1 | #![cfg (feature = "use_std" )] |
2 | |
3 | use crate::{ |
4 | adaptors::map::{MapSpecialCase, MapSpecialCaseFn}, |
5 | MinMaxResult, |
6 | }; |
7 | use std::cmp::Ordering; |
8 | use std::collections::HashMap; |
9 | use std::hash::Hash; |
10 | use std::iter::Iterator; |
11 | use std::ops::{Add, Mul}; |
12 | |
13 | /// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by) |
14 | pub type MapForGrouping<I, F> = MapSpecialCase<I, GroupingMapFn<F>>; |
15 | |
16 | #[derive (Clone)] |
17 | pub struct GroupingMapFn<F>(F); |
18 | |
19 | impl<F> std::fmt::Debug for GroupingMapFn<F> { |
20 | debug_fmt_fields!(GroupingMapFn,); |
21 | } |
22 | |
23 | impl<V, K, F: FnMut(&V) -> K> MapSpecialCaseFn<V> for GroupingMapFn<F> { |
24 | type Out = (K, V); |
25 | fn call(&mut self, v: V) -> Self::Out { |
26 | ((self.0)(&v), v) |
27 | } |
28 | } |
29 | |
30 | pub(crate) fn new_map_for_grouping<K, I: Iterator, F: FnMut(&I::Item) -> K>( |
31 | iter: I, |
32 | key_mapper: F, |
33 | ) -> MapForGrouping<I, F> { |
34 | MapSpecialCase { |
35 | iter, |
36 | f: GroupingMapFn(key_mapper), |
37 | } |
38 | } |
39 | |
40 | /// Creates a new `GroupingMap` from `iter` |
41 | pub fn new<I, K, V>(iter: I) -> GroupingMap<I> |
42 | where |
43 | I: Iterator<Item = (K, V)>, |
44 | K: Hash + Eq, |
45 | { |
46 | GroupingMap { iter } |
47 | } |
48 | |
49 | /// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations. |
50 | /// |
51 | /// See [`GroupingMap`] for more informations. |
52 | pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>; |
53 | |
54 | /// `GroupingMap` is an intermediate struct for efficient group-and-fold operations. |
55 | /// It groups elements by their key and at the same time fold each group |
56 | /// using some aggregating operation. |
57 | /// |
58 | /// No method on this struct performs temporary allocations. |
59 | #[derive (Clone, Debug)] |
60 | #[must_use = "GroupingMap is lazy and do nothing unless consumed" ] |
61 | pub struct GroupingMap<I> { |
62 | iter: I, |
63 | } |
64 | |
65 | impl<I, K, V> GroupingMap<I> |
66 | where |
67 | I: Iterator<Item = (K, V)>, |
68 | K: Hash + Eq, |
69 | { |
70 | /// This is the generic way to perform any operation on a `GroupingMap`. |
71 | /// It's suggested to use this method only to implement custom operations |
72 | /// when the already provided ones are not enough. |
73 | /// |
74 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
75 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
76 | /// and the current element as arguments, and stores the results in an `HashMap`. |
77 | /// |
78 | /// The `operation` function is invoked on each element with the following parameters: |
79 | /// - the current value of the accumulator of the group if there is currently one; |
80 | /// - a reference to the key of the group this element belongs to; |
81 | /// - the element from the source being aggregated; |
82 | /// |
83 | /// If `operation` returns `Some(element)` then the accumulator is updated with `element`, |
84 | /// otherwise the previous accumulation is discarded. |
85 | /// |
86 | /// Return a `HashMap` associating the key of each group with the result of aggregation of |
87 | /// that group's elements. If the aggregation of the last element of a group discards the |
88 | /// accumulator then there won't be an entry associated to that group's key. |
89 | /// |
90 | /// ``` |
91 | /// use itertools::Itertools; |
92 | /// |
93 | /// let data = vec![2, 8, 5, 7, 9, 0, 4, 10]; |
94 | /// let lookup = data.into_iter() |
95 | /// .into_grouping_map_by(|&n| n % 4) |
96 | /// .aggregate(|acc, _key, val| { |
97 | /// if val == 0 || val == 10 { |
98 | /// None |
99 | /// } else { |
100 | /// Some(acc.unwrap_or(0) + val) |
101 | /// } |
102 | /// }); |
103 | /// |
104 | /// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed |
105 | /// assert_eq!(lookup[&1], 5 + 9); |
106 | /// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward |
107 | /// assert_eq!(lookup[&3], 7); |
108 | /// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2 |
109 | /// ``` |
110 | pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R> |
111 | where |
112 | FO: FnMut(Option<R>, &K, V) -> Option<R>, |
113 | { |
114 | let mut destination_map = HashMap::new(); |
115 | |
116 | self.iter.for_each(|(key, val)| { |
117 | let acc = destination_map.remove(&key); |
118 | if let Some(op_res) = operation(acc, &key, val) { |
119 | destination_map.insert(key, op_res); |
120 | } |
121 | }); |
122 | |
123 | destination_map |
124 | } |
125 | |
126 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
127 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
128 | /// and the current element as arguments, and stores the results in a new map. |
129 | /// |
130 | /// `init` is called to obtain the initial value of each accumulator. |
131 | /// |
132 | /// `operation` is a function that is invoked on each element with the following parameters: |
133 | /// - the current value of the accumulator of the group; |
134 | /// - a reference to the key of the group this element belongs to; |
135 | /// - the element from the source being accumulated. |
136 | /// |
137 | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
138 | /// |
139 | /// ``` |
140 | /// use itertools::Itertools; |
141 | /// |
142 | /// #[derive(Debug, Default)] |
143 | /// struct Accumulator { |
144 | /// acc: usize, |
145 | /// } |
146 | /// |
147 | /// let lookup = (1..=7) |
148 | /// .into_grouping_map_by(|&n| n % 3) |
149 | /// .fold_with(|_key, _val| Default::default(), |Accumulator { acc }, _key, val| { |
150 | /// let acc = acc + val; |
151 | /// Accumulator { acc } |
152 | /// }); |
153 | /// |
154 | /// assert_eq!(lookup[&0].acc, 3 + 6); |
155 | /// assert_eq!(lookup[&1].acc, 1 + 4 + 7); |
156 | /// assert_eq!(lookup[&2].acc, 2 + 5); |
157 | /// assert_eq!(lookup.len(), 3); |
158 | /// ``` |
159 | pub fn fold_with<FI, FO, R>(self, mut init: FI, mut operation: FO) -> HashMap<K, R> |
160 | where |
161 | FI: FnMut(&K, &V) -> R, |
162 | FO: FnMut(R, &K, V) -> R, |
163 | { |
164 | self.aggregate(|acc, key, val| { |
165 | let acc = acc.unwrap_or_else(|| init(key, &val)); |
166 | Some(operation(acc, key, val)) |
167 | }) |
168 | } |
169 | |
170 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
171 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
172 | /// and the current element as arguments, and stores the results in a new map. |
173 | /// |
174 | /// `init` is the value from which will be cloned the initial value of each accumulator. |
175 | /// |
176 | /// `operation` is a function that is invoked on each element with the following parameters: |
177 | /// - the current value of the accumulator of the group; |
178 | /// - a reference to the key of the group this element belongs to; |
179 | /// - the element from the source being accumulated. |
180 | /// |
181 | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
182 | /// |
183 | /// ``` |
184 | /// use itertools::Itertools; |
185 | /// |
186 | /// let lookup = (1..=7) |
187 | /// .into_grouping_map_by(|&n| n % 3) |
188 | /// .fold(0, |acc, _key, val| acc + val); |
189 | /// |
190 | /// assert_eq!(lookup[&0], 3 + 6); |
191 | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
192 | /// assert_eq!(lookup[&2], 2 + 5); |
193 | /// assert_eq!(lookup.len(), 3); |
194 | /// ``` |
195 | pub fn fold<FO, R>(self, init: R, operation: FO) -> HashMap<K, R> |
196 | where |
197 | R: Clone, |
198 | FO: FnMut(R, &K, V) -> R, |
199 | { |
200 | self.fold_with(|_, _| init.clone(), operation) |
201 | } |
202 | |
203 | /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements |
204 | /// of each group sequentially, passing the previously accumulated value, a reference to the key |
205 | /// and the current element as arguments, and stores the results in a new map. |
206 | /// |
207 | /// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group. |
208 | /// |
209 | /// `operation` is a function that is invoked on each element with the following parameters: |
210 | /// - the current value of the accumulator of the group; |
211 | /// - a reference to the key of the group this element belongs to; |
212 | /// - the element from the source being accumulated. |
213 | /// |
214 | /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. |
215 | /// |
216 | /// [`fold`]: GroupingMap::fold |
217 | /// |
218 | /// ``` |
219 | /// use itertools::Itertools; |
220 | /// |
221 | /// let lookup = (1..=7) |
222 | /// .into_grouping_map_by(|&n| n % 3) |
223 | /// .reduce(|acc, _key, val| acc + val); |
224 | /// |
225 | /// assert_eq!(lookup[&0], 3 + 6); |
226 | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
227 | /// assert_eq!(lookup[&2], 2 + 5); |
228 | /// assert_eq!(lookup.len(), 3); |
229 | /// ``` |
230 | pub fn reduce<FO>(self, mut operation: FO) -> HashMap<K, V> |
231 | where |
232 | FO: FnMut(V, &K, V) -> V, |
233 | { |
234 | self.aggregate(|acc, key, val| { |
235 | Some(match acc { |
236 | Some(acc) => operation(acc, key, val), |
237 | None => val, |
238 | }) |
239 | }) |
240 | } |
241 | |
242 | /// See [`.reduce()`](GroupingMap::reduce). |
243 | #[deprecated (note = "Use .reduce() instead" , since = "0.13.0" )] |
244 | pub fn fold_first<FO>(self, operation: FO) -> HashMap<K, V> |
245 | where |
246 | FO: FnMut(V, &K, V) -> V, |
247 | { |
248 | self.reduce(operation) |
249 | } |
250 | |
251 | /// Groups elements from the `GroupingMap` source by key and collects the elements of each group in |
252 | /// an instance of `C`. The iteration order is preserved when inserting elements. |
253 | /// |
254 | /// Return a `HashMap` associating the key of each group with the collection containing that group's elements. |
255 | /// |
256 | /// ``` |
257 | /// use itertools::Itertools; |
258 | /// use std::collections::HashSet; |
259 | /// |
260 | /// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter() |
261 | /// .into_grouping_map_by(|&n| n % 3) |
262 | /// .collect::<HashSet<_>>(); |
263 | /// |
264 | /// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>()); |
265 | /// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>()); |
266 | /// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>()); |
267 | /// assert_eq!(lookup.len(), 3); |
268 | /// ``` |
269 | pub fn collect<C>(self) -> HashMap<K, C> |
270 | where |
271 | C: Default + Extend<V>, |
272 | { |
273 | let mut destination_map = HashMap::new(); |
274 | |
275 | self.iter.for_each(|(key, val)| { |
276 | destination_map |
277 | .entry(key) |
278 | .or_insert_with(C::default) |
279 | .extend(Some(val)); |
280 | }); |
281 | |
282 | destination_map |
283 | } |
284 | |
285 | /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group. |
286 | /// |
287 | /// If several elements are equally maximum, the last element is picked. |
288 | /// |
289 | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
290 | /// |
291 | /// ``` |
292 | /// use itertools::Itertools; |
293 | /// |
294 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
295 | /// .into_grouping_map_by(|&n| n % 3) |
296 | /// .max(); |
297 | /// |
298 | /// assert_eq!(lookup[&0], 12); |
299 | /// assert_eq!(lookup[&1], 7); |
300 | /// assert_eq!(lookup[&2], 8); |
301 | /// assert_eq!(lookup.len(), 3); |
302 | /// ``` |
303 | pub fn max(self) -> HashMap<K, V> |
304 | where |
305 | V: Ord, |
306 | { |
307 | self.max_by(|_, v1, v2| V::cmp(v1, v2)) |
308 | } |
309 | |
310 | /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group |
311 | /// with respect to the specified comparison function. |
312 | /// |
313 | /// If several elements are equally maximum, the last element is picked. |
314 | /// |
315 | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
316 | /// |
317 | /// ``` |
318 | /// use itertools::Itertools; |
319 | /// |
320 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
321 | /// .into_grouping_map_by(|&n| n % 3) |
322 | /// .max_by(|_key, x, y| y.cmp(x)); |
323 | /// |
324 | /// assert_eq!(lookup[&0], 3); |
325 | /// assert_eq!(lookup[&1], 1); |
326 | /// assert_eq!(lookup[&2], 5); |
327 | /// assert_eq!(lookup.len(), 3); |
328 | /// ``` |
329 | pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V> |
330 | where |
331 | F: FnMut(&K, &V, &V) -> Ordering, |
332 | { |
333 | self.reduce(|acc, key, val| match compare(key, &acc, &val) { |
334 | Ordering::Less | Ordering::Equal => val, |
335 | Ordering::Greater => acc, |
336 | }) |
337 | } |
338 | |
339 | /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
340 | /// that gives the maximum from the specified function. |
341 | /// |
342 | /// If several elements are equally maximum, the last element is picked. |
343 | /// |
344 | /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. |
345 | /// |
346 | /// ``` |
347 | /// use itertools::Itertools; |
348 | /// |
349 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
350 | /// .into_grouping_map_by(|&n| n % 3) |
351 | /// .max_by_key(|_key, &val| val % 4); |
352 | /// |
353 | /// assert_eq!(lookup[&0], 3); |
354 | /// assert_eq!(lookup[&1], 7); |
355 | /// assert_eq!(lookup[&2], 5); |
356 | /// assert_eq!(lookup.len(), 3); |
357 | /// ``` |
358 | pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
359 | where |
360 | F: FnMut(&K, &V) -> CK, |
361 | CK: Ord, |
362 | { |
363 | self.max_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) |
364 | } |
365 | |
366 | /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group. |
367 | /// |
368 | /// If several elements are equally minimum, the first element is picked. |
369 | /// |
370 | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
371 | /// |
372 | /// ``` |
373 | /// use itertools::Itertools; |
374 | /// |
375 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
376 | /// .into_grouping_map_by(|&n| n % 3) |
377 | /// .min(); |
378 | /// |
379 | /// assert_eq!(lookup[&0], 3); |
380 | /// assert_eq!(lookup[&1], 1); |
381 | /// assert_eq!(lookup[&2], 5); |
382 | /// assert_eq!(lookup.len(), 3); |
383 | /// ``` |
384 | pub fn min(self) -> HashMap<K, V> |
385 | where |
386 | V: Ord, |
387 | { |
388 | self.min_by(|_, v1, v2| V::cmp(v1, v2)) |
389 | } |
390 | |
391 | /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group |
392 | /// with respect to the specified comparison function. |
393 | /// |
394 | /// If several elements are equally minimum, the first element is picked. |
395 | /// |
396 | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
397 | /// |
398 | /// ``` |
399 | /// use itertools::Itertools; |
400 | /// |
401 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
402 | /// .into_grouping_map_by(|&n| n % 3) |
403 | /// .min_by(|_key, x, y| y.cmp(x)); |
404 | /// |
405 | /// assert_eq!(lookup[&0], 12); |
406 | /// assert_eq!(lookup[&1], 7); |
407 | /// assert_eq!(lookup[&2], 8); |
408 | /// assert_eq!(lookup.len(), 3); |
409 | /// ``` |
410 | pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V> |
411 | where |
412 | F: FnMut(&K, &V, &V) -> Ordering, |
413 | { |
414 | self.reduce(|acc, key, val| match compare(key, &acc, &val) { |
415 | Ordering::Less | Ordering::Equal => acc, |
416 | Ordering::Greater => val, |
417 | }) |
418 | } |
419 | |
420 | /// Groups elements from the `GroupingMap` source by key and finds the element of each group |
421 | /// that gives the minimum from the specified function. |
422 | /// |
423 | /// If several elements are equally minimum, the first element is picked. |
424 | /// |
425 | /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. |
426 | /// |
427 | /// ``` |
428 | /// use itertools::Itertools; |
429 | /// |
430 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
431 | /// .into_grouping_map_by(|&n| n % 3) |
432 | /// .min_by_key(|_key, &val| val % 4); |
433 | /// |
434 | /// assert_eq!(lookup[&0], 12); |
435 | /// assert_eq!(lookup[&1], 4); |
436 | /// assert_eq!(lookup[&2], 8); |
437 | /// assert_eq!(lookup.len(), 3); |
438 | /// ``` |
439 | pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> |
440 | where |
441 | F: FnMut(&K, &V) -> CK, |
442 | CK: Ord, |
443 | { |
444 | self.min_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) |
445 | } |
446 | |
447 | /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
448 | /// each group. |
449 | /// |
450 | /// If several elements are equally maximum, the last element is picked. |
451 | /// If several elements are equally minimum, the first element is picked. |
452 | /// |
453 | /// See [`Itertools::minmax`](crate::Itertools::minmax) for the non-grouping version. |
454 | /// |
455 | /// Differences from the non grouping version: |
456 | /// - It never produces a `MinMaxResult::NoElements` |
457 | /// - It doesn't have any speedup |
458 | /// |
459 | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
460 | /// |
461 | /// ``` |
462 | /// use itertools::Itertools; |
463 | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
464 | /// |
465 | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
466 | /// .into_grouping_map_by(|&n| n % 3) |
467 | /// .minmax(); |
468 | /// |
469 | /// assert_eq!(lookup[&0], MinMax(3, 12)); |
470 | /// assert_eq!(lookup[&1], MinMax(1, 7)); |
471 | /// assert_eq!(lookup[&2], OneElement(5)); |
472 | /// assert_eq!(lookup.len(), 3); |
473 | /// ``` |
474 | pub fn minmax(self) -> HashMap<K, MinMaxResult<V>> |
475 | where |
476 | V: Ord, |
477 | { |
478 | self.minmax_by(|_, v1, v2| V::cmp(v1, v2)) |
479 | } |
480 | |
481 | /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of |
482 | /// each group with respect to the specified comparison function. |
483 | /// |
484 | /// If several elements are equally maximum, the last element is picked. |
485 | /// If several elements are equally minimum, the first element is picked. |
486 | /// |
487 | /// It has the same differences from the non-grouping version as `minmax`. |
488 | /// |
489 | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
490 | /// |
491 | /// ``` |
492 | /// use itertools::Itertools; |
493 | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
494 | /// |
495 | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
496 | /// .into_grouping_map_by(|&n| n % 3) |
497 | /// .minmax_by(|_key, x, y| y.cmp(x)); |
498 | /// |
499 | /// assert_eq!(lookup[&0], MinMax(12, 3)); |
500 | /// assert_eq!(lookup[&1], MinMax(7, 1)); |
501 | /// assert_eq!(lookup[&2], OneElement(5)); |
502 | /// assert_eq!(lookup.len(), 3); |
503 | /// ``` |
504 | pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>> |
505 | where |
506 | F: FnMut(&K, &V, &V) -> Ordering, |
507 | { |
508 | self.aggregate(|acc, key, val| { |
509 | Some(match acc { |
510 | Some(MinMaxResult::OneElement(e)) => { |
511 | if compare(key, &val, &e) == Ordering::Less { |
512 | MinMaxResult::MinMax(val, e) |
513 | } else { |
514 | MinMaxResult::MinMax(e, val) |
515 | } |
516 | } |
517 | Some(MinMaxResult::MinMax(min, max)) => { |
518 | if compare(key, &val, &min) == Ordering::Less { |
519 | MinMaxResult::MinMax(val, max) |
520 | } else if compare(key, &val, &max) != Ordering::Less { |
521 | MinMaxResult::MinMax(min, val) |
522 | } else { |
523 | MinMaxResult::MinMax(min, max) |
524 | } |
525 | } |
526 | None => MinMaxResult::OneElement(val), |
527 | Some(MinMaxResult::NoElements) => unreachable!(), |
528 | }) |
529 | }) |
530 | } |
531 | |
532 | /// Groups elements from the `GroupingMap` source by key and find the elements of each group |
533 | /// that gives the minimum and maximum from the specified function. |
534 | /// |
535 | /// If several elements are equally maximum, the last element is picked. |
536 | /// If several elements are equally minimum, the first element is picked. |
537 | /// |
538 | /// It has the same differences from the non-grouping version as `minmax`. |
539 | /// |
540 | /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. |
541 | /// |
542 | /// ``` |
543 | /// use itertools::Itertools; |
544 | /// use itertools::MinMaxResult::{OneElement, MinMax}; |
545 | /// |
546 | /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() |
547 | /// .into_grouping_map_by(|&n| n % 3) |
548 | /// .minmax_by_key(|_key, &val| val % 4); |
549 | /// |
550 | /// assert_eq!(lookup[&0], MinMax(12, 3)); |
551 | /// assert_eq!(lookup[&1], MinMax(4, 7)); |
552 | /// assert_eq!(lookup[&2], OneElement(5)); |
553 | /// assert_eq!(lookup.len(), 3); |
554 | /// ``` |
555 | pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>> |
556 | where |
557 | F: FnMut(&K, &V) -> CK, |
558 | CK: Ord, |
559 | { |
560 | self.minmax_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) |
561 | } |
562 | |
563 | /// Groups elements from the `GroupingMap` source by key and sums them. |
564 | /// |
565 | /// This is just a shorthand for `self.reduce(|acc, _, val| acc + val)`. |
566 | /// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait. |
567 | /// |
568 | /// Returns a `HashMap` associating the key of each group with the sum of that group's elements. |
569 | /// |
570 | /// ``` |
571 | /// use itertools::Itertools; |
572 | /// |
573 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
574 | /// .into_grouping_map_by(|&n| n % 3) |
575 | /// .sum(); |
576 | /// |
577 | /// assert_eq!(lookup[&0], 3 + 9 + 12); |
578 | /// assert_eq!(lookup[&1], 1 + 4 + 7); |
579 | /// assert_eq!(lookup[&2], 5 + 8); |
580 | /// assert_eq!(lookup.len(), 3); |
581 | /// ``` |
582 | pub fn sum(self) -> HashMap<K, V> |
583 | where |
584 | V: Add<V, Output = V>, |
585 | { |
586 | self.reduce(|acc, _, val| acc + val) |
587 | } |
588 | |
589 | /// Groups elements from the `GroupingMap` source by key and multiply them. |
590 | /// |
591 | /// This is just a shorthand for `self.reduce(|acc, _, val| acc * val)`. |
592 | /// It is more limited than `Iterator::product` since it doesn't use the `Product` trait. |
593 | /// |
594 | /// Returns a `HashMap` associating the key of each group with the product of that group's elements. |
595 | /// |
596 | /// ``` |
597 | /// use itertools::Itertools; |
598 | /// |
599 | /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() |
600 | /// .into_grouping_map_by(|&n| n % 3) |
601 | /// .product(); |
602 | /// |
603 | /// assert_eq!(lookup[&0], 3 * 9 * 12); |
604 | /// assert_eq!(lookup[&1], 1 * 4 * 7); |
605 | /// assert_eq!(lookup[&2], 5 * 8); |
606 | /// assert_eq!(lookup.len(), 3); |
607 | /// ``` |
608 | pub fn product(self) -> HashMap<K, V> |
609 | where |
610 | V: Mul<V, Output = V>, |
611 | { |
612 | self.reduce(|acc, _, val| acc * val) |
613 | } |
614 | } |
615 | |