1 | #[cfg (all(feature = "serde" , feature = "alloc" ))]
|
2 | #[allow (unused_imports)]
|
3 | use alloc::string::ToString;
|
4 | #[cfg (feature = "bytemuck" )]
|
5 | use bytemuck::{Pod, Zeroable};
|
6 | use core::{
|
7 | cmp::Ordering,
|
8 | iter::{Product, Sum},
|
9 | num::FpCategory,
|
10 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
|
11 | };
|
12 | #[cfg (not(target_arch = "spirv" ))]
|
13 | use core::{
|
14 | fmt::{
|
15 | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
|
16 | },
|
17 | num::ParseFloatError,
|
18 | str::FromStr,
|
19 | };
|
20 | #[cfg (feature = "serde" )]
|
21 | use serde::{Deserialize, Serialize};
|
22 | #[cfg (feature = "zerocopy" )]
|
23 | use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout};
|
24 |
|
25 | pub(crate) mod arch;
|
26 |
|
27 | /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half"
|
28 | /// format.
|
29 | ///
|
30 | /// This 16-bit floating point type is intended for efficient storage where the full range and
|
31 | /// precision of a larger floating point value is not required.
|
32 | ///
|
33 | /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
|
34 | #[allow (non_camel_case_types)]
|
35 | #[derive (Clone, Copy, Default)]
|
36 | #[repr (transparent)]
|
37 | #[cfg_attr (feature = "serde" , derive(Serialize))]
|
38 | #[cfg_attr (
|
39 | feature = "rkyv" ,
|
40 | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
|
41 | )]
|
42 | #[cfg_attr (feature = "rkyv" , rkyv(resolver = F16Resolver))]
|
43 | #[cfg_attr (feature = "bytemuck" , derive(Zeroable, Pod))]
|
44 | #[cfg_attr (
|
45 | feature = "zerocopy" ,
|
46 | derive(FromBytes, Immutable, IntoBytes, KnownLayout)
|
47 | )]
|
48 | #[cfg_attr (kani, derive(kani::Arbitrary))]
|
49 | #[cfg_attr (feature = "arbitrary" , derive(arbitrary::Arbitrary))]
|
50 | pub struct f16(u16);
|
51 |
|
52 | impl f16 {
|
53 | /// Constructs a 16-bit floating point value from the raw bits.
|
54 | #[inline ]
|
55 | #[must_use ]
|
56 | pub const fn from_bits(bits: u16) -> f16 {
|
57 | f16(bits)
|
58 | }
|
59 |
|
60 | /// Constructs a 16-bit floating point value from a 32-bit floating point value.
|
61 | ///
|
62 | /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
|
63 | /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
|
64 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
65 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
66 | /// 16-bit value.
|
67 | #[inline ]
|
68 | #[must_use ]
|
69 | pub fn from_f32(value: f32) -> f16 {
|
70 | f16(arch::f32_to_f16(value))
|
71 | }
|
72 |
|
73 | /// Constructs a 16-bit floating point value from a 32-bit floating point value.
|
74 | ///
|
75 | /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
|
76 | /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
|
77 | /// in any non-`const` context.
|
78 | ///
|
79 | /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
|
80 | /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
|
81 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
82 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
83 | /// 16-bit value.
|
84 | #[inline ]
|
85 | #[must_use ]
|
86 | pub const fn from_f32_const(value: f32) -> f16 {
|
87 | f16(arch::f32_to_f16_fallback(value))
|
88 | }
|
89 |
|
90 | /// Constructs a 16-bit floating point value from a 64-bit floating point value.
|
91 | ///
|
92 | /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
|
93 | /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
|
94 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
95 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
96 | /// 16-bit value.
|
97 | #[inline ]
|
98 | #[must_use ]
|
99 | pub fn from_f64(value: f64) -> f16 {
|
100 | f16(arch::f64_to_f16(value))
|
101 | }
|
102 |
|
103 | /// Constructs a 16-bit floating point value from a 64-bit floating point value.
|
104 | ///
|
105 | /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
|
106 | /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
|
107 | /// in any non-`const` context.
|
108 | ///
|
109 | /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
|
110 | /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
|
111 | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
|
112 | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
|
113 | /// 16-bit value.
|
114 | #[inline ]
|
115 | #[must_use ]
|
116 | pub const fn from_f64_const(value: f64) -> f16 {
|
117 | f16(arch::f64_to_f16_fallback(value))
|
118 | }
|
119 |
|
120 | /// Converts a [`struct@f16`] into the underlying bit representation.
|
121 | #[inline ]
|
122 | #[must_use ]
|
123 | pub const fn to_bits(self) -> u16 {
|
124 | self.0
|
125 | }
|
126 |
|
127 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
128 | /// little-endian byte order.
|
129 | ///
|
130 | /// # Examples
|
131 | ///
|
132 | /// ```rust
|
133 | /// # use half::prelude::*;
|
134 | /// let bytes = f16::from_f32(12.5).to_le_bytes();
|
135 | /// assert_eq!(bytes, [0x40, 0x4A]);
|
136 | /// ```
|
137 | #[inline ]
|
138 | #[must_use ]
|
139 | pub const fn to_le_bytes(self) -> [u8; 2] {
|
140 | self.0.to_le_bytes()
|
141 | }
|
142 |
|
143 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
144 | /// big-endian (network) byte order.
|
145 | ///
|
146 | /// # Examples
|
147 | ///
|
148 | /// ```rust
|
149 | /// # use half::prelude::*;
|
150 | /// let bytes = f16::from_f32(12.5).to_be_bytes();
|
151 | /// assert_eq!(bytes, [0x4A, 0x40]);
|
152 | /// ```
|
153 | #[inline ]
|
154 | #[must_use ]
|
155 | pub const fn to_be_bytes(self) -> [u8; 2] {
|
156 | self.0.to_be_bytes()
|
157 | }
|
158 |
|
159 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
160 | /// native byte order.
|
161 | ///
|
162 | /// As the target platform's native endianness is used, portable code should use
|
163 | /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
|
164 | /// instead.
|
165 | ///
|
166 | /// # Examples
|
167 | ///
|
168 | /// ```rust
|
169 | /// # use half::prelude::*;
|
170 | /// let bytes = f16::from_f32(12.5).to_ne_bytes();
|
171 | /// assert_eq!(bytes, if cfg!(target_endian = "big" ) {
|
172 | /// [0x4A, 0x40]
|
173 | /// } else {
|
174 | /// [0x40, 0x4A]
|
175 | /// });
|
176 | /// ```
|
177 | #[inline ]
|
178 | #[must_use ]
|
179 | pub const fn to_ne_bytes(self) -> [u8; 2] {
|
180 | self.0.to_ne_bytes()
|
181 | }
|
182 |
|
183 | /// Creates a floating point value from its representation as a byte array in little endian.
|
184 | ///
|
185 | /// # Examples
|
186 | ///
|
187 | /// ```rust
|
188 | /// # use half::prelude::*;
|
189 | /// let value = f16::from_le_bytes([0x40, 0x4A]);
|
190 | /// assert_eq!(value, f16::from_f32(12.5));
|
191 | /// ```
|
192 | #[inline ]
|
193 | #[must_use ]
|
194 | pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
|
195 | f16::from_bits(u16::from_le_bytes(bytes))
|
196 | }
|
197 |
|
198 | /// Creates a floating point value from its representation as a byte array in big endian.
|
199 | ///
|
200 | /// # Examples
|
201 | ///
|
202 | /// ```rust
|
203 | /// # use half::prelude::*;
|
204 | /// let value = f16::from_be_bytes([0x4A, 0x40]);
|
205 | /// assert_eq!(value, f16::from_f32(12.5));
|
206 | /// ```
|
207 | #[inline ]
|
208 | #[must_use ]
|
209 | pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
|
210 | f16::from_bits(u16::from_be_bytes(bytes))
|
211 | }
|
212 |
|
213 | /// Creates a floating point value from its representation as a byte array in native endian.
|
214 | ///
|
215 | /// As the target platform's native endianness is used, portable code likely wants to use
|
216 | /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
|
217 | /// appropriate instead.
|
218 | ///
|
219 | /// # Examples
|
220 | ///
|
221 | /// ```rust
|
222 | /// # use half::prelude::*;
|
223 | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big" ) {
|
224 | /// [0x4A, 0x40]
|
225 | /// } else {
|
226 | /// [0x40, 0x4A]
|
227 | /// });
|
228 | /// assert_eq!(value, f16::from_f32(12.5));
|
229 | /// ```
|
230 | #[inline ]
|
231 | #[must_use ]
|
232 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
|
233 | f16::from_bits(u16::from_ne_bytes(bytes))
|
234 | }
|
235 |
|
236 | /// Converts a [`struct@f16`] value into a `f32` value.
|
237 | ///
|
238 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
239 | /// in 32-bit floating point.
|
240 | #[inline ]
|
241 | #[must_use ]
|
242 | pub fn to_f32(self) -> f32 {
|
243 | arch::f16_to_f32(self.0)
|
244 | }
|
245 |
|
246 | /// Converts a [`struct@f16`] value into a `f32` value.
|
247 | ///
|
248 | /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
|
249 | /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
|
250 | /// in any non-`const` context.
|
251 | ///
|
252 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
253 | /// in 32-bit floating point.
|
254 | #[inline ]
|
255 | #[must_use ]
|
256 | pub const fn to_f32_const(self) -> f32 {
|
257 | arch::f16_to_f32_fallback(self.0)
|
258 | }
|
259 |
|
260 | /// Converts a [`struct@f16`] value into a `f64` value.
|
261 | ///
|
262 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
263 | /// in 64-bit floating point.
|
264 | #[inline ]
|
265 | #[must_use ]
|
266 | pub fn to_f64(self) -> f64 {
|
267 | arch::f16_to_f64(self.0)
|
268 | }
|
269 |
|
270 | /// Converts a [`struct@f16`] value into a `f64` value.
|
271 | ///
|
272 | /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
|
273 | /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
|
274 | /// in any non-`const` context.
|
275 | ///
|
276 | /// This conversion is lossless as all 16-bit floating point values can be represented exactly
|
277 | /// in 64-bit floating point.
|
278 | #[inline ]
|
279 | #[must_use ]
|
280 | pub const fn to_f64_const(self) -> f64 {
|
281 | arch::f16_to_f64_fallback(self.0)
|
282 | }
|
283 |
|
284 | /// Returns `true` if this value is `NaN` and `false` otherwise.
|
285 | ///
|
286 | /// # Examples
|
287 | ///
|
288 | /// ```rust
|
289 | /// # use half::prelude::*;
|
290 | ///
|
291 | /// let nan = f16::NAN;
|
292 | /// let f = f16::from_f32(7.0_f32);
|
293 | ///
|
294 | /// assert!(nan.is_nan());
|
295 | /// assert!(!f.is_nan());
|
296 | /// ```
|
297 | #[inline ]
|
298 | #[must_use ]
|
299 | pub const fn is_nan(self) -> bool {
|
300 | self.0 & 0x7FFFu16 > 0x7C00u16
|
301 | }
|
302 |
|
303 | /// Returns `true` if this value is ±∞ and `false`.
|
304 | /// otherwise.
|
305 | ///
|
306 | /// # Examples
|
307 | ///
|
308 | /// ```rust
|
309 | /// # use half::prelude::*;
|
310 | ///
|
311 | /// let f = f16::from_f32(7.0f32);
|
312 | /// let inf = f16::INFINITY;
|
313 | /// let neg_inf = f16::NEG_INFINITY;
|
314 | /// let nan = f16::NAN;
|
315 | ///
|
316 | /// assert!(!f.is_infinite());
|
317 | /// assert!(!nan.is_infinite());
|
318 | ///
|
319 | /// assert!(inf.is_infinite());
|
320 | /// assert!(neg_inf.is_infinite());
|
321 | /// ```
|
322 | #[inline ]
|
323 | #[must_use ]
|
324 | pub const fn is_infinite(self) -> bool {
|
325 | self.0 & 0x7FFFu16 == 0x7C00u16
|
326 | }
|
327 |
|
328 | /// Returns `true` if this number is neither infinite nor `NaN`.
|
329 | ///
|
330 | /// # Examples
|
331 | ///
|
332 | /// ```rust
|
333 | /// # use half::prelude::*;
|
334 | ///
|
335 | /// let f = f16::from_f32(7.0f32);
|
336 | /// let inf = f16::INFINITY;
|
337 | /// let neg_inf = f16::NEG_INFINITY;
|
338 | /// let nan = f16::NAN;
|
339 | ///
|
340 | /// assert!(f.is_finite());
|
341 | ///
|
342 | /// assert!(!nan.is_finite());
|
343 | /// assert!(!inf.is_finite());
|
344 | /// assert!(!neg_inf.is_finite());
|
345 | /// ```
|
346 | #[inline ]
|
347 | #[must_use ]
|
348 | pub const fn is_finite(self) -> bool {
|
349 | self.0 & 0x7C00u16 != 0x7C00u16
|
350 | }
|
351 |
|
352 | /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
|
353 | ///
|
354 | /// # Examples
|
355 | ///
|
356 | /// ```rust
|
357 | /// # use half::prelude::*;
|
358 | ///
|
359 | /// let min = f16::MIN_POSITIVE;
|
360 | /// let max = f16::MAX;
|
361 | /// let lower_than_min = f16::from_f32(1.0e-10_f32);
|
362 | /// let zero = f16::from_f32(0.0_f32);
|
363 | ///
|
364 | /// assert!(min.is_normal());
|
365 | /// assert!(max.is_normal());
|
366 | ///
|
367 | /// assert!(!zero.is_normal());
|
368 | /// assert!(!f16::NAN.is_normal());
|
369 | /// assert!(!f16::INFINITY.is_normal());
|
370 | /// // Values between `0` and `min` are Subnormal.
|
371 | /// assert!(!lower_than_min.is_normal());
|
372 | /// ```
|
373 | #[inline ]
|
374 | #[must_use ]
|
375 | pub const fn is_normal(self) -> bool {
|
376 | let exp = self.0 & 0x7C00u16;
|
377 | exp != 0x7C00u16 && exp != 0
|
378 | }
|
379 |
|
380 | /// Returns the floating point category of the number.
|
381 | ///
|
382 | /// If only one property is going to be tested, it is generally faster to use the specific
|
383 | /// predicate instead.
|
384 | ///
|
385 | /// # Examples
|
386 | ///
|
387 | /// ```rust
|
388 | /// use std::num::FpCategory;
|
389 | /// # use half::prelude::*;
|
390 | ///
|
391 | /// let num = f16::from_f32(12.4_f32);
|
392 | /// let inf = f16::INFINITY;
|
393 | ///
|
394 | /// assert_eq!(num.classify(), FpCategory::Normal);
|
395 | /// assert_eq!(inf.classify(), FpCategory::Infinite);
|
396 | /// ```
|
397 | #[must_use ]
|
398 | pub const fn classify(self) -> FpCategory {
|
399 | let exp = self.0 & 0x7C00u16;
|
400 | let man = self.0 & 0x03FFu16;
|
401 | match (exp, man) {
|
402 | (0, 0) => FpCategory::Zero,
|
403 | (0, _) => FpCategory::Subnormal,
|
404 | (0x7C00u16, 0) => FpCategory::Infinite,
|
405 | (0x7C00u16, _) => FpCategory::Nan,
|
406 | _ => FpCategory::Normal,
|
407 | }
|
408 | }
|
409 |
|
410 | /// Returns a number that represents the sign of `self`.
|
411 | ///
|
412 | /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
|
413 | /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
|
414 | /// * [`NAN`][f16::NAN] if the number is `NaN`
|
415 | ///
|
416 | /// # Examples
|
417 | ///
|
418 | /// ```rust
|
419 | /// # use half::prelude::*;
|
420 | ///
|
421 | /// let f = f16::from_f32(3.5_f32);
|
422 | ///
|
423 | /// assert_eq!(f.signum(), f16::from_f32(1.0));
|
424 | /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
|
425 | ///
|
426 | /// assert!(f16::NAN.signum().is_nan());
|
427 | /// ```
|
428 | #[must_use ]
|
429 | pub const fn signum(self) -> f16 {
|
430 | if self.is_nan() {
|
431 | self
|
432 | } else if self.0 & 0x8000u16 != 0 {
|
433 | Self::NEG_ONE
|
434 | } else {
|
435 | Self::ONE
|
436 | }
|
437 | }
|
438 |
|
439 | /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
|
440 | /// positive sign bit and +∞.
|
441 | ///
|
442 | /// # Examples
|
443 | ///
|
444 | /// ```rust
|
445 | /// # use half::prelude::*;
|
446 | ///
|
447 | /// let nan = f16::NAN;
|
448 | /// let f = f16::from_f32(7.0_f32);
|
449 | /// let g = f16::from_f32(-7.0_f32);
|
450 | ///
|
451 | /// assert!(f.is_sign_positive());
|
452 | /// assert!(!g.is_sign_positive());
|
453 | /// // `NaN` can be either positive or negative
|
454 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
|
455 | /// ```
|
456 | #[inline ]
|
457 | #[must_use ]
|
458 | pub const fn is_sign_positive(self) -> bool {
|
459 | self.0 & 0x8000u16 == 0
|
460 | }
|
461 |
|
462 | /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
|
463 | /// negative sign bit and −∞.
|
464 | ///
|
465 | /// # Examples
|
466 | ///
|
467 | /// ```rust
|
468 | /// # use half::prelude::*;
|
469 | ///
|
470 | /// let nan = f16::NAN;
|
471 | /// let f = f16::from_f32(7.0f32);
|
472 | /// let g = f16::from_f32(-7.0f32);
|
473 | ///
|
474 | /// assert!(!f.is_sign_negative());
|
475 | /// assert!(g.is_sign_negative());
|
476 | /// // `NaN` can be either positive or negative
|
477 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
|
478 | /// ```
|
479 | #[inline ]
|
480 | #[must_use ]
|
481 | pub const fn is_sign_negative(self) -> bool {
|
482 | self.0 & 0x8000u16 != 0
|
483 | }
|
484 |
|
485 | /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
|
486 | ///
|
487 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
|
488 | /// If `self` is NaN, then NaN with the sign of `sign` is returned.
|
489 | ///
|
490 | /// # Examples
|
491 | ///
|
492 | /// ```
|
493 | /// # use half::prelude::*;
|
494 | /// let f = f16::from_f32(3.5);
|
495 | ///
|
496 | /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
|
497 | /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
|
498 | /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
|
499 | /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
|
500 | ///
|
501 | /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
|
502 | /// ```
|
503 | #[inline ]
|
504 | #[must_use ]
|
505 | pub const fn copysign(self, sign: f16) -> f16 {
|
506 | f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
|
507 | }
|
508 |
|
509 | /// Returns the maximum of the two numbers.
|
510 | ///
|
511 | /// If one of the arguments is NaN, then the other argument is returned.
|
512 | ///
|
513 | /// # Examples
|
514 | ///
|
515 | /// ```
|
516 | /// # use half::prelude::*;
|
517 | /// let x = f16::from_f32(1.0);
|
518 | /// let y = f16::from_f32(2.0);
|
519 | ///
|
520 | /// assert_eq!(x.max(y), y);
|
521 | /// ```
|
522 | #[inline ]
|
523 | #[must_use ]
|
524 | pub fn max(self, other: f16) -> f16 {
|
525 | if other > self && !other.is_nan() {
|
526 | other
|
527 | } else {
|
528 | self
|
529 | }
|
530 | }
|
531 |
|
532 | /// Returns the minimum of the two numbers.
|
533 | ///
|
534 | /// If one of the arguments is NaN, then the other argument is returned.
|
535 | ///
|
536 | /// # Examples
|
537 | ///
|
538 | /// ```
|
539 | /// # use half::prelude::*;
|
540 | /// let x = f16::from_f32(1.0);
|
541 | /// let y = f16::from_f32(2.0);
|
542 | ///
|
543 | /// assert_eq!(x.min(y), x);
|
544 | /// ```
|
545 | #[inline ]
|
546 | #[must_use ]
|
547 | pub fn min(self, other: f16) -> f16 {
|
548 | if other < self && !other.is_nan() {
|
549 | other
|
550 | } else {
|
551 | self
|
552 | }
|
553 | }
|
554 |
|
555 | /// Restrict a value to a certain interval unless it is NaN.
|
556 | ///
|
557 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
|
558 | /// Otherwise this returns `self`.
|
559 | ///
|
560 | /// Note that this function returns NaN if the initial value was NaN as well.
|
561 | ///
|
562 | /// # Panics
|
563 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
|
564 | ///
|
565 | /// # Examples
|
566 | ///
|
567 | /// ```
|
568 | /// # use half::prelude::*;
|
569 | /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
|
570 | /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
|
571 | /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
|
572 | /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
|
573 | /// ```
|
574 | #[inline ]
|
575 | #[must_use ]
|
576 | pub fn clamp(self, min: f16, max: f16) -> f16 {
|
577 | assert!(min <= max);
|
578 | let mut x = self;
|
579 | if x < min {
|
580 | x = min;
|
581 | }
|
582 | if x > max {
|
583 | x = max;
|
584 | }
|
585 | x
|
586 | }
|
587 |
|
588 | /// Returns the ordering between `self` and `other`.
|
589 | ///
|
590 | /// Unlike the standard partial comparison between floating point numbers,
|
591 | /// this comparison always produces an ordering in accordance to
|
592 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
|
593 | /// floating point standard. The values are ordered in the following sequence:
|
594 | ///
|
595 | /// - negative quiet NaN
|
596 | /// - negative signaling NaN
|
597 | /// - negative infinity
|
598 | /// - negative numbers
|
599 | /// - negative subnormal numbers
|
600 | /// - negative zero
|
601 | /// - positive zero
|
602 | /// - positive subnormal numbers
|
603 | /// - positive numbers
|
604 | /// - positive infinity
|
605 | /// - positive signaling NaN
|
606 | /// - positive quiet NaN.
|
607 | ///
|
608 | /// The ordering established by this function does not always agree with the
|
609 | /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
|
610 | /// they consider negative and positive zero equal, while `total_cmp`
|
611 | /// doesn't.
|
612 | ///
|
613 | /// The interpretation of the signaling NaN bit follows the definition in
|
614 | /// the IEEE 754 standard, which may not match the interpretation by some of
|
615 | /// the older, non-conformant (e.g. MIPS) hardware implementations.
|
616 | ///
|
617 | /// # Examples
|
618 | /// ```
|
619 | /// # use half::f16;
|
620 | /// let mut v: Vec<f16> = vec![];
|
621 | /// v.push(f16::ONE);
|
622 | /// v.push(f16::INFINITY);
|
623 | /// v.push(f16::NEG_INFINITY);
|
624 | /// v.push(f16::NAN);
|
625 | /// v.push(f16::MAX_SUBNORMAL);
|
626 | /// v.push(-f16::MAX_SUBNORMAL);
|
627 | /// v.push(f16::ZERO);
|
628 | /// v.push(f16::NEG_ZERO);
|
629 | /// v.push(f16::NEG_ONE);
|
630 | /// v.push(f16::MIN_POSITIVE);
|
631 | ///
|
632 | /// v.sort_by(|a, b| a.total_cmp(&b));
|
633 | ///
|
634 | /// assert!(v
|
635 | /// .into_iter()
|
636 | /// .zip(
|
637 | /// [
|
638 | /// f16::NEG_INFINITY,
|
639 | /// f16::NEG_ONE,
|
640 | /// -f16::MAX_SUBNORMAL,
|
641 | /// f16::NEG_ZERO,
|
642 | /// f16::ZERO,
|
643 | /// f16::MAX_SUBNORMAL,
|
644 | /// f16::MIN_POSITIVE,
|
645 | /// f16::ONE,
|
646 | /// f16::INFINITY,
|
647 | /// f16::NAN
|
648 | /// ]
|
649 | /// .iter()
|
650 | /// )
|
651 | /// .all(|(a, b)| a.to_bits() == b.to_bits()));
|
652 | /// ```
|
653 | // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
|
654 | #[inline ]
|
655 | #[must_use ]
|
656 | pub fn total_cmp(&self, other: &Self) -> Ordering {
|
657 | let mut left = self.to_bits() as i16;
|
658 | let mut right = other.to_bits() as i16;
|
659 | left ^= (((left >> 15) as u16) >> 1) as i16;
|
660 | right ^= (((right >> 15) as u16) >> 1) as i16;
|
661 | left.cmp(&right)
|
662 | }
|
663 |
|
664 | /// Alternate serialize adapter for serializing as a float.
|
665 | ///
|
666 | /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
|
667 | /// implementation that serializes as an [`f32`] value. It is designed for use with
|
668 | /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
|
669 | /// the default deserialize implementation.
|
670 | ///
|
671 | /// # Examples
|
672 | ///
|
673 | /// A demonstration on how to use this adapater:
|
674 | ///
|
675 | /// ```
|
676 | /// use serde::{Serialize, Deserialize};
|
677 | /// use half::f16;
|
678 | ///
|
679 | /// #[derive(Serialize, Deserialize)]
|
680 | /// struct MyStruct {
|
681 | /// #[serde(serialize_with = "f16::serialize_as_f32")]
|
682 | /// value: f16 // Will be serialized as f32 instead of u16
|
683 | /// }
|
684 | /// ```
|
685 | #[cfg (feature = "serde" )]
|
686 | pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
687 | serializer.serialize_f32(self.to_f32())
|
688 | }
|
689 |
|
690 | /// Alternate serialize adapter for serializing as a string.
|
691 | ///
|
692 | /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
|
693 | /// implementation that serializes as a string value. It is designed for use with
|
694 | /// `serialize_with` serde attributes. Deserialization from string values is already supported
|
695 | /// by the default deserialize implementation.
|
696 | ///
|
697 | /// # Examples
|
698 | ///
|
699 | /// A demonstration on how to use this adapater:
|
700 | ///
|
701 | /// ```
|
702 | /// use serde::{Serialize, Deserialize};
|
703 | /// use half::f16;
|
704 | ///
|
705 | /// #[derive(Serialize, Deserialize)]
|
706 | /// struct MyStruct {
|
707 | /// #[serde(serialize_with = "f16::serialize_as_string")]
|
708 | /// value: f16 // Will be serialized as a string instead of u16
|
709 | /// }
|
710 | /// ```
|
711 | #[cfg (all(feature = "serde" , feature = "alloc" ))]
|
712 | pub fn serialize_as_string<S: serde::Serializer>(
|
713 | &self,
|
714 | serializer: S,
|
715 | ) -> Result<S::Ok, S::Error> {
|
716 | serializer.serialize_str(&self.to_string())
|
717 | }
|
718 |
|
719 | /// Approximate number of [`struct@f16`] significant digits in base 10
|
720 | pub const DIGITS: u32 = 3;
|
721 | /// [`struct@f16`]
|
722 | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
|
723 | ///
|
724 | /// This is the difference between 1.0 and the next largest representable number.
|
725 | pub const EPSILON: f16 = f16(0x1400u16);
|
726 | /// [`struct@f16`] positive Infinity (+∞)
|
727 | pub const INFINITY: f16 = f16(0x7C00u16);
|
728 | /// Number of [`struct@f16`] significant digits in base 2
|
729 | pub const MANTISSA_DIGITS: u32 = 11;
|
730 | /// Largest finite [`struct@f16`] value
|
731 | pub const MAX: f16 = f16(0x7BFF);
|
732 | /// Maximum possible [`struct@f16`] power of 10 exponent
|
733 | pub const MAX_10_EXP: i32 = 4;
|
734 | /// Maximum possible [`struct@f16`] power of 2 exponent
|
735 | pub const MAX_EXP: i32 = 16;
|
736 | /// Smallest finite [`struct@f16`] value
|
737 | pub const MIN: f16 = f16(0xFBFF);
|
738 | /// Minimum possible normal [`struct@f16`] power of 10 exponent
|
739 | pub const MIN_10_EXP: i32 = -4;
|
740 | /// One greater than the minimum possible normal [`struct@f16`] power of 2 exponent
|
741 | pub const MIN_EXP: i32 = -13;
|
742 | /// Smallest positive normal [`struct@f16`] value
|
743 | pub const MIN_POSITIVE: f16 = f16(0x0400u16);
|
744 | /// [`struct@f16`] Not a Number (NaN)
|
745 | pub const NAN: f16 = f16(0x7E00u16);
|
746 | /// [`struct@f16`] negative infinity (-∞)
|
747 | pub const NEG_INFINITY: f16 = f16(0xFC00u16);
|
748 | /// The radix or base of the internal representation of [`struct@f16`]
|
749 | pub const RADIX: u32 = 2;
|
750 |
|
751 | /// Minimum positive subnormal [`struct@f16`] value
|
752 | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
|
753 | /// Maximum subnormal [`struct@f16`] value
|
754 | pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
|
755 |
|
756 | /// [`struct@f16`] 1
|
757 | pub const ONE: f16 = f16(0x3C00u16);
|
758 | /// [`struct@f16`] 0
|
759 | pub const ZERO: f16 = f16(0x0000u16);
|
760 | /// [`struct@f16`] -0
|
761 | pub const NEG_ZERO: f16 = f16(0x8000u16);
|
762 | /// [`struct@f16`] -1
|
763 | pub const NEG_ONE: f16 = f16(0xBC00u16);
|
764 |
|
765 | /// [`struct@f16`] Euler's number (ℯ)
|
766 | pub const E: f16 = f16(0x4170u16);
|
767 | /// [`struct@f16`] Archimedes' constant (π)
|
768 | pub const PI: f16 = f16(0x4248u16);
|
769 | /// [`struct@f16`] 1/π
|
770 | pub const FRAC_1_PI: f16 = f16(0x3518u16);
|
771 | /// [`struct@f16`] 1/√2
|
772 | pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
|
773 | /// [`struct@f16`] 2/π
|
774 | pub const FRAC_2_PI: f16 = f16(0x3918u16);
|
775 | /// [`struct@f16`] 2/√π
|
776 | pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
|
777 | /// [`struct@f16`] π/2
|
778 | pub const FRAC_PI_2: f16 = f16(0x3E48u16);
|
779 | /// [`struct@f16`] π/3
|
780 | pub const FRAC_PI_3: f16 = f16(0x3C30u16);
|
781 | /// [`struct@f16`] π/4
|
782 | pub const FRAC_PI_4: f16 = f16(0x3A48u16);
|
783 | /// [`struct@f16`] π/6
|
784 | pub const FRAC_PI_6: f16 = f16(0x3830u16);
|
785 | /// [`struct@f16`] π/8
|
786 | pub const FRAC_PI_8: f16 = f16(0x3648u16);
|
787 | /// [`struct@f16`] 𝗅𝗇 10
|
788 | pub const LN_10: f16 = f16(0x409Bu16);
|
789 | /// [`struct@f16`] 𝗅𝗇 2
|
790 | pub const LN_2: f16 = f16(0x398Cu16);
|
791 | /// [`struct@f16`] 𝗅𝗈𝗀₁₀ℯ
|
792 | pub const LOG10_E: f16 = f16(0x36F3u16);
|
793 | /// [`struct@f16`] 𝗅𝗈𝗀₁₀2
|
794 | pub const LOG10_2: f16 = f16(0x34D1u16);
|
795 | /// [`struct@f16`] 𝗅𝗈𝗀₂ℯ
|
796 | pub const LOG2_E: f16 = f16(0x3DC5u16);
|
797 | /// [`struct@f16`] 𝗅𝗈𝗀₂10
|
798 | pub const LOG2_10: f16 = f16(0x42A5u16);
|
799 | /// [`struct@f16`] √2
|
800 | pub const SQRT_2: f16 = f16(0x3DA8u16);
|
801 | }
|
802 |
|
803 | impl From<f16> for f32 {
|
804 | #[inline ]
|
805 | fn from(x: f16) -> f32 {
|
806 | x.to_f32()
|
807 | }
|
808 | }
|
809 |
|
810 | impl From<f16> for f64 {
|
811 | #[inline ]
|
812 | fn from(x: f16) -> f64 {
|
813 | x.to_f64()
|
814 | }
|
815 | }
|
816 |
|
817 | impl From<i8> for f16 {
|
818 | #[inline ]
|
819 | fn from(x: i8) -> f16 {
|
820 | // Convert to f32, then to f16
|
821 | f16::from_f32(f32::from(x))
|
822 | }
|
823 | }
|
824 |
|
825 | impl From<u8> for f16 {
|
826 | #[inline ]
|
827 | fn from(x: u8) -> f16 {
|
828 | // Convert to f32, then to f16
|
829 | f16::from_f32(f32::from(x))
|
830 | }
|
831 | }
|
832 |
|
833 | impl PartialEq for f16 {
|
834 | fn eq(&self, other: &f16) -> bool {
|
835 | if self.is_nan() || other.is_nan() {
|
836 | false
|
837 | } else {
|
838 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
|
839 | }
|
840 | }
|
841 | }
|
842 |
|
843 | impl PartialOrd for f16 {
|
844 | fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
|
845 | if self.is_nan() || other.is_nan() {
|
846 | None
|
847 | } else {
|
848 | let neg = self.0 & 0x8000u16 != 0;
|
849 | let other_neg = other.0 & 0x8000u16 != 0;
|
850 | match (neg, other_neg) {
|
851 | (false, false) => Some(self.0.cmp(&other.0)),
|
852 | (false, true) => {
|
853 | if (self.0 | other.0) & 0x7FFFu16 == 0 {
|
854 | Some(Ordering::Equal)
|
855 | } else {
|
856 | Some(Ordering::Greater)
|
857 | }
|
858 | }
|
859 | (true, false) => {
|
860 | if (self.0 | other.0) & 0x7FFFu16 == 0 {
|
861 | Some(Ordering::Equal)
|
862 | } else {
|
863 | Some(Ordering::Less)
|
864 | }
|
865 | }
|
866 | (true, true) => Some(other.0.cmp(&self.0)),
|
867 | }
|
868 | }
|
869 | }
|
870 |
|
871 | fn lt(&self, other: &f16) -> bool {
|
872 | if self.is_nan() || other.is_nan() {
|
873 | false
|
874 | } else {
|
875 | let neg = self.0 & 0x8000u16 != 0;
|
876 | let other_neg = other.0 & 0x8000u16 != 0;
|
877 | match (neg, other_neg) {
|
878 | (false, false) => self.0 < other.0,
|
879 | (false, true) => false,
|
880 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
|
881 | (true, true) => self.0 > other.0,
|
882 | }
|
883 | }
|
884 | }
|
885 |
|
886 | fn le(&self, other: &f16) -> bool {
|
887 | if self.is_nan() || other.is_nan() {
|
888 | false
|
889 | } else {
|
890 | let neg = self.0 & 0x8000u16 != 0;
|
891 | let other_neg = other.0 & 0x8000u16 != 0;
|
892 | match (neg, other_neg) {
|
893 | (false, false) => self.0 <= other.0,
|
894 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
|
895 | (true, false) => true,
|
896 | (true, true) => self.0 >= other.0,
|
897 | }
|
898 | }
|
899 | }
|
900 |
|
901 | fn gt(&self, other: &f16) -> bool {
|
902 | if self.is_nan() || other.is_nan() {
|
903 | false
|
904 | } else {
|
905 | let neg = self.0 & 0x8000u16 != 0;
|
906 | let other_neg = other.0 & 0x8000u16 != 0;
|
907 | match (neg, other_neg) {
|
908 | (false, false) => self.0 > other.0,
|
909 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
|
910 | (true, false) => false,
|
911 | (true, true) => self.0 < other.0,
|
912 | }
|
913 | }
|
914 | }
|
915 |
|
916 | fn ge(&self, other: &f16) -> bool {
|
917 | if self.is_nan() || other.is_nan() {
|
918 | false
|
919 | } else {
|
920 | let neg = self.0 & 0x8000u16 != 0;
|
921 | let other_neg = other.0 & 0x8000u16 != 0;
|
922 | match (neg, other_neg) {
|
923 | (false, false) => self.0 >= other.0,
|
924 | (false, true) => true,
|
925 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
|
926 | (true, true) => self.0 <= other.0,
|
927 | }
|
928 | }
|
929 | }
|
930 | }
|
931 |
|
932 | #[cfg (not(target_arch = "spirv" ))]
|
933 | impl FromStr for f16 {
|
934 | type Err = ParseFloatError;
|
935 | fn from_str(src: &str) -> Result<f16, ParseFloatError> {
|
936 | f32::from_str(src).map(op:f16::from_f32)
|
937 | }
|
938 | }
|
939 |
|
940 | #[cfg (not(target_arch = "spirv" ))]
|
941 | impl Debug for f16 {
|
942 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
943 | Debug::fmt(&self.to_f32(), f)
|
944 | }
|
945 | }
|
946 |
|
947 | #[cfg (not(target_arch = "spirv" ))]
|
948 | impl Display for f16 {
|
949 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
950 | Display::fmt(&self.to_f32(), f)
|
951 | }
|
952 | }
|
953 |
|
954 | #[cfg (not(target_arch = "spirv" ))]
|
955 | impl LowerExp for f16 {
|
956 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
957 | write!(f, " {:e}" , self.to_f32())
|
958 | }
|
959 | }
|
960 |
|
961 | #[cfg (not(target_arch = "spirv" ))]
|
962 | impl UpperExp for f16 {
|
963 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
964 | write!(f, " {:E}" , self.to_f32())
|
965 | }
|
966 | }
|
967 |
|
968 | #[cfg (not(target_arch = "spirv" ))]
|
969 | impl Binary for f16 {
|
970 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
971 | write!(f, " {:b}" , self.0)
|
972 | }
|
973 | }
|
974 |
|
975 | #[cfg (not(target_arch = "spirv" ))]
|
976 | impl Octal for f16 {
|
977 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
978 | write!(f, " {:o}" , self.0)
|
979 | }
|
980 | }
|
981 |
|
982 | #[cfg (not(target_arch = "spirv" ))]
|
983 | impl LowerHex for f16 {
|
984 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
985 | write!(f, " {:x}" , self.0)
|
986 | }
|
987 | }
|
988 |
|
989 | #[cfg (not(target_arch = "spirv" ))]
|
990 | impl UpperHex for f16 {
|
991 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
992 | write!(f, " {:X}" , self.0)
|
993 | }
|
994 | }
|
995 |
|
996 | impl Neg for f16 {
|
997 | type Output = Self;
|
998 |
|
999 | #[inline ]
|
1000 | fn neg(self) -> Self::Output {
|
1001 | Self(self.0 ^ 0x8000)
|
1002 | }
|
1003 | }
|
1004 |
|
1005 | impl Neg for &f16 {
|
1006 | type Output = <f16 as Neg>::Output;
|
1007 |
|
1008 | #[inline ]
|
1009 | fn neg(self) -> Self::Output {
|
1010 | Neg::neg(*self)
|
1011 | }
|
1012 | }
|
1013 |
|
1014 | impl Add for f16 {
|
1015 | type Output = Self;
|
1016 |
|
1017 | #[inline ]
|
1018 | fn add(self, rhs: Self) -> Self::Output {
|
1019 | f16(arch::add_f16(self.0, b:rhs.0))
|
1020 | }
|
1021 | }
|
1022 |
|
1023 | impl Add<&f16> for f16 {
|
1024 | type Output = <f16 as Add<f16>>::Output;
|
1025 |
|
1026 | #[inline ]
|
1027 | fn add(self, rhs: &f16) -> Self::Output {
|
1028 | self.add(*rhs)
|
1029 | }
|
1030 | }
|
1031 |
|
1032 | impl Add<&f16> for &f16 {
|
1033 | type Output = <f16 as Add<f16>>::Output;
|
1034 |
|
1035 | #[inline ]
|
1036 | fn add(self, rhs: &f16) -> Self::Output {
|
1037 | (*self).add(*rhs)
|
1038 | }
|
1039 | }
|
1040 |
|
1041 | impl Add<f16> for &f16 {
|
1042 | type Output = <f16 as Add<f16>>::Output;
|
1043 |
|
1044 | #[inline ]
|
1045 | fn add(self, rhs: f16) -> Self::Output {
|
1046 | (*self).add(rhs)
|
1047 | }
|
1048 | }
|
1049 |
|
1050 | impl AddAssign for f16 {
|
1051 | #[inline ]
|
1052 | fn add_assign(&mut self, rhs: Self) {
|
1053 | *self = (*self).add(rhs);
|
1054 | }
|
1055 | }
|
1056 |
|
1057 | impl AddAssign<&f16> for f16 {
|
1058 | #[inline ]
|
1059 | fn add_assign(&mut self, rhs: &f16) {
|
1060 | *self = (*self).add(rhs);
|
1061 | }
|
1062 | }
|
1063 |
|
1064 | impl Sub for f16 {
|
1065 | type Output = Self;
|
1066 |
|
1067 | #[inline ]
|
1068 | fn sub(self, rhs: Self) -> Self::Output {
|
1069 | f16(arch::subtract_f16(self.0, b:rhs.0))
|
1070 | }
|
1071 | }
|
1072 |
|
1073 | impl Sub<&f16> for f16 {
|
1074 | type Output = <f16 as Sub<f16>>::Output;
|
1075 |
|
1076 | #[inline ]
|
1077 | fn sub(self, rhs: &f16) -> Self::Output {
|
1078 | self.sub(*rhs)
|
1079 | }
|
1080 | }
|
1081 |
|
1082 | impl Sub<&f16> for &f16 {
|
1083 | type Output = <f16 as Sub<f16>>::Output;
|
1084 |
|
1085 | #[inline ]
|
1086 | fn sub(self, rhs: &f16) -> Self::Output {
|
1087 | (*self).sub(*rhs)
|
1088 | }
|
1089 | }
|
1090 |
|
1091 | impl Sub<f16> for &f16 {
|
1092 | type Output = <f16 as Sub<f16>>::Output;
|
1093 |
|
1094 | #[inline ]
|
1095 | fn sub(self, rhs: f16) -> Self::Output {
|
1096 | (*self).sub(rhs)
|
1097 | }
|
1098 | }
|
1099 |
|
1100 | impl SubAssign for f16 {
|
1101 | #[inline ]
|
1102 | fn sub_assign(&mut self, rhs: Self) {
|
1103 | *self = (*self).sub(rhs);
|
1104 | }
|
1105 | }
|
1106 |
|
1107 | impl SubAssign<&f16> for f16 {
|
1108 | #[inline ]
|
1109 | fn sub_assign(&mut self, rhs: &f16) {
|
1110 | *self = (*self).sub(rhs);
|
1111 | }
|
1112 | }
|
1113 |
|
1114 | impl Mul for f16 {
|
1115 | type Output = Self;
|
1116 |
|
1117 | #[inline ]
|
1118 | fn mul(self, rhs: Self) -> Self::Output {
|
1119 | f16(arch::multiply_f16(self.0, b:rhs.0))
|
1120 | }
|
1121 | }
|
1122 |
|
1123 | impl Mul<&f16> for f16 {
|
1124 | type Output = <f16 as Mul<f16>>::Output;
|
1125 |
|
1126 | #[inline ]
|
1127 | fn mul(self, rhs: &f16) -> Self::Output {
|
1128 | self.mul(*rhs)
|
1129 | }
|
1130 | }
|
1131 |
|
1132 | impl Mul<&f16> for &f16 {
|
1133 | type Output = <f16 as Mul<f16>>::Output;
|
1134 |
|
1135 | #[inline ]
|
1136 | fn mul(self, rhs: &f16) -> Self::Output {
|
1137 | (*self).mul(*rhs)
|
1138 | }
|
1139 | }
|
1140 |
|
1141 | impl Mul<f16> for &f16 {
|
1142 | type Output = <f16 as Mul<f16>>::Output;
|
1143 |
|
1144 | #[inline ]
|
1145 | fn mul(self, rhs: f16) -> Self::Output {
|
1146 | (*self).mul(rhs)
|
1147 | }
|
1148 | }
|
1149 |
|
1150 | impl MulAssign for f16 {
|
1151 | #[inline ]
|
1152 | fn mul_assign(&mut self, rhs: Self) {
|
1153 | *self = (*self).mul(rhs);
|
1154 | }
|
1155 | }
|
1156 |
|
1157 | impl MulAssign<&f16> for f16 {
|
1158 | #[inline ]
|
1159 | fn mul_assign(&mut self, rhs: &f16) {
|
1160 | *self = (*self).mul(rhs);
|
1161 | }
|
1162 | }
|
1163 |
|
1164 | impl Div for f16 {
|
1165 | type Output = Self;
|
1166 |
|
1167 | #[inline ]
|
1168 | fn div(self, rhs: Self) -> Self::Output {
|
1169 | f16(arch::divide_f16(self.0, b:rhs.0))
|
1170 | }
|
1171 | }
|
1172 |
|
1173 | impl Div<&f16> for f16 {
|
1174 | type Output = <f16 as Div<f16>>::Output;
|
1175 |
|
1176 | #[inline ]
|
1177 | fn div(self, rhs: &f16) -> Self::Output {
|
1178 | self.div(*rhs)
|
1179 | }
|
1180 | }
|
1181 |
|
1182 | impl Div<&f16> for &f16 {
|
1183 | type Output = <f16 as Div<f16>>::Output;
|
1184 |
|
1185 | #[inline ]
|
1186 | fn div(self, rhs: &f16) -> Self::Output {
|
1187 | (*self).div(*rhs)
|
1188 | }
|
1189 | }
|
1190 |
|
1191 | impl Div<f16> for &f16 {
|
1192 | type Output = <f16 as Div<f16>>::Output;
|
1193 |
|
1194 | #[inline ]
|
1195 | fn div(self, rhs: f16) -> Self::Output {
|
1196 | (*self).div(rhs)
|
1197 | }
|
1198 | }
|
1199 |
|
1200 | impl DivAssign for f16 {
|
1201 | #[inline ]
|
1202 | fn div_assign(&mut self, rhs: Self) {
|
1203 | *self = (*self).div(rhs);
|
1204 | }
|
1205 | }
|
1206 |
|
1207 | impl DivAssign<&f16> for f16 {
|
1208 | #[inline ]
|
1209 | fn div_assign(&mut self, rhs: &f16) {
|
1210 | *self = (*self).div(rhs);
|
1211 | }
|
1212 | }
|
1213 |
|
1214 | impl Rem for f16 {
|
1215 | type Output = Self;
|
1216 |
|
1217 | #[inline ]
|
1218 | fn rem(self, rhs: Self) -> Self::Output {
|
1219 | f16(arch::remainder_f16(self.0, b:rhs.0))
|
1220 | }
|
1221 | }
|
1222 |
|
1223 | impl Rem<&f16> for f16 {
|
1224 | type Output = <f16 as Rem<f16>>::Output;
|
1225 |
|
1226 | #[inline ]
|
1227 | fn rem(self, rhs: &f16) -> Self::Output {
|
1228 | self.rem(*rhs)
|
1229 | }
|
1230 | }
|
1231 |
|
1232 | impl Rem<&f16> for &f16 {
|
1233 | type Output = <f16 as Rem<f16>>::Output;
|
1234 |
|
1235 | #[inline ]
|
1236 | fn rem(self, rhs: &f16) -> Self::Output {
|
1237 | (*self).rem(*rhs)
|
1238 | }
|
1239 | }
|
1240 |
|
1241 | impl Rem<f16> for &f16 {
|
1242 | type Output = <f16 as Rem<f16>>::Output;
|
1243 |
|
1244 | #[inline ]
|
1245 | fn rem(self, rhs: f16) -> Self::Output {
|
1246 | (*self).rem(rhs)
|
1247 | }
|
1248 | }
|
1249 |
|
1250 | impl RemAssign for f16 {
|
1251 | #[inline ]
|
1252 | fn rem_assign(&mut self, rhs: Self) {
|
1253 | *self = (*self).rem(rhs);
|
1254 | }
|
1255 | }
|
1256 |
|
1257 | impl RemAssign<&f16> for f16 {
|
1258 | #[inline ]
|
1259 | fn rem_assign(&mut self, rhs: &f16) {
|
1260 | *self = (*self).rem(rhs);
|
1261 | }
|
1262 | }
|
1263 |
|
1264 | impl Product for f16 {
|
1265 | #[inline ]
|
1266 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
1267 | f16(arch::product_f16(iter.map(|f: f16| f.to_bits())))
|
1268 | }
|
1269 | }
|
1270 |
|
1271 | impl<'a> Product<&'a f16> for f16 {
|
1272 | #[inline ]
|
1273 | fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
|
1274 | f16(arch::product_f16(iter.map(|f: &'a f16| f.to_bits())))
|
1275 | }
|
1276 | }
|
1277 |
|
1278 | impl Sum for f16 {
|
1279 | #[inline ]
|
1280 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
1281 | f16(arch::sum_f16(iter.map(|f: f16| f.to_bits())))
|
1282 | }
|
1283 | }
|
1284 |
|
1285 | impl<'a> Sum<&'a f16> for f16 {
|
1286 | #[inline ]
|
1287 | fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
|
1288 | f16(arch::sum_f16(iter.map(|f: &'a f16| f.to_bits())))
|
1289 | }
|
1290 | }
|
1291 |
|
1292 | #[cfg (feature = "serde" )]
|
1293 | struct Visitor;
|
1294 |
|
1295 | #[cfg (feature = "serde" )]
|
1296 | impl<'de> Deserialize<'de> for f16 {
|
1297 | fn deserialize<D>(deserializer: D) -> Result<f16, D::Error>
|
1298 | where
|
1299 | D: serde::de::Deserializer<'de>,
|
1300 | {
|
1301 | deserializer.deserialize_newtype_struct("f16" , Visitor)
|
1302 | }
|
1303 | }
|
1304 |
|
1305 | #[cfg (feature = "serde" )]
|
1306 | impl<'de> serde::de::Visitor<'de> for Visitor {
|
1307 | type Value = f16;
|
1308 |
|
1309 | fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
|
1310 | write!(formatter, "tuple struct f16" )
|
1311 | }
|
1312 |
|
1313 | fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
|
1314 | where
|
1315 | D: serde::Deserializer<'de>,
|
1316 | {
|
1317 | Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?))
|
1318 | }
|
1319 |
|
1320 | fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
|
1321 | where
|
1322 | E: serde::de::Error,
|
1323 | {
|
1324 | v.parse().map_err(|_| {
|
1325 | serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string" )
|
1326 | })
|
1327 | }
|
1328 |
|
1329 | fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
|
1330 | where
|
1331 | E: serde::de::Error,
|
1332 | {
|
1333 | Ok(f16::from_f32(v))
|
1334 | }
|
1335 |
|
1336 | fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
|
1337 | where
|
1338 | E: serde::de::Error,
|
1339 | {
|
1340 | Ok(f16::from_f64(v))
|
1341 | }
|
1342 | }
|
1343 |
|
1344 | #[allow (
|
1345 | clippy::cognitive_complexity,
|
1346 | clippy::float_cmp,
|
1347 | clippy::neg_cmp_op_on_partial_ord
|
1348 | )]
|
1349 | #[cfg (test)]
|
1350 | mod test {
|
1351 | use super::*;
|
1352 | #[allow (unused_imports)]
|
1353 | use core::cmp::Ordering;
|
1354 | #[cfg (feature = "num-traits" )]
|
1355 | use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive};
|
1356 | use quickcheck_macros::quickcheck;
|
1357 |
|
1358 | #[cfg (feature = "num-traits" )]
|
1359 | #[test ]
|
1360 | fn as_primitive() {
|
1361 | let two = f16::from_f32(2.0);
|
1362 | assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
|
1363 | assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
|
1364 |
|
1365 | assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
|
1366 | assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
|
1367 |
|
1368 | assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
|
1369 | assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
|
1370 | }
|
1371 |
|
1372 | #[cfg (feature = "num-traits" )]
|
1373 | #[test ]
|
1374 | fn to_primitive() {
|
1375 | let two = f16::from_f32(2.0);
|
1376 | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
|
1377 | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
|
1378 | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
|
1379 | }
|
1380 |
|
1381 | #[cfg (feature = "num-traits" )]
|
1382 | #[test ]
|
1383 | fn from_primitive() {
|
1384 | let two = f16::from_f32(2.0);
|
1385 | assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
|
1386 | assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
|
1387 | assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
|
1388 | }
|
1389 |
|
1390 | #[cfg (feature = "num-traits" )]
|
1391 | #[test ]
|
1392 | fn to_and_from_bytes() {
|
1393 | let two = f16::from_f32(2.0);
|
1394 | assert_eq!(<f16 as ToBytes>::to_le_bytes(&two), [0, 64]);
|
1395 | assert_eq!(<f16 as FromBytes>::from_le_bytes(&[0, 64]), two);
|
1396 | assert_eq!(<f16 as ToBytes>::to_be_bytes(&two), [64, 0]);
|
1397 | assert_eq!(<f16 as FromBytes>::from_be_bytes(&[64, 0]), two);
|
1398 | }
|
1399 |
|
1400 | #[test ]
|
1401 | fn test_f16_consts() {
|
1402 | // DIGITS
|
1403 | let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
|
1404 | assert_eq!(f16::DIGITS, digits);
|
1405 | // sanity check to show test is good
|
1406 | let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
|
1407 | assert_eq!(core::f32::DIGITS, digits32);
|
1408 |
|
1409 | // EPSILON
|
1410 | let one = f16::from_f32(1.0);
|
1411 | let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
|
1412 | let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
|
1413 | assert_eq!(f16::EPSILON, epsilon);
|
1414 | // sanity check to show test is good
|
1415 | let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
|
1416 | let epsilon32 = one_plus_epsilon32 - 1f32;
|
1417 | assert_eq!(core::f32::EPSILON, epsilon32);
|
1418 |
|
1419 | // MAX, MIN and MIN_POSITIVE
|
1420 | let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
|
1421 | let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
|
1422 | let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
|
1423 | assert_eq!(f16::MAX, max);
|
1424 | assert_eq!(f16::MIN, min);
|
1425 | assert_eq!(f16::MIN_POSITIVE, min_pos);
|
1426 | // sanity check to show test is good
|
1427 | let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
|
1428 | let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
|
1429 | let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
|
1430 | assert_eq!(core::f32::MAX, max32);
|
1431 | assert_eq!(core::f32::MIN, min32);
|
1432 | assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
|
1433 |
|
1434 | // MIN_10_EXP and MAX_10_EXP
|
1435 | let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
|
1436 | assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
|
1437 | assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
|
1438 | let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
|
1439 | assert!(ten_to_max < f16::MAX.to_f32());
|
1440 | assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
|
1441 | // sanity check to show test is good
|
1442 | let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
|
1443 | assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
|
1444 | assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
|
1445 | let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
|
1446 | assert!(ten_to_max32 < f64::from(core::f32::MAX));
|
1447 | assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
|
1448 | }
|
1449 |
|
1450 | #[test ]
|
1451 | fn test_f16_consts_from_f32() {
|
1452 | let one = f16::from_f32(1.0);
|
1453 | let zero = f16::from_f32(0.0);
|
1454 | let neg_zero = f16::from_f32(-0.0);
|
1455 | let neg_one = f16::from_f32(-1.0);
|
1456 | let inf = f16::from_f32(core::f32::INFINITY);
|
1457 | let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
|
1458 | let nan = f16::from_f32(core::f32::NAN);
|
1459 |
|
1460 | assert_eq!(f16::ONE, one);
|
1461 | assert_eq!(f16::ZERO, zero);
|
1462 | assert!(zero.is_sign_positive());
|
1463 | assert_eq!(f16::NEG_ZERO, neg_zero);
|
1464 | assert!(neg_zero.is_sign_negative());
|
1465 | assert_eq!(f16::NEG_ONE, neg_one);
|
1466 | assert!(neg_one.is_sign_negative());
|
1467 | assert_eq!(f16::INFINITY, inf);
|
1468 | assert_eq!(f16::NEG_INFINITY, neg_inf);
|
1469 | assert!(nan.is_nan());
|
1470 | assert!(f16::NAN.is_nan());
|
1471 |
|
1472 | let e = f16::from_f32(core::f32::consts::E);
|
1473 | let pi = f16::from_f32(core::f32::consts::PI);
|
1474 | let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
|
1475 | let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
|
1476 | let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
|
1477 | let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
|
1478 | let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
|
1479 | let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
|
1480 | let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
|
1481 | let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
|
1482 | let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
|
1483 | let ln_10 = f16::from_f32(core::f32::consts::LN_10);
|
1484 | let ln_2 = f16::from_f32(core::f32::consts::LN_2);
|
1485 | let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
|
1486 | // core::f32::consts::LOG10_2 requires rustc 1.43.0
|
1487 | let log10_2 = f16::from_f32(2f32.log10());
|
1488 | let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
|
1489 | // core::f32::consts::LOG2_10 requires rustc 1.43.0
|
1490 | let log2_10 = f16::from_f32(10f32.log2());
|
1491 | let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
|
1492 |
|
1493 | assert_eq!(f16::E, e);
|
1494 | assert_eq!(f16::PI, pi);
|
1495 | assert_eq!(f16::FRAC_1_PI, frac_1_pi);
|
1496 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
|
1497 | assert_eq!(f16::FRAC_2_PI, frac_2_pi);
|
1498 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
|
1499 | assert_eq!(f16::FRAC_PI_2, frac_pi_2);
|
1500 | assert_eq!(f16::FRAC_PI_3, frac_pi_3);
|
1501 | assert_eq!(f16::FRAC_PI_4, frac_pi_4);
|
1502 | assert_eq!(f16::FRAC_PI_6, frac_pi_6);
|
1503 | assert_eq!(f16::FRAC_PI_8, frac_pi_8);
|
1504 | assert_eq!(f16::LN_10, ln_10);
|
1505 | assert_eq!(f16::LN_2, ln_2);
|
1506 | assert_eq!(f16::LOG10_E, log10_e);
|
1507 | assert_eq!(f16::LOG10_2, log10_2);
|
1508 | assert_eq!(f16::LOG2_E, log2_e);
|
1509 | assert_eq!(f16::LOG2_10, log2_10);
|
1510 | assert_eq!(f16::SQRT_2, sqrt_2);
|
1511 | }
|
1512 |
|
1513 | #[test ]
|
1514 | fn test_f16_consts_from_f64() {
|
1515 | let one = f16::from_f64(1.0);
|
1516 | let zero = f16::from_f64(0.0);
|
1517 | let neg_zero = f16::from_f64(-0.0);
|
1518 | let inf = f16::from_f64(core::f64::INFINITY);
|
1519 | let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
|
1520 | let nan = f16::from_f64(core::f64::NAN);
|
1521 |
|
1522 | assert_eq!(f16::ONE, one);
|
1523 | assert_eq!(f16::ZERO, zero);
|
1524 | assert!(zero.is_sign_positive());
|
1525 | assert_eq!(f16::NEG_ZERO, neg_zero);
|
1526 | assert!(neg_zero.is_sign_negative());
|
1527 | assert_eq!(f16::INFINITY, inf);
|
1528 | assert_eq!(f16::NEG_INFINITY, neg_inf);
|
1529 | assert!(nan.is_nan());
|
1530 | assert!(f16::NAN.is_nan());
|
1531 |
|
1532 | let e = f16::from_f64(core::f64::consts::E);
|
1533 | let pi = f16::from_f64(core::f64::consts::PI);
|
1534 | let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
|
1535 | let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
|
1536 | let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
|
1537 | let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
|
1538 | let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
|
1539 | let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
|
1540 | let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
|
1541 | let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
|
1542 | let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
|
1543 | let ln_10 = f16::from_f64(core::f64::consts::LN_10);
|
1544 | let ln_2 = f16::from_f64(core::f64::consts::LN_2);
|
1545 | let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
|
1546 | // core::f64::consts::LOG10_2 requires rustc 1.43.0
|
1547 | let log10_2 = f16::from_f64(2f64.log10());
|
1548 | let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
|
1549 | // core::f64::consts::LOG2_10 requires rustc 1.43.0
|
1550 | let log2_10 = f16::from_f64(10f64.log2());
|
1551 | let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
|
1552 |
|
1553 | assert_eq!(f16::E, e);
|
1554 | assert_eq!(f16::PI, pi);
|
1555 | assert_eq!(f16::FRAC_1_PI, frac_1_pi);
|
1556 | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
|
1557 | assert_eq!(f16::FRAC_2_PI, frac_2_pi);
|
1558 | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
|
1559 | assert_eq!(f16::FRAC_PI_2, frac_pi_2);
|
1560 | assert_eq!(f16::FRAC_PI_3, frac_pi_3);
|
1561 | assert_eq!(f16::FRAC_PI_4, frac_pi_4);
|
1562 | assert_eq!(f16::FRAC_PI_6, frac_pi_6);
|
1563 | assert_eq!(f16::FRAC_PI_8, frac_pi_8);
|
1564 | assert_eq!(f16::LN_10, ln_10);
|
1565 | assert_eq!(f16::LN_2, ln_2);
|
1566 | assert_eq!(f16::LOG10_E, log10_e);
|
1567 | assert_eq!(f16::LOG10_2, log10_2);
|
1568 | assert_eq!(f16::LOG2_E, log2_e);
|
1569 | assert_eq!(f16::LOG2_10, log2_10);
|
1570 | assert_eq!(f16::SQRT_2, sqrt_2);
|
1571 | }
|
1572 |
|
1573 | #[test ]
|
1574 | fn test_nan_conversion_to_smaller() {
|
1575 | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
|
1576 | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
|
1577 | let nan32 = f32::from_bits(0x7F80_0001u32);
|
1578 | let neg_nan32 = f32::from_bits(0xFF80_0001u32);
|
1579 | let nan32_from_64 = nan64 as f32;
|
1580 | let neg_nan32_from_64 = neg_nan64 as f32;
|
1581 | let nan16_from_64 = f16::from_f64(nan64);
|
1582 | let neg_nan16_from_64 = f16::from_f64(neg_nan64);
|
1583 | let nan16_from_32 = f16::from_f32(nan32);
|
1584 | let neg_nan16_from_32 = f16::from_f32(neg_nan32);
|
1585 |
|
1586 | assert!(nan64.is_nan() && nan64.is_sign_positive());
|
1587 | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
|
1588 | assert!(nan32.is_nan() && nan32.is_sign_positive());
|
1589 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
|
1590 |
|
1591 | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
|
1592 | assert!(nan32_from_64.is_nan());
|
1593 | assert!(neg_nan32_from_64.is_nan());
|
1594 | assert!(nan16_from_64.is_nan());
|
1595 | assert!(neg_nan16_from_64.is_nan());
|
1596 | assert!(nan16_from_32.is_nan());
|
1597 | assert!(neg_nan16_from_32.is_nan());
|
1598 | }
|
1599 |
|
1600 | #[test ]
|
1601 | fn test_nan_conversion_to_larger() {
|
1602 | let nan16 = f16::from_bits(0x7C01u16);
|
1603 | let neg_nan16 = f16::from_bits(0xFC01u16);
|
1604 | let nan32 = f32::from_bits(0x7F80_0001u32);
|
1605 | let neg_nan32 = f32::from_bits(0xFF80_0001u32);
|
1606 | let nan32_from_16 = f32::from(nan16);
|
1607 | let neg_nan32_from_16 = f32::from(neg_nan16);
|
1608 | let nan64_from_16 = f64::from(nan16);
|
1609 | let neg_nan64_from_16 = f64::from(neg_nan16);
|
1610 | let nan64_from_32 = f64::from(nan32);
|
1611 | let neg_nan64_from_32 = f64::from(neg_nan32);
|
1612 |
|
1613 | assert!(nan16.is_nan() && nan16.is_sign_positive());
|
1614 | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
|
1615 | assert!(nan32.is_nan() && nan32.is_sign_positive());
|
1616 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
|
1617 |
|
1618 | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
|
1619 | assert!(nan32_from_16.is_nan());
|
1620 | assert!(neg_nan32_from_16.is_nan());
|
1621 | assert!(nan64_from_16.is_nan());
|
1622 | assert!(neg_nan64_from_16.is_nan());
|
1623 | assert!(nan64_from_32.is_nan());
|
1624 | assert!(neg_nan64_from_32.is_nan());
|
1625 | }
|
1626 |
|
1627 | #[test ]
|
1628 | fn test_f16_to_f32() {
|
1629 | let f = f16::from_f32(7.0);
|
1630 | assert_eq!(f.to_f32(), 7.0f32);
|
1631 |
|
1632 | // 7.1 is NOT exactly representable in 16-bit, it's rounded
|
1633 | let f = f16::from_f32(7.1);
|
1634 | let diff = (f.to_f32() - 7.1f32).abs();
|
1635 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
|
1636 | assert!(diff <= 4.0 * f16::EPSILON.to_f32());
|
1637 |
|
1638 | assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
|
1639 | assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
|
1640 |
|
1641 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
|
1642 | assert_eq!(
|
1643 | f16::from_bits(0x0000_0005),
|
1644 | f16::from_f32(5.0 * 2.0f32.powi(-24))
|
1645 | );
|
1646 | }
|
1647 |
|
1648 | #[test ]
|
1649 | fn test_f16_to_f64() {
|
1650 | let f = f16::from_f64(7.0);
|
1651 | assert_eq!(f.to_f64(), 7.0f64);
|
1652 |
|
1653 | // 7.1 is NOT exactly representable in 16-bit, it's rounded
|
1654 | let f = f16::from_f64(7.1);
|
1655 | let diff = (f.to_f64() - 7.1f64).abs();
|
1656 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
|
1657 | assert!(diff <= 4.0 * f16::EPSILON.to_f64());
|
1658 |
|
1659 | assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
|
1660 | assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
|
1661 |
|
1662 | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
|
1663 | assert_eq!(
|
1664 | f16::from_bits(0x0000_0005),
|
1665 | f16::from_f64(5.0 * 2.0f64.powi(-24))
|
1666 | );
|
1667 | }
|
1668 |
|
1669 | #[test ]
|
1670 | fn test_comparisons() {
|
1671 | let zero = f16::from_f64(0.0);
|
1672 | let one = f16::from_f64(1.0);
|
1673 | let neg_zero = f16::from_f64(-0.0);
|
1674 | let neg_one = f16::from_f64(-1.0);
|
1675 |
|
1676 | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
|
1677 | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
|
1678 | assert!(zero == neg_zero);
|
1679 | assert!(neg_zero == zero);
|
1680 | assert!(!(zero != neg_zero));
|
1681 | assert!(!(neg_zero != zero));
|
1682 | assert!(!(zero < neg_zero));
|
1683 | assert!(!(neg_zero < zero));
|
1684 | assert!(zero <= neg_zero);
|
1685 | assert!(neg_zero <= zero);
|
1686 | assert!(!(zero > neg_zero));
|
1687 | assert!(!(neg_zero > zero));
|
1688 | assert!(zero >= neg_zero);
|
1689 | assert!(neg_zero >= zero);
|
1690 |
|
1691 | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
|
1692 | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
|
1693 | assert!(!(one == neg_zero));
|
1694 | assert!(!(neg_zero == one));
|
1695 | assert!(one != neg_zero);
|
1696 | assert!(neg_zero != one);
|
1697 | assert!(!(one < neg_zero));
|
1698 | assert!(neg_zero < one);
|
1699 | assert!(!(one <= neg_zero));
|
1700 | assert!(neg_zero <= one);
|
1701 | assert!(one > neg_zero);
|
1702 | assert!(!(neg_zero > one));
|
1703 | assert!(one >= neg_zero);
|
1704 | assert!(!(neg_zero >= one));
|
1705 |
|
1706 | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
|
1707 | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
|
1708 | assert!(!(one == neg_one));
|
1709 | assert!(!(neg_one == one));
|
1710 | assert!(one != neg_one);
|
1711 | assert!(neg_one != one);
|
1712 | assert!(!(one < neg_one));
|
1713 | assert!(neg_one < one);
|
1714 | assert!(!(one <= neg_one));
|
1715 | assert!(neg_one <= one);
|
1716 | assert!(one > neg_one);
|
1717 | assert!(!(neg_one > one));
|
1718 | assert!(one >= neg_one);
|
1719 | assert!(!(neg_one >= one));
|
1720 | }
|
1721 |
|
1722 | #[test ]
|
1723 | #[allow (clippy::erasing_op, clippy::identity_op)]
|
1724 | fn round_to_even_f32() {
|
1725 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
|
1726 | let min_sub = f16::from_bits(1);
|
1727 | let min_sub_f = (-24f32).exp2();
|
1728 | assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
|
1729 | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
|
1730 |
|
1731 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
|
1732 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
|
1733 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
|
1734 | assert_eq!(
|
1735 | f16::from_f32(min_sub_f * 0.49).to_bits(),
|
1736 | min_sub.to_bits() * 0
|
1737 | );
|
1738 | assert_eq!(
|
1739 | f16::from_f32(min_sub_f * 0.50).to_bits(),
|
1740 | min_sub.to_bits() * 0
|
1741 | );
|
1742 | assert_eq!(
|
1743 | f16::from_f32(min_sub_f * 0.51).to_bits(),
|
1744 | min_sub.to_bits() * 1
|
1745 | );
|
1746 |
|
1747 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
|
1748 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
|
1749 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
|
1750 | assert_eq!(
|
1751 | f16::from_f32(min_sub_f * 1.49).to_bits(),
|
1752 | min_sub.to_bits() * 1
|
1753 | );
|
1754 | assert_eq!(
|
1755 | f16::from_f32(min_sub_f * 1.50).to_bits(),
|
1756 | min_sub.to_bits() * 2
|
1757 | );
|
1758 | assert_eq!(
|
1759 | f16::from_f32(min_sub_f * 1.51).to_bits(),
|
1760 | min_sub.to_bits() * 2
|
1761 | );
|
1762 |
|
1763 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
|
1764 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
|
1765 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
|
1766 | assert_eq!(
|
1767 | f16::from_f32(min_sub_f * 2.49).to_bits(),
|
1768 | min_sub.to_bits() * 2
|
1769 | );
|
1770 | assert_eq!(
|
1771 | f16::from_f32(min_sub_f * 2.50).to_bits(),
|
1772 | min_sub.to_bits() * 2
|
1773 | );
|
1774 | assert_eq!(
|
1775 | f16::from_f32(min_sub_f * 2.51).to_bits(),
|
1776 | min_sub.to_bits() * 3
|
1777 | );
|
1778 |
|
1779 | assert_eq!(
|
1780 | f16::from_f32(2000.49f32).to_bits(),
|
1781 | f16::from_f32(2000.0).to_bits()
|
1782 | );
|
1783 | assert_eq!(
|
1784 | f16::from_f32(2000.50f32).to_bits(),
|
1785 | f16::from_f32(2000.0).to_bits()
|
1786 | );
|
1787 | assert_eq!(
|
1788 | f16::from_f32(2000.51f32).to_bits(),
|
1789 | f16::from_f32(2001.0).to_bits()
|
1790 | );
|
1791 | assert_eq!(
|
1792 | f16::from_f32(2001.49f32).to_bits(),
|
1793 | f16::from_f32(2001.0).to_bits()
|
1794 | );
|
1795 | assert_eq!(
|
1796 | f16::from_f32(2001.50f32).to_bits(),
|
1797 | f16::from_f32(2002.0).to_bits()
|
1798 | );
|
1799 | assert_eq!(
|
1800 | f16::from_f32(2001.51f32).to_bits(),
|
1801 | f16::from_f32(2002.0).to_bits()
|
1802 | );
|
1803 | assert_eq!(
|
1804 | f16::from_f32(2002.49f32).to_bits(),
|
1805 | f16::from_f32(2002.0).to_bits()
|
1806 | );
|
1807 | assert_eq!(
|
1808 | f16::from_f32(2002.50f32).to_bits(),
|
1809 | f16::from_f32(2002.0).to_bits()
|
1810 | );
|
1811 | assert_eq!(
|
1812 | f16::from_f32(2002.51f32).to_bits(),
|
1813 | f16::from_f32(2003.0).to_bits()
|
1814 | );
|
1815 | }
|
1816 |
|
1817 | #[test ]
|
1818 | #[allow (clippy::erasing_op, clippy::identity_op)]
|
1819 | fn round_to_even_f64() {
|
1820 | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
|
1821 | let min_sub = f16::from_bits(1);
|
1822 | let min_sub_f = (-24f64).exp2();
|
1823 | assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
|
1824 | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
|
1825 |
|
1826 | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
|
1827 | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
|
1828 | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
|
1829 | assert_eq!(
|
1830 | f16::from_f64(min_sub_f * 0.49).to_bits(),
|
1831 | min_sub.to_bits() * 0
|
1832 | );
|
1833 | assert_eq!(
|
1834 | f16::from_f64(min_sub_f * 0.50).to_bits(),
|
1835 | min_sub.to_bits() * 0
|
1836 | );
|
1837 | assert_eq!(
|
1838 | f16::from_f64(min_sub_f * 0.51).to_bits(),
|
1839 | min_sub.to_bits() * 1
|
1840 | );
|
1841 |
|
1842 | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
|
1843 | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
|
1844 | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
|
1845 | assert_eq!(
|
1846 | f16::from_f64(min_sub_f * 1.49).to_bits(),
|
1847 | min_sub.to_bits() * 1
|
1848 | );
|
1849 | assert_eq!(
|
1850 | f16::from_f64(min_sub_f * 1.50).to_bits(),
|
1851 | min_sub.to_bits() * 2
|
1852 | );
|
1853 | assert_eq!(
|
1854 | f16::from_f64(min_sub_f * 1.51).to_bits(),
|
1855 | min_sub.to_bits() * 2
|
1856 | );
|
1857 |
|
1858 | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
|
1859 | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
|
1860 | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
|
1861 | assert_eq!(
|
1862 | f16::from_f64(min_sub_f * 2.49).to_bits(),
|
1863 | min_sub.to_bits() * 2
|
1864 | );
|
1865 | assert_eq!(
|
1866 | f16::from_f64(min_sub_f * 2.50).to_bits(),
|
1867 | min_sub.to_bits() * 2
|
1868 | );
|
1869 | assert_eq!(
|
1870 | f16::from_f64(min_sub_f * 2.51).to_bits(),
|
1871 | min_sub.to_bits() * 3
|
1872 | );
|
1873 |
|
1874 | assert_eq!(
|
1875 | f16::from_f64(2000.49f64).to_bits(),
|
1876 | f16::from_f64(2000.0).to_bits()
|
1877 | );
|
1878 | assert_eq!(
|
1879 | f16::from_f64(2000.50f64).to_bits(),
|
1880 | f16::from_f64(2000.0).to_bits()
|
1881 | );
|
1882 | assert_eq!(
|
1883 | f16::from_f64(2000.51f64).to_bits(),
|
1884 | f16::from_f64(2001.0).to_bits()
|
1885 | );
|
1886 | assert_eq!(
|
1887 | f16::from_f64(2001.49f64).to_bits(),
|
1888 | f16::from_f64(2001.0).to_bits()
|
1889 | );
|
1890 | assert_eq!(
|
1891 | f16::from_f64(2001.50f64).to_bits(),
|
1892 | f16::from_f64(2002.0).to_bits()
|
1893 | );
|
1894 | assert_eq!(
|
1895 | f16::from_f64(2001.51f64).to_bits(),
|
1896 | f16::from_f64(2002.0).to_bits()
|
1897 | );
|
1898 | assert_eq!(
|
1899 | f16::from_f64(2002.49f64).to_bits(),
|
1900 | f16::from_f64(2002.0).to_bits()
|
1901 | );
|
1902 | assert_eq!(
|
1903 | f16::from_f64(2002.50f64).to_bits(),
|
1904 | f16::from_f64(2002.0).to_bits()
|
1905 | );
|
1906 | assert_eq!(
|
1907 | f16::from_f64(2002.51f64).to_bits(),
|
1908 | f16::from_f64(2003.0).to_bits()
|
1909 | );
|
1910 | }
|
1911 |
|
1912 | #[test ]
|
1913 | fn arithmetic() {
|
1914 | assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.));
|
1915 | assert_eq!(f16::ONE - f16::ONE, f16::ZERO);
|
1916 | assert_eq!(f16::ONE * f16::ONE, f16::ONE);
|
1917 | assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.));
|
1918 | assert_eq!(f16::ONE / f16::ONE, f16::ONE);
|
1919 | assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.));
|
1920 | assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.));
|
1921 | }
|
1922 |
|
1923 | #[cfg (feature = "std" )]
|
1924 | #[test ]
|
1925 | fn formatting() {
|
1926 | let f = f16::from_f32(0.1152344);
|
1927 |
|
1928 | assert_eq!(format!("{:.3}" , f), "0.115" );
|
1929 | assert_eq!(format!("{:.4}" , f), "0.1152" );
|
1930 | assert_eq!(format!("{:+.4}" , f), "+0.1152" );
|
1931 | assert_eq!(format!("{:>+10.4}" , f), " +0.1152" );
|
1932 |
|
1933 | assert_eq!(format!("{:.3?}" , f), "0.115" );
|
1934 | assert_eq!(format!("{:.4?}" , f), "0.1152" );
|
1935 | assert_eq!(format!("{:+.4?}" , f), "+0.1152" );
|
1936 | assert_eq!(format!("{:>+10.4?}" , f), " +0.1152" );
|
1937 | }
|
1938 |
|
1939 | impl quickcheck::Arbitrary for f16 {
|
1940 | fn arbitrary(g: &mut quickcheck::Gen) -> Self {
|
1941 | f16(u16::arbitrary(g))
|
1942 | }
|
1943 | }
|
1944 |
|
1945 | #[quickcheck]
|
1946 | fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
|
1947 | let roundtrip = f16::from_f32(f.to_f32());
|
1948 | if f.is_nan() {
|
1949 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
|
1950 | } else {
|
1951 | f.0 == roundtrip.0
|
1952 | }
|
1953 | }
|
1954 |
|
1955 | #[quickcheck]
|
1956 | fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
|
1957 | let roundtrip = f16::from_f64(f.to_f64());
|
1958 | if f.is_nan() {
|
1959 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
|
1960 | } else {
|
1961 | f.0 == roundtrip.0
|
1962 | }
|
1963 | }
|
1964 | }
|
1965 | |