max = f16::MAX;
|
| 361 | /// let lower_than_min = f16::from_f32(1.0e-10_f32);
|
| 362 | /// let zero = f16::from_f32(0.0_f32);
|
| 363 | ///
|
| 364 | /// assert!(min.is_normal());
|
| 365 | /// assert!(max.is_normal());
|
| 366 | ///
|
| 367 | /// assert!(!zero.is_normal());
|
| 368 | /// assert!(!f16::NAN.is_normal());
|
| 369 | /// assert!(!f16::INFINITY.is_normal());
|
| 370 | /// // Values between `0` and `min` are Subnormal.
|
| 371 | /// assert!(!lower_than_min.is_normal());
|
| 372 | /// ```
|
| 373 | #[inline ]
|
| 374 | #[must_use ]
|
| 375 | pub const fn is_normal(self) -> bool {
|
| 376 | let exp = self.0 & 0x7C00u16;
|
| 377 | exp != 0x7C00u16 && exp != 0
|
| 378 | }
|
| 379 |
|
| 380 | /// Returns the floating point category of the number.
|
| 381 | ///
|
| 382 | /// If only one property is going to be tested, it is generally faster to use the specific
|
| 383 | /// predicate instead.
|
| 384 | ///
|
| 385 | /// # Examples
|
| 386 | ///
|
| 387 | /// ```rust
|
| 388 | /// use std::num::FpCategory;
|
| 389 | /// # use half::prelude::*;
|
| 390 | ///
|
| 391 | /// let num = f16::from_f32(12.4_f32);
|
| 392 | /// let inf = f16::INFINITY;
|
| 393 | ///
|
| 394 | /// assert_eq!(num.classify(), FpCategory::Normal);
|
| 395 | /// assert_eq!(inf.classify(), FpCategory::Infinite);
|
| 396 | /// ```
|
| 397 | #[must_use ]
|
| 398 | pub const fn classify(self) -> FpCategory {
|
| 399 | let exp = self.0 & 0x7C00u16;
|
| 400 | let man = self.0 & 0x03FFu16;
|
| 401 | match (exp, man) {
|
| 402 | (0, 0) => FpCategory::Zero,
|
| 403 | (0, _) => FpCategory::Subnormal,
|
| 404 | (0x7C00u16, 0) => FpCategory::Infinite,
|
| 405 | (0x7C00u16, _) => FpCategory::Nan,
|
| 406 | _ => FpCategory::Normal,
|
| 407 | }
|
| 408 | }
|
| 409 |
|
| 410 | /// Returns a number that represents the sign of `self`.
|
| 411 | ///
|
| 412 | /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
|
| 413 | /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
|
| 414 | /// * [`NAN`][f16::NAN] if the number is `NaN`
|
| 415 | ///
|
| 416 | /// # Examples
|
| 417 | ///
|
| 418 | /// ```rust
|
| 419 | /// # use half::prelude::*;
|
| 420 | ///
|
| 421 | /// let f = f16::from_f32(3.5_f32);
|
| 422 | ///
|
| 423 | /// assert_eq!(f.signum(), f16::from_f32(1.0));
|
| 424 | /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
|
| 425 | ///
|
| 426 | /// assert!(f16::NAN.signum().is_nan());
|
| 427 | /// ```
|
| 428 | #[must_use ]
|
| 429 | pub const fn signum(self) -> f16 {
|
| 430 | if self.is_nan() {
|
| 431 | self
|
| 432 | } else if self.0 & 0x8000u16 != 0 {
|
| 433 | Self::NEG_ONE
|
| 434 | } else {
|
| 435 | Self::ONE
|
| 436 | }
|
| 437 | }
|
| 438 |
|
| 439 | /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
|
| 440 | /// positive sign bit and +∞.
|
| 441 | ///
|
| 442 | /// # Examples
|
| 443 | ///
|
| 444 | /// ```rust
|
| 445 | /// # use half::prelude::*;
|
| 446 | ///
|
| 447 | /// let nan = f16::NAN;
|
| 448 | /// let f = f16::from_f32(7.0_f32);
|
| 449 | /// let g = f16::from_f32(-7.0_f32);
|
| 450 | ///
|
| 451 | /// assert!(f.is_sign_positive());
|
| 452 | /// assert!(!g.is_sign_positive());
|
| 453 | /// // `NaN` can be either positive or negative
|
| 454 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
|
| 455 | /// ```
|
| 456 | #[inline ]
|
| 457 | #[must_use ]
|
| 458 | pub const fn is_sign_positive(self) -> bool {
|
| 459 | self.0 & 0x8000u16 == 0
|
| 460 | }
|
| 461 |
|
| 462 | /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
|
| 463 | /// negative sign bit and −∞.
|
| 464 | ///
|
| 465 | /// # Examples
|
| 466 | ///
|
| 467 | /// ```rust
|
| 468 | /// # use half::prelude::*;
|
| 469 | ///
|
| 470 | /// let nan = f16::NAN;
|
| 471 | /// let f = f16::from_f32(7.0f32);
|
| 472 | /// let g = f16::from_f32(-7.0f32);
|
| 473 | ///
|
| 474 | /// assert!(!f.is_sign_negative());
|
| 475 | /// assert!(g.is_sign_negative());
|
| 476 | /// // `NaN` can be either positive or negative
|
| 477 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
|
| 478 | /// ```
|
| 479 | #[inline ]
|
| 480 | #[must_use ]
|
| 481 | pub const fn is_sign_negative(self) -> bool {
|
| 482 | self.0 & 0x8000u16 != 0
|
| 483 | }
|
| 484 |
|
| 485 | /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
|
| 486 | ///
|
| 487 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
|
| 488 | /// If `self` is NaN, then NaN with the sign of `sign` is returned.
|
| 489 | ///
|
| 490 | /// # Examples
|
| 491 | ///
|
| 492 | /// ```
|
| 493 | /// # use half::prelude::*;
|
| 494 | /// let f = f16::from_f32(3.5);
|
| 495 | ///
|
| 496 | /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
|
| 497 | /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
|
| 498 | /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
|
| 499 | /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
|
| 500 | ///
|
| 501 | /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
|
| 502 | /// ```
|
| 503 | #[inline ]
|
| 504 | #[must_use ]
|
| 505 | pub const fn copysign(self, sign: f16) -> f16 {
|
| 506 | f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
|
| 507 | }
|
| 508 |
|
| 509 | /// Returns the maximum of the two numbers.
|
| 510 | ///
|
| 511 | /// If one of the arguments is NaN, then the other argument is returned.
|
| 512 | ///
|
| 513 | /// # Examples
|
| 514 | ///
|
| 515 | /// ```
|
| 516 | /// # use half::prelude::*;
|
| 517 | /// let x = f16::from_f32(1.0);
|
| 518 | /// let y = f16::from_f32(2.0);
|
| 519 | ///
|
| 520 | /// assert_eq!(x.max(y), y);
|
| 521 | /// ```
|
| 522 | #[inline ]
|
| 523 | #[must_use ]
|
| 524 | pub fn max(self, other: f16) -> f16 {
|
| 525 | if other > self && !other.is_nan() {
|
| 526 | other
|
| 527 | } else {
|
| 528 | self
|
| 529 | }
|
| 530 | }
|
| 531 |
|
| 532 | /// Returns the minimum of the two numbers.
|
| 533 | ///
|
| 534 | /// If one of the arguments is NaN, then the other argument is returned.
|
| 535 | ///
|
| 536 | /// # Examples
|
| 537 | ///
|
| 538 | /// ```
|
| 539 | /// # use half::prelude::*;
|
| 540 | /// let x = f16::from_f32(1.0);
|
| 541 | /// let y = f16::from_f32(2.0);
|
| 542 | ///
|
| 543 | /// assert_eq!(x.min(y), x);
|
| 544 | /// ```
|
| 545 | #[inline ]
|
| 546 | #[must_use ]
|
| 547 | pub fn min(self, other: f16) -> f16 {
|
| 548 | if other < self && !other.is_nan() {
|
| 549 | other
|
| 550 | } else {
|
| 551 | self
|
| 552 | }
|
| 553 | }
|
| 554 |
|
| 555 | /// Restrict a value to a certain interval unless it is NaN.
|
| 556 | ///
|
| 557 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
|
| 558 | /// Otherwise this returns `self`.
|
| 559 | ///
|
| 560 | /// Note that this function returns NaN if the initial value was NaN as well.
|
| 561 | ///
|
| 562 | /// # Panics
|
| 563 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
|
| 564 | ///
|
| 565 | /// # Examples
|
| 566 | ///
|
| 567 | /// ```
|
| 568 | /// # use half::prelude::*;
|
| 569 | /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
|
| 570 | /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
|
| 571 | /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
|
| 572 | /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
|
| 573 | /// ```
|
| 574 | #[inline ]
|
| 575 | #[must_use ]
|
| 576 | pub fn clamp(self, min: f16, max: f16) -> f16 {
|
| 577 | assert!(min <= max);
|
| 578 | let mut x = self;
|
| 579 | if x < min {
|
| 580 | x = min;
|
| 581 | }
|
| 582 | if x > max {
|
| 583 | x = max;
|
| 584 | }
|
| 585 | x
|
| 586 | }
|
| 587 |
|
| 588 | /// Returns the ordering between `self` and `other`.
|
| 589 | ///
|
| 590 | /// Unlike the standard partial comparison between floating point numbers,
|
| 591 | /// this comparison always produces an ordering in accordance to
|
| 592 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
|
| 593 | /// floating point standard. The values are ordered in the following sequence:
|
| 594 | ///
|
| 595 | /// - negative quiet NaN
|
| 596 | /// - negative signaling NaN
|
| 597 | /// - negative infinity
|
| 598 | /// - negative numbers
|
| 599 | /// - negative subnormal numbers
|
| 600 | /// - negative zero
|
| 601 | /// - positive zero
|
| 602 | /// - positive subnormal numbers
|
| 603 | /// - positive numbers
|
| 604 | /// - positive infinity
|
| 605 | /// - positive signaling NaN
|
| 606 | /// - positive quiet NaN.
|
| 607 | ///
|
| 608 | /// The ordering established by this function does not always agree with the
|
| 609 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
|
| 610 | /// they consider negative and positive zero equal, while `total_cmp`
|
| 611 | /// doesn't.
|
| 612 | ///
|
| 613 | /// The interpretation of the signaling NaN bit follows the definition in
|
| 614 | /// the IEEE 754 standard, which may not match the interpretation by some of
|
| 615 | /// the older, non-conformant (e.g. MIPS) hardware implementations.
|
| 616 | ///
|
| 617 | /// # Examples
|
| 618 | /// ```
|
| 619 | /// # use half::f16;
|
| 620 | /// let mut v: Vec<f16> = vec![];
|
| 621 | /// v.push(f16::ONE);
|
| 622 | /// v.push(f16::INFINITY);
|
| 623 | /// v.push(f16::NEG_INFINITY);
|
| 624 | /// v.push(f16::NAN);
|
| 625 | /// v.push(f16::MAX_SUBNORMAL);
|
| 626 | /// v.push(-f16::MAX_SUBNORMAL);
|
| 627 | /// v.push(f16::ZERO);
|
| 628 | /// v.push(f16::NEG_ZERO);
|
| 629 | /// v.push(f16::NEG_ONE);
|
| 630 | /// v.push(f16::MIN_POSITIVE);
|
| 631 | ///
|
| 632 | /// v.sort_by(|a, b| a.total_cmp(&b));
|
| 633 | ///
|
| 634 | /// assert!(v
|
| 635 | /// .into_iter()
|
| 636 | /// .zip(
|
| 637 | /// [
|
| 638 | /// f16::NEG_INFINITY,
|
| 639 | /// f16::NEG_ONE,
|
| 640 | /// -f16::MAX_SUBNORMAL,
|
| 641 | /// f16::NEG_ZERO,
|
| 642 | /// f16::ZERO,
|
| 643 | /// f16::MAX_SUBNORMAL,
|
| 644 | /// f16::MIN_POSITIVE,
|
| 645 | /// f16::ONE,
|
| 646 | /// f16::INFINITY,
|
| 647 | /// f16::NAN
|
| 648 | /// ]
|
| 649 | /// .iter()
|
| 650 | /// )
|
| 651 | /// .all(|(a, b)| a.to_bits() == b.to_bits()));
|
| 652 | /// ```
|
| 653 | // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
|
| 654 | #[inline ]
|
| 655 | #[must_use ]
|
| 656 | pub fn total_cmp(&self, other: &Self) -> Ordering {
|
| 657 | let mut left = self.to_bits() as i16;
|
| 658 | let mut right = other.to_bits() as i16;
|
| 659 | left ^= (((left >> 15) as u16) >> 1) as i16;
|
| 660 | right ^= (((right >> 15) as u16) >> 1) as i16;
|
| 661 | left.cmp(&right)
|
| 662 | }
|
| 663 |
|
| 664 | /// Alternate serialize adapter for serializing as a float.
|
| 665 | ///
|
| 666 | /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
|
| 667 | /// implementation that serializes as an [`f32`] value. It is designed for use with
|
| 668 | /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
|
| 669 | /// the default deserialize implementation.
|
| 670 | ///
|
| 671 | /// # Examples
|
| 672 | ///
|
| 673 | /// A demonstration on how to use this adapater:
|
| 674 | ///
|
| 675 | /// ```
|
| 676 | /// use serde::{Serialize, Deserialize};
|
| 677 | /// use half::f16;
|
| 678 | ///
|
| 679 | /// #[derive(Serialize, Deserialize)]
|
| 680 | /// struct MyStruct {
|
| 681 | /// #[serde(serialize_with = "f16::serialize_as_f32")]
|
| 682 | /// value: f16 // Will be serialized as f32 instead of u16
|
| 683 | /// }
|
| 684 | /// ```
|
| 685 | #[cfg (feature = "serde" )]
|
| 686 | pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
| 687 | serializer.serialize_f32(self.to_f32())
|
| 688 | }
|
| 689 |
|
| 690 | /// Alternate serialize adapter for serializing as a string.
|
| 691 | ///
|
| 692 | /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
|
| 693 | /// implementation that serializes as a string value. It is designed for use with
|
| 694 | /// `serialize_with` serde attributes. Deserialization from string values is already supported
|
| 695 | /// by the default deserialize implementation.
|
| 696 | ///
|
| 697 | /// # Examples
|
| 698 | ///
|
| 699 | /// A demonstration on how to use this adapater:
|
| 700 | ///
|
| 701 | /// ```
|
| 702 | /// use serde::{Serialize, Deserialize};
|
| 703 | /// use half::f16;
|
| 704 | ///
|
| 705 | /// #[derive(Serialize, Deserialize)]
|
| 706 | /// struct MyStruct {
|
| 707 | /// #[serde(serialize_with = "f16::serialize_as_string")]
|
| 708 | /// value: f16 // Will be serialized as a string instead of u16
|
| 709 | /// }
|
| 710 | /// ```
|
| 711 | #[cfg (all(feature = "serde" , feature = "alloc" ))]
|
| 712 | pub fn serialize_as_string<S: serde::Serializer>(
|
| 713 | &self,
|
| 714 | serializer: S,
|
| 715 | ) -> Result<S::Ok, S::Error> {
|
| 716 | serializer.serialize_str(&self.to_string())
|
| 717 | }
|
| 718 |
|
| 719 | /// Approximate number of [`struct@f16`] significant digits in base 10
|
| 720 | pub const DIGITS: u32 = 3;
|
| 721 | /// [`struct@f16`]
|
| 722 | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
|
| 723 | ///
|
| 724 | /// This is the difference between 1.0 and the next largest representable number.
|
| 725 | pub const EPSILON: f16 = f16(0x1400u16);
|
| 726 | /// [`struct@f16`] positive Infinity (+∞)
|
| 727 | pub const INFINITY: f16 = f16(0x7C00u16);
|
| 728 | /// Number of [`struct@f16`] significant digits in base 2
|
| 729 | pub const MANTISSA_DIGITS: u32 = 11;
|
| 730 | /// Largest finite [`struct@f16`] value
|
| 731 | pub const MAX: f16 = f16(0x7BFF);
|
| 732 | /// Maximum possible [`struct@f16`] power of 10 exponent
|
| 733 | pub const MAX_10_EXP: i32 = 4;
|
| 734 | /// Maximum possible [`struct@f16`] power of 2 exponent
|
| 735 | pub const MAX_EXP: i32 = 16;
|
| 736 | /// Smallest finite [`struct@f16`] value
|
| 737 | pub const MIN: f16 = f16(0xFBFF);
|
| 738 | /// Minimum possible normal [`struct@f16`] power of 10 exponent
|
| 739 | pub const MIN_10_EXP: i32 = -4;
|
| 740 | /// One greater than the minimum possible normal [`struct@f16`] power of 2 exponent
|
| 741 | pub const MIN_EXP: i32 = -13;
|
| 742 | /// Smallest positive normal [`struct@f16`] value
|
| 743 | pub const MIN_POSITIVE: f16 = f16(0x0400u16);
|
| 744 | /// [`struct@f16`] Not a Number (NaN)
|
| 745 | pub const NAN: f16 = f16(0x7E00u16);
|
| 746 | /// [`struct@f16`] negative infinity (-∞)
|
| 747 | pub const NEG_INFINITY: f16 = f16(0xFC00u16);
|
| 748 | /// The radix or base of the internal representation of [`struct@f16`]
|
| 749 | pub const RADIX: u32 = 2;
|
| 750 |
|
| 751 | /// Minimum positive subnormal [`struct@f16`] value
|
| 752 | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
|
| 753 | /// Maximum subnormal [`struct@f16`] value
|
| 754 | pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
|
| 755 |
|
| 756 | /// [`struct@f16`] 1
|
| 757 | pub const ONE: f16 = f16(0x3C00u16);
|
| 758 | /// [`struct@f16`] 0
|
| 759 | pub const ZERO: f16 = f16(0x0000u16);
|
| 760 | /// [`struct@f16`] -0
|
| 761 | pub const NEG_ZERO: f16 = f16(0x8000u16);
|
| 762 | /// [`struct@f16`] -1
|
| 763 | pub const NEG_ONE: f16 = f16(0xBC00u16);
|
| 764 |
|
| 765 | /// [`struct@f16`] Euler's number (ℯ)
|
| 766 | pub const E: f16 = f16(0x4170u16);
|
| 767 | /// [`struct@f16`] Archimedes' constant (π)
|
| 768 | pub const PI: f16 = f16(0x4248u16);
|
| 769 | /// [`struct@f16`] 1/π
|
| 770 | pub const FRAC_1_PI: f16 = f16(0x3518u16);
|
| 771 | /// [`struct@f16`] 1/√2
|
| 772 | pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
|
| 773 | /// [`struct@f16`] 2/π
|
| 774 | pub const FRAC_2_PI: f16 = f16(0x3918u16);
|
| 775 | /// [`struct@f16`] 2/√π
|
| 776 | pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
|
| 777 | /// [`struct@f16`] π/2
|
| 778 | pub const FRAC_PI_2: f16 = f16(0x3E48u16);
|
| 779 | /// [`struct@f16`] π/3
|
| 780 | pub const FRAC_PI_3: f16 = f16(0x3C30u16);
|
| 781 | /// [`struct@f16`] π/4
|
| 782 | pub const FRAC_PI_4: f16 = f16(0x3A48u16);
|
| 783 | /// [`struct@f16`] π/6
|
| 784 | pub const FRAC_PI_6: f16 = f16(0x3830u16);
|
| 785 | /// [`struct@f16`] π/8
|
| 786 | pub const FRAC_PI_8: f16 = f16(0x3648u16);
|
| 787 | /// [`struct@f16`] 𝗅𝗇 10
|
| 788 | pub const LN_10: f16 = f16(0x409Bu16);
|
| 789 | /// [`struct@f16`] 𝗅𝗇 2
|
| 790 | pub const LN_2: f16 = f16(0x398Cu16);
|
| 791 | /// [`struct@f16`] 𝗅𝗈𝗀₁₀ℯ
|
| 792 | pub const LOG10_E: f16 = f16(0x36F3u16);
|
| 793 | /// [`struct@f16`] 𝗅𝗈𝗀₁₀2
|
| 794 | pub const LOG10_2: f16 = f16(0x34D1u16);
|
| 795 | /// [`struct@f16`] 𝗅𝗈𝗀₂ℯ
|
| 796 | pub const LOG2_E: f16 = f16(0x3DC5u16);
|
| 797 | /// [`struct@f16`] 𝗅𝗈𝗀₂10
|
| 798 | pub const LOG2_10: f16 = f16(0x42A5u16);
|
| 799 | /// [`struct@f16`] √2
|
| 800 | pub const SQRT_2: f16 = f16(0x3DA8u16);
|
| 801 | }
|
| 802 |
|
| 803 | impl From<f16> for f32 {
|
| 804 | #[inline ]
|
| 805 | fn from(x: f16) -> f32 {
|
| 806 | x.to_f32()
|
| 807 | }
|
| 808 | }
|
| 809 |
|
| 810 | impl From<f16> for f64 {
|
| 811 | #[inline ]
|
| 812 | fn from(x: f16) -> f64 {
|
| 813 | x.to_f64()
|
| 814 | }
|
| 815 | }
|
| 816 |
|
| 817 | impl From<i8> for f16 {
|
| 818 | #[inline ]
|
| 819 | fn from(x: i8) -> f16 {
|
| 820 | // Convert to f32, then to f16
|
| 821 | f16::from_f32(f32::from(x))
|
| 822 | }
|
| 823 | }
|
| 824 |
|
| 825 | impl From<u8> for f16 {
|
| 826 | #[inline ]
|
| 827 | fn from(x: u8) -> f16 {
|
| 828 | // Convert to f32, then to f16
|
| 829 | f16::from_f32(f32::from(x))
|
| 830 | }
|
| 831 | }
|
| 832 |
|
| 833 | impl PartialEq for f16 {
|
| 834 | fn eq(&self, other: &f16) -> bool {
|
| 835 | if self.is_nan() || other.is_nan() {
|
| 836 | false
|
| 837 | } else {
|
| 838 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
|
| 839 | }
|
| 840 | }
|
| 841 | }
|
| 842 |
|
| 843 | impl PartialOrd for f16 {
|
| 844 | fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
|
| 845 | if self.is_nan() || other.is_nan() {
|
| 846 | None
|
| 847 | } else {
|
| 848 | let neg = self.0 & 0x8000u16 != 0;
|
| 849 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 850 | match (neg, other_neg) {
|
| 851 | (false, false) => Some(self.0.cmp(&other.0)),
|
| 852 | (false, true) => {
|
| 853 | if (self.0 | other.0) & 0x7FFFu16 == 0 {
|
| 854 | Some(Ordering::Equal)
|
| 855 | } else {
|
| 856 | Some(Ordering::Greater)
|
| 857 | }
|
| 858 | }
|
| 859 | (true, false) => {
|
| 860 | if (self.0 | other.0) & 0x7FFFu16 == 0 {
|
| 861 | Some(Ordering::Equal)
|
| 862 | } else {
|
| 863 | Some(Ordering::Less)
|
| 864 | }
|
| 865 | }
|
| 866 | (true, true) => Some(other.0.cmp(&self.0)),
|
| 867 | }
|
| 868 | }
|
| 869 | }
|
| 870 |
|
| 871 | fn lt(&self, other: &f16) -> bool {
|
| 872 | if self.is_nan() || other.is_nan() {
|
| 873 | false
|
| 874 | } else {
|
| 875 | let neg = self.0 & 0x8000u16 != 0;
|
| 876 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 877 | match (neg, other_neg) {
|
| 878 | (false, false) => self.0 < other.0,
|
| 879 | (false, true) => false,
|
| 880 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
|
| 881 | (true, true) => self.0 > other.0,
|
| 882 | }
|
| 883 | }
|
| 884 | }
|
| 885 |
|
| 886 | fn le(&self, other: &f16) -> bool {
|
| 887 | if self.is_nan() || other.is_nan() {
|
| 888 | false
|
| 889 | } else {
|
| 890 | let neg = self.0 & 0x8000u16 != 0;
|
| 891 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 892 | match (neg, other_neg) {
|
| 893 | (false, false) => self.0 <= other.0,
|
| 894 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
|
| 895 | (true, false) => true,
|
| 896 | (true, true) => self.0 >= other.0,
|
| 897 | }
|
| 898 | }
|
| 899 | }
|
| 900 |
|
| 901 | fn gt(&self, other: &f16) -> bool {
|
| 902 | if self.is_nan() || other.is_nan() {
|
| 903 | false
|
| 904 | } else {
|
| 905 | let neg = self.0 & 0x8000u16 != 0;
|
| 906 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 907 | match (neg, other_neg) {
|
| 908 | (false, false) => self.0 > other.0,
|
| 909 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
|
| 910 | (true, false) => false,
|
| 911 | (true, true) => self.0 < other.0,
|
| 912 | }
|
| 913 | }
|
| 914 | }
|
| 915 |
|
| 916 | fn ge(&self, other: &f16) -> bool {
|
| 917 | if self.is_nan() || other.is_nan() {
|
| 918 | false
|
| 919 | } else {
|
| 920 | let neg = self.0 & 0x8000u16 != 0;
|
| 921 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 922 | match (neg, other_neg) {
|
| 923 | (false, false) => self.0 >= other.0,
|
| 924 | (false, true) => true,
|
| 925 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
|
| 926 | (true, true) => self.0 <= other.0,
|
| 927 | }
|
| 928 | }
|
| 929 | }
|
| 930 | }
|
| 931 |
|
| 932 | #[cfg (not(target_arch = "spirv" ))]
|
| 933 | impl FromStr for f16 {
|
| 934 | type Err = ParseFloatError;
|
| 935 | fn from_str(src: &str) -> Result<f16, ParseFloatError> {
|
| 936 | f32::from_str(src).map(op:f16::from_f32)
|
| 937 | }
|
| 938 | }
|
| 939 |
|
| 940 | #[cfg (not(target_arch = "spirv" ))]
|
| 941 | impl Debug for f16 {
|
| 942 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 943 | Debug::fmt(&self.to_f32(), f)
|
| 944 | }
|
| 945 | }
|
| 946 |
|
| 947 | #[cfg (not(target_arch = "spirv" ))]
|
| 948 | impl Display for f16 {
|
| 949 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 950 | Display::fmt(&self.to_f32(), f)
|
| 951 | }
|
| 952 | }
|
| 953 |
|
| 954 | #[cfg (not(target_arch = "spirv" ))]
|
| 955 | impl LowerExp for f16 {
|
| 956 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 957 | write!(f, " {:e}" , self.to_f32())
|
| 958 | }
|
| 959 | }
|
| 960 |
|
| 961 | #[cfg (not(target_arch = "spirv" ))]
|
| 962 | impl UpperExp for f16 {
|
| 963 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 964 | write!(f, " {:E}" , self.to_f32())
|
| 965 | }
|
| 966 | }
|
| 967 |
|
| 968 | #[cfg (not(target_arch = "spirv" ))]
|
| 969 | impl Binary for f16 {
|
| 970 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 971 | write!(f, " {:b}" , self.0)
|
| 972 | }
|
| 973 | }
|
| 974 |
|
| 975 | #[cfg (not(target_arch = "spirv" ))]
|
| 976 | impl Octal for f16 {
|
| 977 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 978 | write!(f, " {:o}" , self.0)
|
| 979 | }
|
| 980 | }
|
| 981 |
|
| 982 | #[cfg (not(target_arch = "spirv" ))]
|
| 983 | impl LowerHex for f16 {
|
| 984 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 985 | write!(f, " {:x}" , self.0)
|
| 986 | }
|
| 987 | }
|
| 988 |
|
| 989 | #[cfg (not(target_arch = "spirv" ))]
|
| 990 | impl UpperHex for f16 {
|
| 991 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 992 | write!(f, " {:X}" , self.0)
|
| 993 | }
|
| 994 | }
|
| 995 |
|
| 996 | impl Neg for f16 {
|
| 997 | type Output = Self;
|
| 998 |
|
| 999 | #[inline ]
|
| 1000 | fn neg(self) -> Self::Output {
|
| 1001 | Self(self.0 ^ 0x8000)
|
| 1002 | }
|
| 1003 | }
|
| 1004 |
|
| 1005 | impl Neg for &f16 {
|
| 1006 | type Output = <f16 as Neg>::Output;
|
| 1007 |
|
| 1008 | #[inline ]
|
| 1009 | fn neg(self) -> Self::Output {
|
| 1010 | Neg::neg(*self)
|
| 1011 | }
|
| 1012 | }
|
| 1013 |
|
| 1014 | impl Add for f16 {
|
| 1015 | type Output = Self;
|
| 1016 |
|
| 1017 | #[inline ]
|
| 1018 | fn add(self, rhs: Self) -> Self::Output {
|
| 1019 | f16(arch::add_f16(self.0, b:rhs.0))
|
| 1020 | }
|
| 1021 | }
|
| 1022 |
|
| 1023 | impl Add<&f16> for f16 {
|
| 1024 | type Output = <f16 as Add<f16>>::Output;
|
| 1025 |
|
| 1026 | #[inline ]
|
| 1027 | fn add(self, rhs: &f16) -> Self::Output {
|
| 1028 | self.add(*rhs)
|
| 1029 | }
|
| 1030 | }
|
| 1031 |
|
| 1032 | impl Add<&f16> for &f16 {
|
| 1033 | type Output = <f16 as Add<f16>>::Output;
|
| 1034 |
|
| 1035 | #[inline ]
|
| 1036 | fn add(self, rhs: &f16) -> Self::Output {
|
| 1037 | (*self).add(*rhs)
|
| 1038 | }
|
| 1039 | }
|
| 1040 |
|
| 1041 | impl Add<f16> for &f16 {
|
| 1042 | type Output = <f16 as Add<f16>>::Output;
|
| 1043 |
|
| 1044 | #[inline ]
|
| 1045 | fn add(self, rhs: f16) -> Self::Output {
|
| 1046 | (*self).add(rhs)
|
| 1047 | }
|
| 1048 | }
|
| 1049 |
|
| 1050 | impl AddAssign for f16 {
|
| 1051 | #[inline ]
|
| 1052 | fn add_assign(&mut self, rhs: Self) {
|
| 1053 | *self = (*self).add(rhs);
|
| 1054 | }
|
| 1055 | }
|
| 1056 |
|
| 1057 | impl AddAssign<&f16> for f16 {
|
| 1058 | #[inline ]
|
| 1059 | fn add_assign(&mut self, rhs: &f16) {
|
| 1060 | *self = (*self).add(rhs);
|
| 1061 | }
|
| 1062 | }
|
| 1063 |
|
| 1064 | impl Sub for f16 {
|
| 1065 | type Output = Self;
|
| 1066 |
|
| 1067 | #[inline ]
|
| 1068 | fn sub(self, rhs: Self) -> Self::Output {
|
| 1069 | f16(arch::subtract_f16(self.0, b:rhs.0))
|
| 1070 | }
|
| 1071 | }
|
| 1072 |
|
| 1073 | impl Sub<&f16> for f16 {
|
| 1074 | type Output = <f16 as Sub<f16>>::Output;
|
| 1075 |
|
| 1076 | #[inline ]
|
| 1077 | fn sub(self, rhs: &f16) -> Self::Output {
|
| 1078 | self.sub(*rhs)
|
| 1079 | }
|
| 1080 | }
|
| 1081 |
|
| 1082 | impl Sub<&f16> for &f16 {
|
| 1083 | type Output = <f16 as Sub<f16>>::Output;
|
| 1084 |
|
| 1085 | #[inline ]
|
| 1086 | fn sub(self, rhs: &f16) -> Self::Output {
|
| 1087 | (*self).sub(*rhs)
|
| 1088 | }
|
| 1089 | }
|
| 1090 |
|
| 1091 | impl Sub<f16> for &f16 {
|
| 1092 | type Output = <f16 as Sub<f16>>::Output;
|
| 1093 |
|
| 1094 | #[inline ]
|
| 1095 | fn sub(self, rhs: f16) -> Self::Output {
|
| 1096 | (*self).sub(rhs)
|
| 1097 | }
|
| 1098 | }
|
| 1099 |
|
| 1100 | impl SubAssign for f16 {
|
| 1101 | #[inline ]
|
| 1102 | fn sub_assign(&mut self, rhs: Self) {
|
| 1103 | *self = (*self).sub(rhs);
|
| 1104 | }
|
| 1105 | }
|
| 1106 |
|
| 1107 | impl SubAssign<&f16> for f16 {
|
| 1108 | #[inline ]
|
| 1109 | fn sub_assign(&mut self, rhs: &f16) {
|
| 1110 | *self = (*self).sub(rhs);
|
| 1111 | }
|
| 1112 | }
|
| 1113 |
|
| 1114 | impl Mul for f16 {
|
| 1115 | type Output = Self;
|
| 1116 |
|
| 1117 | #[inline ]
|
| 1118 | fn mul(self, rhs: Self) -> Self::Output {
|
| 1119 | f16(arch::multiply_f16(self.0, b:rhs.0))
|
| 1120 | }
|
| 1121 | }
|
| 1122 |
|
| 1123 | impl Mul<&f16> for f16 {
|
| 1124 | type Output = <f16 as Mul<f16>>::Output;
|
| 1125 |
|
| 1126 | #[inline ]
|
| 1127 | fn mul(self, rhs: &f16) -> Self::Output {
|
| 1128 | self.mul(*rhs)
|
| 1129 | }
|
| 1130 | }
|
| 1131 |
|
| 1132 | impl Mul<&f16> for &f16 {
|
| 1133 | type Output = <f16 as Mul<f16>>::Output;
|
| 1134 |
|
| 1135 | #[inline ]
|
| 1136 | fn mul(self, rhs: &f16) -> Self::Output {
|
| 1137 | (*self).mul(*rhs)
|
| 1138 | }
|
| 1139 | }
|
| 1140 |
|
| 1141 | impl Mul<f16> for &f16 {
|
| 1142 | type Output = <f16 as Mul<f16>>::Output;
|
| 1143 |
|
| 1144 | #[inline ]
|
| 1145 | fn mul(self, rhs: f16) -> Self::Output {
|
| 1146 | (*self).mul(rhs)
|
| 1147 | }
|
| 1148 | }
|
| 1149 |
|
| 1150 | impl MulAssign for f16 {
|
| 1151 | #[inline ]
|
| 1152 | fn mul_assign(&mut self, rhs: Self) {
|
| 1153 | *self = (*self).mul(rhs);
|
| 1154 | }
|
| 1155 | }
|
| 1156 |
|
| 1157 | impl MulAssign<&f16> for f16 {
|
| 1158 | #[inline ]
|
| 1159 | fn mul_assign(&mut self, rhs: &f16) {
|
| 1160 | *self = (*self).mul(rhs);
|
| 1161 | }
|
| 1162 | }
|
| 1163 |
|
| 1164 | impl Div for f16 {
|
| 1165 | type Output = Self;
|
| 1166 |
|
| 1167 | #[inline ]
|
| 1168 | fn div(self, rhs: Self) -> Self::Output {
|
| 1169 | f16(arch::divide_f16(self.0, b:rhs.0))
|
| 1170 | }
|
| 1171 | }
|
| 1172 |
|
| 1173 | impl Div<&f16> for f16 {
|
| 1174 | type Output = <f16 as Div<f16>>::Output;
|
| 1175 |
|
| 1176 | #[inline ]
|
| 1177 | fn div(self, rhs: &f16) -> Self::Output {
|
| 1178 | self.div(*rhs)
|
| 1179 | }
|
| 1180 | }
|
| 1181 |
|
| 1182 | impl Div<&f16> for &f16 {
|
| 1183 | type Output = <f16 as Div<f16>>::Output;
|
| 1184 |
|
| 1185 | #[inline ]
|
| 1186 | fn div(self, rhs: &f16) -> Self::Output {
|
| 1187 | (*self).div(*rhs)
|
| 1188 | }
|
| 1189 | }
|
| 1190 |
|
| 1191 | impl Div<f16> for &f16 {
|
| 1192 | type Output = <f16 as Div<f16>>::Output;
|
| 1193 |
|
| 1194 | #[inline ]
|
| 1195 | fn div(self, rhs: f16) -> Self::Output {
|
| 1196 | (*self).div(rhs)
|
| 1197 | }
|
| 1198 | }
|
| 1199 |
|
| 1200 | impl DivAssign for f16 {
|
| 1201 | #[inline ]
|
| 1202 | fn div_assign(&mut self, rhs: Self) {
|
| 1203 | *self = (*self).div(rhs);
|
| 1204 | }
|
| 1205 | }
|
| 1206 |
|
| 1207 | impl DivAssign<&f16> for f16 {
|
| 1208 | #[inline ]
|
| 1209 | fn div_assign(&mut self, rhs: &f16) {
|
| 1210 | *self = (*self).div(rhs);
|
| 1211 | }
|
| 1212 | }
|
| 1213 |
|
| 1214 | impl Rem for f16 {
|
| 1215 | type Output = Self;
|
| 1216 |
|
| 1217 | #[inline ]
|
| 1218 | fn rem(self, rhs: Self) -> Self::Output {
|
| 1219 | f16(arch::remainder_f16(self.0, b:rhs.0))
|
| 1220 | }
|
| 1221 | }
|
| 1222 |
|
| 1223 | impl Rem<&f16> for f16 {
|
| 1224 | type Output = <f16 as Rem<f16>>::Output;
|
| 1225 |
|
| 1226 | #[inline ]
|
| 1227 | fn rem(self, rhs: &f16) -> Self::Output {
|
| 1228 | self.rem(*rhs)
|
| 1229 | }
|
| 1230 | }
|
| 1231 |
|
| 1232 | impl Rem<&f16> for &f16 {
|
| 1233 | type Output = <f16 as Rem<f16>>::Output;
|
| 1234 |
|
| 1235 | #[inline ]
|
| 1236 | fn rem(self, rhs: &f16) -> Self::Output {
|
| 1237 | (*self).rem(*rhs)
|
| 1238 | }
|
| 1239 | }
|
| 1240 |
|
| 1241 | impl Rem<f16> for &f16 {
|
| 1242 | type Output = <f16 as Rem<f16>>::Output;
|
| 1243 |
|
| 1244 | #[inline ]
|
| 1245 | fn rem(self, rhs: f16) -> Self::Output {
|
| 1246 | (*self).rem(rhs)
|
| 1247 | }
|
| 1248 | }
|
| 1249 |
|
| 1250 | impl RemAssign for f16 {
|
| 1251 | #[inline ]
|
| 1252 | fn rem_assign(&mut self, rhs: Self) {
|
| 1253 | *self = (*self).rem(rhs);
|
| 1254 | }
|
| 1255 | }
|
| 1256 |
|
| 1257 | impl RemAssign<&f16> for f16 {
|
| 1258 | #[inline ]
|
| 1259 | fn rem_assign(&mut self, rhs: &f16) {
|
| 1260 | *self = (*self).rem(rhs);
|
| 1261 | }
|
| 1262 | }
|
| 1263 |
|
| 1264 | impl Product for f16 {
|
| 1265 | #[inline ]
|
| 1266 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
| 1267 | f16(arch::product_f16(iter.map(|f: f16| f.to_bits())))
|
| 1268 | }
|
| 1269 | }
|
| 1270 |
|
| 1271 | impl<'a> Product<&'a f16> for f16 {
|
| 1272 | #[inline ]
|
| 1273 | fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
|
| 1274 | f16(arch::product_f16(iter.map(|f: &'a f16| f.to_bits())))
|
| 1275 | }
|
| 1276 | }
|
| 1277 |
|
| 1278 | impl Sum for f16 {
|
| 1279 | #[inline ]
|
| 1280 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
| 1281 | f16(arch::sum_f16(iter.map(|f: f16| f.to_bits())))
|
| 1282 | }
|
| 1283 | }
|
| 1284 |
|
| 1285 | impl<'a> Sum<&'a f16> for f16 {
|
| 1286 | #[inline ]
|
| 1287 | fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
|
| 1288 | f16(arch::sum_f16(iter.map(|f: &'a f16| f.to_bits())))
|
| 1289 | }
|
| 1290 | }
|
| 1291 |
|
| 1292 | #[cfg (feature = "serde" )]
|
| 1293 | struct Visitor;
|
| 1294 |
|
| 1295 | #[cfg (feature = "serde" )]
|
| 1296 | impl<'de> Deserialize<'de> for f16 {
|
| 1297 | fn deserialize<D>(deserializer: D) -> Result<f16, D::Error>
|
| 1298 | where
|
| 1299 | D: serde::de::Deserializer<'de>,
|
| 1300 | {
|
| 1301 | deserializer.deserialize_newtype_struct("f16" , Visitor)
|
| 1302 | }
|
| 1303 | }
|
| 1304 |
|
| 1305 | #[cfg (feature = "serde" )]
|
| 1306 | impl<'de> serde::de::Visitor<'de> for Visitor {
|
| 1307 | type Value = f16;
|
| 1308 |
|
| 1309 | fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
|
| 1310 | write!(formatter, "tuple struct f16" )
|
| 1311 | }
|
| 1312 |
|
| 1313 | fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
|
| 1314 | where
|
| 1315 | D: serde::Deserializer<'de>,
|
| 1316 | {
|
| 1317 | Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?))
|
| 1318 | }
|
| 1319 |
|
| 1320 | fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
|
| 1321 | where
|
| 1322 | E: serde::de::Error,
|
| 1323 | {
|
| 1324 | v.parse().map_err(|_| {
|
| 1325 | serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string" )
|
| 1326 | })
|
| 1327 | }
|
| 1328 |
|
| 1329 | fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
|
| 1330 | where
|
| 1331 | E: serde::de::Error,
|
| 1332 | {
|
| 1333 | Ok(f16::from_f32(v))
|
| 1334 | }
|
| 1335 |
|
| 1336 | fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
|
| 1337 | where
|
| 1338 | E: serde::de::Error,
|
| 1339 | {
|
| 1340 | Ok(f16::from_f64(v))
|
| 1341 | }
|
| 1342 | }
|
| 1343 |
|
| 1344 | #[allow (
|
| 1345 | clippy::cognitive_complexity,
|
| 1346 | clippy::float_cmp,
|
| 1347 | clippy::neg_cmp_op_on_partial_ord
|
| 1348 | )]
|
| 1349 | #[cfg (test)]
|
| 1350 | mod test {
|
| 1351 | use super::*;
|
| 1352 | #[allow (unused_imports)]
|
| 1353 | use core::cmp::Ordering;
|
| 1354 | #[cfg (feature = "num-traits" )]
|
| 1355 | use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive};
|
| 1356 | use quickcheck_macros::quickcheck;
|
| 1357 |
|
| 1358 | #[cfg (feature = "num-traits" )]
|
| 1359 | #[test ]
|
| 1360 | fn as_primitive() {
|
| 1361 | let two = f16::from_f32(2.0);
|
| 1362 | assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
|
| 1363 | assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
|
| 1364 |
|
| 1365 | assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
|
| 1366 | assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
|
| 1367 |
|
| 1368 | assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
|
| 1369 | assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
|
| 1370 | }
|
| 1371 |
|
| 1372 | #[cfg (feature = "num-traits" )]
|
| 1373 | #[test ]
|
| 1374 | fn to_primitive() {
|
| 1375 | let two = f16::from_f32(2.0);
|
| 1376 | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
|
| 1377 | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
|
| 1378 | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
|
| 1379 | }
|
| 1380 |
|
| 1381 | #[cfg (feature = "num-traits" )]
|
| 1382 | #[test ]
|
| 1383 | fn from_primitive() {
|
| 1384 | let two = f16::from_f32(2.0);
|
| 1385 | assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
|
| 1386 | assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
|
| 1387 | assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
|
| 1388 | }
|
| 1389 |
|
| 1390 | #[cfg (feature = "num-traits" )]
|
| 1391 | #[test ]
|
| 1392 | fn to_and_from_bytes() {
|
| 1393 | let two = f16::from_f32(2.0);
|
| 1394 | assert_eq!(<f16 as ToBytes>::to_le_bytes(&two), [0, 64]);
|
| 1395 | assert_eq!(<f16 as FromBytes>::from_le_bytes(&[0, 64]), two);
|
| 1396 | assert_eq!(<f16 as ToBytes>::to_be_bytes(&two), [64, 0]);
|
| 1397 | assert_eq!(<f16 as FromBytes>::from_be_bytes(&[64, 0]), two);
|
| 1398 | }
|
| 1399 |
|
| 1400 | #[test ]
|
| 1401 | fn test_f16_consts() {
|
| 1402 | // DIGITS
|
| 1403 | let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
|
| 1404 | assert_eq!(f16::DIGITS, digits);
|
| 1405 | // sanity check to show test is good
|
| 1406 | let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
|
| 1407 | assert_eq!(core::f32::DIGITS, digits32);
|
| 1408 |
|
| 1409 | // EPSILON
|
| 1410 | let one = f16::from_f32(1.0);
|
| 1411 | let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
|
| 1412 | let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
|
| 1413 | assert_eq!(f16::EPSILON, epsilon);
|
| 1414 | // sanity check to show test is good
|
| 1415 | let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
|
| 1416 | let epsilon32 = one_plus_epsilon32 - 1f32;
|
| 1417 | assert_eq!(core::f32::EPSILON, epsilon32);
|
| 1418 |
|
| 1419 | // MAX, MIN and MIN_POSITIVE
|
| 1420 | let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
|
| 1421 | let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
|
| 1422 | let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
|
| 1423 | assert_eq!(f16::MAX, max);
|
| 1424 | assert_eq!(f16::MIN, min);
|
| 1425 | assert_eq!(f16::MIN_POSITIVE, min_pos);
|
| 1426 | // sanity check to show test is good
|
| 1427 | let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
|
| 1428 | let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
|
| 1429 | let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
|
| 1430 | assert_eq!(core::f32::MAX, max32);
|
| 1431 | assert_eq!(core::f32::MIN, min32);
|
| 1432 | assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
|
| 1433 |
|
| 1434 | // MIN_10_EXP and MAX_10_EXP
|
| 1435 | let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
|
| 1436 | assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
|
| 1437 | assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
|
| 1438 | let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
|
| 1439 | assert!(ten_to_max < f16::MAX.to_f32());
|
| 1440 | assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
|
| 1441 | // sanity check to show test is good
|
| 1442 | let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
|
| 1443 | assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
|
| 1444 | assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
|
| 1445 | let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
|
| 1446 | assert!(ten_to_max32 < f64::from(core::f32::MAX));
|
| 1447 | assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
|
| 1448 | }
|
| 1449 |
|
| 1450 | #[test ]
|
| 1451 | fn test_f16_consts_from_f32() {
|
| 1452 | let one = f16::from_f32(1.0);
|
| 1453 | let zero = f16::from_f32(0.0);
|
| 1454 | let neg_zero = f16::from_f32(-0.0);
|
| 1455 | let neg_one = f16::from_f32(-1.0);
|
| 1456 | let inf = f16::from_f32(core::f32::INFINITY);
|
| 1457 | let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
|
| 1458 | let nan = f16::from_f32(core::f32::NAN);
|
| 1459 |
|
| 1460 | assert_eq!(f16::ONE, one);
|
| 1461 | assert_eq!(f16::ZERO, zero);
|
| 1462 | assert!(zero.is_sign_positive());
|
| 1463 | assert_eq!(f16::NEG_ZERO, neg_zero);
|
| 1464 | assert!(neg_zero.is_sign_negative());
|
| 1465 | assert_eq!(f16::NEG_ONE, neg_one);
|
| 1466 | assert!(neg_one.is_sign_negative());
|
| 1467 | assert_eq!(f16::INFINITY, inf);
|
| 1468 | assert_eq!(f16::NEG_INFINITY, neg_inf);
|
| 1469 | assert!(nan.is_nan());
|
| 1470 | assert!(f16::NAN.is_nan());
|
| 1471 |
|
| 1472 | let e = f16::from_f32(core::f32::consts::E);
|
| 1473 | let pi = f16::from_f32(core::f32::consts::PI);
|
| 1474 | let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
|
| 1475 | let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
|
| 1476 | let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
|
| 1477 | let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
|
| 1478 | let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
|
| 1479 | let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
|
| 1480 | let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
|
| 1481 | let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
|
| 1482 | let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
|
| 1483 | let ln_10 = f16::from_f32(core::f32::consts::LN_10);
|
| 1484 | let ln_2 = f16::from_f32(core::f32::consts::LN_2);
|
| 1485 | let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
|
| 1486 | // core::f32::consts::LOG10_2 requires rustc 1.43.0
|
| 1487 | let log10_2 = f16::from_f32(2f32.log10());
|
| 1488 | let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
|
| 1489 | // core::f32::consts::LOG2_10 requires rustc 1.43.0
|
| 1490 | let log2_10 = f16::from_f32(10f32.log2());
|
| 1491 | let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
|
| 1492 |
|
| 1493 | assert_eq!(f16::E, e);
|
| 1494 | assert_eq!(f16::PI, pi);
|
| 1495 | assert_eq!(f16::FRAC_1_PI, frac_1_pi);
|
| 1496 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
|
| 1497 | assert_eq!(f16::FRAC_2_PI, frac_2_pi);
|
| 1498 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
|
| 1499 | assert_eq!(f16::FRAC_PI_2, frac_pi_2);
|
| 1500 | assert_eq!(f16::FRAC_PI_3, frac_pi_3);
|
| 1501 | assert_eq!(f16::FRAC_PI_4, frac_pi_4);
|
| 1502 | assert_eq!(f16::FRAC_PI_6, frac_pi_6);
|
| 1503 | assert_eq!(f16::FRAC_PI_8, frac_pi_8);
|
| 1504 | assert_eq!(f16::LN_10, ln_10);
|
| 1505 | assert_eq!(f16::LN_2, ln_2);
|
| 1506 | assert_eq!(f16::LOG10_E, log10_e);
|
| 1507 | assert_eq!(f16::LOG10_2, log10_2);
|
| 1508 | assert_eq!(f16::LOG2_E, log2_e);
|
| 1509 | assert_eq!(f16::LOG2_10, log2_10);
|
| 1510 | assert_eq!(f16::SQRT_2, sqrt_2);
|
| 1511 | }
|
| 1512 |
|
| 1513 | #[test ]
|
| 1514 | fn test_f16_consts_from_f64() {
|
| 1515 | let one = f16::from_f64(1.0);
|
| 1516 | let zero = f16::from_f64(0.0);
|
| 1517 | let neg_zero = f16::from_f64(-0.0);
|
| 1518 | let inf = f16::from_f64(core::f64::INFINITY);
|
| 1519 | let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
|
| 1520 | let nan = f16::from_f64(core::f64::NAN);
|
| 1521 |
|
| 1522 | assert_eq!(f16::ONE, one);
|
| 1523 | assert_eq!(f16::ZERO, zero);
|
| 1524 | assert!(zero.is_sign_positive());
|
| 1525 | assert_eq!(f16::NEG_ZERO, neg_zero);
|
| 1526 | assert!(neg_zero.is_sign_negative());
|
| 1527 | assert_eq!(f16::INFINITY, inf);
|
| 1528 | assert_eq!(f16::NEG_INFINITY, neg_inf);
|
| 1529 | assert!(nan.is_nan());
|
| 1530 | assert!(f16::NAN.is_nan());
|
| 1531 |
|
| 1532 | let e = f16::from_f64(core::f64::consts::E);
|
| 1533 | let pi = f16::from_f64(core::f64::consts::PI);
|
| 1534 | let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
|
| 1535 | let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
|
| 1536 | let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
|
| 1537 | let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
|
| 1538 | let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
|
| 1539 | let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
|
| 1540 | let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
|
| 1541 | let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
|
| 1542 | let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
|
| 1543 | let ln_10 = f16::from_f64(core::f64::consts::LN_10);
|
| 1544 | let ln_2 = f16::from_f64(core::f64::consts::LN_2);
|
| 1545 | let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
|
| 1546 | // core::f64::consts::LOG10_2 requires rustc 1.43.0
|
| 1547 | let log10_2 = f16::from_f64(2f64.log10());
|
| 1548 | let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
|
| 1549 | // core::f64::consts::LOG2_10 requires rustc 1.43.0
|
| 1550 | let log2_10 = f16::from_f64(10f64.log2());
|
| 1551 | let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
|
| 1552 |
|
| 1553 | assert_eq!(f16::E, e);
|
| 1554 | assert_eq!(f16::PI, pi);
|
| 1555 | assert_eq!(f16::FRAC_1_PI, frac_1_pi);
|
| 1556 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
|
| 1557 | assert_eq!(f16::FRAC_2_PI, frac_2_pi);
|
| 1558 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
|
| 1559 | assert_eq!(f16::FRAC_PI_2, frac_pi_2);
|
| 1560 | assert_eq!(f16::FRAC_PI_3, frac_pi_3);
|
| 1561 | assert_eq!(f16::FRAC_PI_4, frac_pi_4);
|
| 1562 | assert_eq!(f16::FRAC_PI_6, frac_pi_6);
|
| 1563 | assert_eq!(f16::FRAC_PI_8, frac_pi_8);
|
| 1564 | assert_eq!(f16::LN_10, ln_10);
|
| 1565 | assert_eq!(f16::LN_2, ln_2);
|
| 1566 | assert_eq!(f16::LOG10_E, log10_e);
|
| 1567 | assert_eq!(f16::LOG10_2, log10_2);
|
| 1568 | assert_eq!(f16::LOG2_E, log2_e);
|
| 1569 | assert_eq!(f16::LOG2_10, log2_10);
|
| 1570 | assert_eq!(f16::SQRT_2, sqrt_2);
|
| 1571 | }
|
| 1572 |
|
| 1573 | #[test ]
|
| 1574 | fn test_nan_conversion_to_smaller() {
|
| 1575 | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
|
| 1576 | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
|
| 1577 | let nan32 = f32::from_bits(0x7F80_0001u32);
|
| 1578 | let neg_nan32 = f32::from_bits(0xFF80_0001u32);
|
| 1579 | let nan32_from_64 = nan64 as f32;
|
| 1580 | let neg_nan32_from_64 = neg_nan64 as f32;
|
| 1581 | let nan16_from_64 = f16::from_f64(nan64);
|
| 1582 | let neg_nan16_from_64 = f16::from_f64(neg_nan64);
|
| 1583 | let nan16_from_32 = f16::from_f32(nan32);
|
| 1584 | let neg_nan16_from_32 = f16::from_f32(neg_nan32);
|
| 1585 |
|
| 1586 | assert!(nan64.is_nan() && nan64.is_sign_positive());
|
| 1587 | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
|
| 1588 | assert!(nan32.is_nan() && nan32.is_sign_positive());
|
| 1589 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
|
| 1590 |
|
| 1591 | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
|
| 1592 | assert!(nan32_from_64.is_nan());
|
| 1593 | assert!(neg_nan32_from_64.is_nan());
|
| 1594 | assert!(nan16_from_64.is_nan());
|
| 1595 | assert!(neg_nan16_from_64.is_nan());
|
| 1596 | assert!(nan16_from_32.is_nan());
|
| 1597 | assert!(neg_nan16_from_32.is_nan());
|
| 1598 | }
|
| 1599 |
|
| 1600 | #[test ]
|
| 1601 | fn test_nan_conversion_to_larger() {
|
| 1602 | let nan16 = f16::from_bits(0x7C01u16);
|
| 1603 | let neg_nan16 = f16::from_bits(0xFC01u16);
|
| 1604 | let nan32 = f32::from_bits(0x7F80_0001u32);
|
| 1605 | let neg_nan32 = f32::from_bits(0xFF80_0001u32);
|
| 1606 | let nan32_from_16 = f32::from(nan16);
|
| 1607 | let neg_nan32_from_16 = f32::from(neg_nan16);
|
| 1608 | let nan64_from_16 = f64::from(nan16);
|
| 1609 | let neg_nan64_from_16 = f64::from(neg_nan16);
|
| 1610 | let nan64_from_32 = f64::from(nan32);
|
| 1611 | let neg_nan64_from_32 = f64::from(neg_nan32);
|
| 1612 |
|
| 1613 | assert!(nan16.is_nan() && nan16.is_sign_positive());
|
| 1614 | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
|
| 1615 | assert!(nan32.is_nan() && nan32.is_sign_positive());
|
| 1616 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
|
| 1617 |
|
| 1618 | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
|
| 1619 | assert!(nan32_from_16.is_nan());
|
| 1620 | assert!(neg_nan32_from_16.is_nan());
|
| 1621 | assert!(nan64_from_16.is_nan());
|
| 1622 | assert!(neg_nan64_from_16.is_nan());
|
| 1623 | assert!(nan64_from_32.is_nan());
|
| 1624 | assert!(neg_nan64_from_32.is_nan());
|
| 1625 | }
|
| 1626 |
|
| 1627 | #[test ]
|
| 1628 | fn test_f16_to_f32() {
|
| 1629 | let f = f16::from_f32(7.0);
|
| 1630 | assert_eq!(f.to_f32(), 7.0f32);
|
| 1631 |
|
| 1632 | // 7.1 is NOT exactly representable in 16-bit, it's rounded
|
| 1633 | let f = f16::from_f32(7.1);
|
| 1634 | let diff = (f.to_f32() - 7.1f32).abs();
|
| 1635 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
|
| 1636 | assert!(diff <= 4.0 * f16::EPSILON.to_f32());
|
| 1637 |
|
| 1638 | assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
|
| 1639 | assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
|
| 1640 |
|
| 1641 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
|
| 1642 | assert_eq!(
|
| 1643 | f16::from_bits(0x0000_0005),
|
| 1644 | f16::from_f32(5.0 * 2.0f32.powi(-24))
|
| 1645 | );
|
| 1646 | }
|
| 1647 |
|
| 1648 | #[test ]
|
| 1649 | fn test_f16_to_f64() {
|
| 1650 | let f = f16::from_f64(7.0);
|
| 1651 | assert_eq!(f.to_f64(), 7.0f64);
|
| 1652 |
|
| 1653 | // 7.1 is NOT exactly representable in 16-bit, it's rounded
|
| 1654 | let f = f16::from_f64(7.1);
|
| 1655 | let diff = (f.to_f64() - 7.1f64).abs();
|
| 1656 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
|
| 1657 | assert!(diff <= 4.0 * f16::EPSILON.to_f64());
|
| 1658 |
|
| 1659 | assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
|
| 1660 | assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
|
| 1661 |
|
| 1662 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
|
| 1663 | assert_eq!(
|
| 1664 | f16::from_bits(0x0000_0005),
|
| 1665 | f16::from_f64(5.0 * 2.0f64.powi(-24))
|
| 1666 | );
|
| 1667 | }
|
| 1668 |
|
| 1669 | #[test ]
|
| 1670 | fn test_comparisons() {
|
| 1671 | let zero = f16::from_f64(0.0);
|
| 1672 | let one = f16::from_f64(1.0);
|
| 1673 | let neg_zero = f16::from_f64(-0.0);
|
| 1674 | let neg_one = f16::from_f64(-1.0);
|
| 1675 |
|
| 1676 | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
|
| 1677 | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
|
| 1678 | assert!(zero == neg_zero);
|
| 1679 | assert!(neg_zero == zero);
|
| 1680 | assert!(!(zero != neg_zero));
|
| 1681 | assert!(!(neg_zero != zero));
|
| 1682 | assert!(!(zero < neg_zero));
|
| 1683 | assert!(!(neg_zero < zero));
|
| 1684 | assert!(zero <= neg_zero);
|
| 1685 | assert!(neg_zero <= zero);
|
| 1686 | assert!(!(zero > neg_zero));
|
| 1687 | assert!(!(neg_zero > zero));
|
| 1688 | assert!(zero >= neg_zero);
|
| 1689 | assert!(neg_zero >= zero);
|
| 1690 |
|
| 1691 | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
|
| 1692 | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
|
| 1693 | assert!(!(one == neg_zero));
|
| 1694 | assert!(!(neg_zero == one));
|
| 1695 | assert!(one != neg_zero);
|
| 1696 | assert!(neg_zero != one);
|
| 1697 | assert!(!(one < neg_zero));
|
| 1698 | assert!(neg_zero < one);
|
| 1699 | assert!(!(one <= neg_zero));
|
| 1700 | assert!(neg_zero <= one);
|
| 1701 | assert!(one > neg_zero);
|
| 1702 | assert!(!(neg_zero > one));
|
| 1703 | assert!(one >= neg_zero);
|
| 1704 | assert!(!(neg_zero >= one));
|
| 1705 |
|
| 1706 | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
|
| 1707 | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
|
| 1708 | assert!(!(one == neg_one));
|
| 1709 | assert!(!(neg_one == one));
|
| 1710 | assert!(one != neg_one);
|
| 1711 | assert!(neg_one != one);
|
| 1712 | assert!(!(one < neg_one));
|
| 1713 | assert!(neg_one < one);
|
| 1714 | assert!(!(one <= neg_one));
|
| 1715 | assert!(neg_one <= one);
|
| 1716 | assert!(one > neg_one);
|
| 1717 | assert!(!(neg_one > one));
|
| 1718 | assert!(one >= neg_one);
|
| 1719 | assert!(!(neg_one >= one));
|
| 1720 | }
|
| 1721 |
|
| 1722 | #[test ]
|
| 1723 | #[allow (clippy::erasing_op, clippy::identity_op)]
|
| 1724 | fn round_to_even_f32() {
|
| 1725 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
|
| 1726 | let min_sub = f16::from_bits(1);
|
| 1727 | let min_sub_f = (-24f32).exp2();
|
| 1728 | assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
|
| 1729 | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
|
| 1730 |
|
| 1731 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
|
| 1732 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
|
| 1733 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
|
| 1734 | assert_eq!(
|
| 1735 | f16::from_f32(min_sub_f * 0.49).to_bits(),
|
| 1736 | min_sub.to_bits() * 0
|
| 1737 | );
|
| 1738 | assert_eq!(
|
| 1739 | f16::from_f32(min_sub_f * 0.50).to_bits(),
|
| 1740 | min_sub.to_bits() * 0
|
| 1741 | );
|
| 1742 | assert_eq!(
|
| 1743 | f16::from_f32(min_sub_f * 0.51).to_bits(),
|
| 1744 | min_sub.to_bits() * 1
|
| 1745 | );
|
| 1746 |
|
| 1747 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
|
| 1748 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
|
| 1749 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
|
| 1750 | assert_eq!(
|
| 1751 | f16::from_f32(min_sub_f * 1.49).to_bits(),
|
| 1752 | min_sub.to_bits() * 1
|
| 1753 | );
|
| 1754 | assert_eq!(
|
| 1755 | f16::from_f32(min_sub_f * 1.50).to_bits(),
|
| 1756 | min_sub.to_bits() * 2
|
| 1757 | );
|
| 1758 | assert_eq!(
|
| 1759 | f16::from_f32(min_sub_f * 1.51).to_bits(),
|
| 1760 | min_sub.to_bits() * 2
|
| 1761 | );
|
| 1762 |
|
| 1763 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
|
| 1764 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
|
| 1765 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
|
| 1766 | assert_eq!(
|
| 1767 | f16::from_f32(min_sub_f * 2.49).to_bits(),
|
| 1768 | min_sub.to_bits() * 2
|
| 1769 | );
|
| 1770 | assert_eq!(
|
| 1771 | f16::from_f32(min_sub_f * 2.50).to_bits(),
|
| 1772 | min_sub.to_bits() * 2
|
| 1773 | );
|
| 1774 | assert_eq!(
|
| 1775 | f16::from_f32(min_sub_f * 2.51).to_bits(),
|
| 1776 | min_sub.to_bits() * 3
|
| 1777 | );
|
| 1778 |
|
| 1779 | assert_eq!(
|
| 1780 | f16::from_f32(2000.49f32).to_bits(),
|
| 1781 | f16::from_f32(2000.0).to_bits()
|
| 1782 | );
|
| 1783 | assert_eq!(
|
| 1784 | f16::from_f32(2000.50f32).to_bits(),
|
| 1785 | f16::from_f32(2000.0).to_bits()
|
| 1786 | );
|
| 1787 | assert_eq!(
|
| 1788 | f16::from_f32(2000.51f32).to_bits(),
|
| 1789 | f16::from_f32(2001.0).to_bits()
|
| 1790 | );
|
| 1791 | assert_eq!(
|
| 1792 | f16::from_f32(2001.49f32).to_bits(),
|
| 1793 | f16::from_f32(2001.0).to_bits()
|
| 1794 | );
|
| 1795 | assert_eq!(
|
| 1796 | f16::from_f32(2001.50f32).to_bits(),
|
| 1797 | f16::from_f32(2002.0).to_bits()
|
| 1798 | );
|
| 1799 | assert_eq!(
|
| 1800 | f16::from_f32(2001.51f32).to_bits(),
|
| 1801 | f16::from_f32(2002.0).to_bits()
|
| 1802 | );
|
| 1803 | assert_eq!(
|
| 1804 | f16::from_f32(2002.49f32).to_bits(),
|
| 1805 | f16::from_f32(2002.0).to_bits()
|
| 1806 | );
|
| 1807 | assert_eq!(
|
| 1808 | f16::from_f32(2002.50f32).to_bits(),
|
| 1809 | f16::from_f32(2002.0).to_bits()
|
| 1810 | );
|
| 1811 | assert_eq!(
|
| 1812 | f16::from_f32(2002.51f32).to_bits(),
|
| 1813 | f16::from_f32(2003.0).to_bits()
|
| 1814 | );
|
| 1815 | }
|
| 1816 |
|
| 1817 | #[test ]
|
| 1818 | #[allow (clippy::erasing_op, clippy::identity_op)]
|
| 1819 | fn round_to_even_f64() {
|
| 1820 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
|
| 1821 | let min_sub = f16::from_bits(1);
|
| 1822 | let min_sub_f = (-24f64).exp2();
|
| 1823 | assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
|
| 1824 | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
|
| 1825 |
|
| 1826 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
|
| 1827 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
|
| 1828 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
|
| 1829 | assert_eq!(
|
| 1830 | f16::from_f64(min_sub_f * 0.49).to_bits(),
|
| 1831 | min_sub.to_bits() * 0
|
| 1832 | );
|
| 1833 | assert_eq!(
|
| 1834 | f16::from_f64(min_sub_f * 0.50).to_bits(),
|
| 1835 | min_sub.to_bits() * 0
|
| 1836 | );
|
| 1837 | assert_eq!(
|
| 1838 | f16::from_f64(min_sub_f * 0.51).to_bits(),
|
| 1839 | min_sub.to_bits() * 1
|
| 1840 | );
|
| 1841 |
|
| 1842 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
|
| 1843 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
|
| 1844 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
|
| 1845 | assert_eq!(
|
| 1846 | f16::from_f64(min_sub_f * 1.49).to_bits(),
|
| 1847 | min_sub.to_bits() * 1
|
| 1848 | );
|
| 1849 | assert_eq!(
|
| 1850 | f16::from_f64(min_sub_f * 1.50).to_bits(),
|
| 1851 | min_sub.to_bits() * 2
|
| 1852 | );
|
| 1853 | assert_eq!(
|
| 1854 | f16::from_f64(min_sub_f * 1.51).to_bits(),
|
| 1855 | min_sub.to_bits() * 2
|
| 1856 | );
|
| 1857 |
|
| 1858 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
|
| 1859 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
|
| 1860 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
|
| 1861 | assert_eq!(
|
| 1862 | f16::from_f64(min_sub_f * 2.49).to_bits(),
|
| 1863 | min_sub.to_bits() * 2
|
| 1864 | );
|
| 1865 | assert_eq!(
|
| 1866 | f16::from_f64(min_sub_f * 2.50).to_bits(),
|
| 1867 | min_sub.to_bits() * 2
|
| 1868 | );
|
| 1869 | assert_eq!(
|
| 1870 | f16::from_f64(min_sub_f * 2.51).to_bits(),
|
| 1871 | min_sub.to_bits() * 3
|
| 1872 | );
|
| 1873 |
|
| 1874 | assert_eq!(
|
| 1875 | f16::from_f64(2000.49f64).to_bits(),
|
| 1876 | f16::from_f64(2000.0).to_bits()
|
| 1877 | );
|
| 1878 | assert_eq!(
|
| 1879 | f16::from_f64(2000.50f64).to_bits(),
|
| 1880 | f16::from_f64(2000.0).to_bits()
|
| 1881 | );
|
| 1882 | assert_eq!(
|
| 1883 | f16::from_f64(2000.51f64).to_bits(),
|
| 1884 | f16::from_f64(2001.0).to_bits()
|
| 1885 | );
|
| 1886 | assert_eq!(
|
| 1887 | f16::from_f64(2001.49f64).to_bits(),
|
| 1888 | f16::from_f64(2001.0).to_bits()
|
| 1889 | );
|
| 1890 | assert_eq!(
|
| 1891 | f16::from_f64(2001.50f64).to_bits(),
|
| 1892 | f16::from_f64(2002.0).to_bits()
|
| 1893 | );
|
| 1894 | assert_eq!(
|
| 1895 | f16::from_f64(2001.51f64).to_bits(),
|
| 1896 | f16::from_f64(2002.0).to_bits()
|
| 1897 | );
|
| 1898 | assert_eq!(
|
| 1899 | f16::from_f64(2002.49f64).to_bits(),
|
| 1900 | f16::from_f64(2002.0).to_bits()
|
| 1901 | );
|
| 1902 | assert_eq!(
|
| 1903 | f16::from_f64(2002.50f64).to_bits(),
|
| 1904 | f16::from_f64(2002.0).to_bits()
|
| 1905 | );
|
| 1906 | assert_eq!(
|
| 1907 | f16::from_f64(2002.51f64).to_bits(),
|
| 1908 | f16::from_f64(2003.0).to_bits()
|
| 1909 | );
|
| 1910 | }
|
| 1911 |
|
| 1912 | #[test ]
|
| 1913 | fn arithmetic() {
|
| 1914 | assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.));
|
| 1915 | assert_eq!(f16::ONE - f16::ONE, f16::ZERO);
|
| 1916 | assert_eq!(f16::ONE * f16::ONE, f16::ONE);
|
| 1917 | assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.));
|
| 1918 | assert_eq!(f16::ONE / f16::ONE, f16::ONE);
|
| 1919 | assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.));
|
| 1920 | assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.));
|
| 1921 | }
|
| 1922 |
|
| 1923 | #[cfg (feature = "std" )]
|
| 1924 | #[test ]
|
| 1925 | fn formatting() {
|
| 1926 | let f = f16::from_f32(0.1152344);
|
| 1927 |
|
| 1928 | assert_eq!(format!("{:.3}" , f), "0.115" );
|
| 1929 | assert_eq!(format!("{:.4}" , f), "0.1152" );
|
| 1930 | assert_eq!(format!("{:+.4}" , f), "+0.1152" );
|
| 1931 | assert_eq!(format!("{:>+10.4}" , f), " +0.1152" );
|
| 1932 |
|
| 1933 | assert_eq!(format!("{:.3?}" , f), "0.115" );
|
| 1934 | assert_eq!(format!("{:.4?}" , f), "0.1152" );
|
| 1935 | assert_eq!(format!("{:+.4?}" , f), "+0.1152" );
|
| 1936 | assert_eq!(format!("{:>+10.4?}" , f), " +0.1152" );
|
| 1937 | }
|
| 1938 |
|
| 1939 | impl quickcheck::Arbitrary for f16 {
|
| 1940 | fn arbitrary(g: &mut quickcheck::Gen) -> Self {
|
| 1941 | f16(u16::arbitrary(g))
|
| 1942 | }
|
| 1943 | }
|
| 1944 |
|
| 1945 | #[quickcheck]
|
| 1946 | fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
|
| 1947 | let roundtrip = f16::from_f32(f.to_f32());
|
| 1948 | if f.is_nan() {
|
| 1949 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
|
| 1950 | } else {
|
| 1951 | f.0 == roundtrip.0
|
| 1952 | }
|
| 1953 | }
|
| 1954 |
|
| 1955 | #[quickcheck]
|
| 1956 | fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
|
| 1957 | let roundtrip = f16::from_f64(f.to_f64());
|
| 1958 | if f.is_nan() {
|
| 1959 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
|
| 1960 | } else {
|
| 1961 | f.0 == roundtrip.0
|
| 1962 | }
|
| 1963 | }
|
| 1964 | }
|
| 1965 | |