1 | // Copyright 2018 the Kurbo Authors
|
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT
|
3 |
|
4 | //! Lines.
|
5 |
|
6 | use core::ops::{Add, Mul, Range, Sub};
|
7 |
|
8 | use arrayvec::ArrayVec;
|
9 |
|
10 | use crate::{
|
11 | Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveCurvature,
|
12 | ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, Rect, Shape, Vec2,
|
13 | DEFAULT_ACCURACY, MAX_EXTREMA,
|
14 | };
|
15 |
|
16 | /// A single line.
|
17 | #[derive (Clone, Copy, Debug, PartialEq)]
|
18 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))]
|
19 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))]
|
20 | pub struct Line {
|
21 | /// The line's start point.
|
22 | pub p0: Point,
|
23 | /// The line's end point.
|
24 | pub p1: Point,
|
25 | }
|
26 |
|
27 | impl Line {
|
28 | /// Create a new line.
|
29 | #[inline ]
|
30 | pub fn new(p0: impl Into<Point>, p1: impl Into<Point>) -> Line {
|
31 | Line {
|
32 | p0: p0.into(),
|
33 | p1: p1.into(),
|
34 | }
|
35 | }
|
36 |
|
37 | /// The length of the line.
|
38 | #[inline ]
|
39 | pub fn length(self) -> f64 {
|
40 | self.arclen(DEFAULT_ACCURACY)
|
41 | }
|
42 |
|
43 | /// Computes the point where two lines, if extended to infinity, would cross.
|
44 | pub fn crossing_point(self, other: Line) -> Option<Point> {
|
45 | let ab = self.p1 - self.p0;
|
46 | let cd = other.p1 - other.p0;
|
47 | let pcd = ab.cross(cd);
|
48 | if pcd == 0.0 {
|
49 | return None;
|
50 | }
|
51 | let h = ab.cross(self.p0 - other.p0) / pcd;
|
52 | Some(other.p0 + cd * h)
|
53 | }
|
54 |
|
55 | /// Is this line finite?
|
56 | #[inline ]
|
57 | pub fn is_finite(self) -> bool {
|
58 | self.p0.is_finite() && self.p1.is_finite()
|
59 | }
|
60 |
|
61 | /// Is this line NaN?
|
62 | #[inline ]
|
63 | pub fn is_nan(self) -> bool {
|
64 | self.p0.is_nan() || self.p1.is_nan()
|
65 | }
|
66 | }
|
67 |
|
68 | impl ParamCurve for Line {
|
69 | #[inline ]
|
70 | fn eval(&self, t: f64) -> Point {
|
71 | self.p0.lerp(self.p1, t)
|
72 | }
|
73 |
|
74 | #[inline ]
|
75 | fn subsegment(&self, range: Range<f64>) -> Line {
|
76 | Line {
|
77 | p0: self.eval(range.start),
|
78 | p1: self.eval(range.end),
|
79 | }
|
80 | }
|
81 |
|
82 | #[inline ]
|
83 | fn start(&self) -> Point {
|
84 | self.p0
|
85 | }
|
86 |
|
87 | #[inline ]
|
88 | fn end(&self) -> Point {
|
89 | self.p1
|
90 | }
|
91 | }
|
92 |
|
93 | impl ParamCurveDeriv for Line {
|
94 | type DerivResult = ConstPoint;
|
95 |
|
96 | #[inline ]
|
97 | fn deriv(&self) -> ConstPoint {
|
98 | ConstPoint((self.p1 - self.p0).to_point())
|
99 | }
|
100 | }
|
101 |
|
102 | impl ParamCurveArclen for Line {
|
103 | #[inline ]
|
104 | fn arclen(&self, _accuracy: f64) -> f64 {
|
105 | (self.p1 - self.p0).hypot()
|
106 | }
|
107 |
|
108 | #[inline ]
|
109 | fn inv_arclen(&self, arclen: f64, _accuracy: f64) -> f64 {
|
110 | arclen / (self.p1 - self.p0).hypot()
|
111 | }
|
112 | }
|
113 |
|
114 | impl ParamCurveArea for Line {
|
115 | #[inline ]
|
116 | fn signed_area(&self) -> f64 {
|
117 | self.p0.to_vec2().cross(self.p1.to_vec2()) * 0.5
|
118 | }
|
119 | }
|
120 |
|
121 | impl ParamCurveNearest for Line {
|
122 | fn nearest(&self, p: Point, _accuracy: f64) -> Nearest {
|
123 | let d: Vec2 = self.p1 - self.p0;
|
124 | let dotp: f64 = d.dot(p - self.p0);
|
125 | let d_squared: f64 = d.dot(d);
|
126 | let (t: f64, distance_sq: f64) = if dotp <= 0.0 {
|
127 | (0.0, (p - self.p0).hypot2())
|
128 | } else if dotp >= d_squared {
|
129 | (1.0, (p - self.p1).hypot2())
|
130 | } else {
|
131 | let t: f64 = dotp / d_squared;
|
132 | let dist: f64 = (p - self.eval(t)).hypot2();
|
133 | (t, dist)
|
134 | };
|
135 | Nearest { distance_sq, t }
|
136 | }
|
137 | }
|
138 |
|
139 | impl ParamCurveCurvature for Line {
|
140 | #[inline ]
|
141 | fn curvature(&self, _t: f64) -> f64 {
|
142 | 0.0
|
143 | }
|
144 | }
|
145 |
|
146 | impl ParamCurveExtrema for Line {
|
147 | #[inline ]
|
148 | fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> {
|
149 | ArrayVec::new()
|
150 | }
|
151 | }
|
152 |
|
153 | /// A trivial "curve" that is just a constant.
|
154 | #[derive (Clone, Copy, Debug)]
|
155 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))]
|
156 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))]
|
157 | pub struct ConstPoint(Point);
|
158 |
|
159 | impl ConstPoint {
|
160 | /// Is this point finite?
|
161 | #[inline ]
|
162 | pub fn is_finite(self) -> bool {
|
163 | self.0.is_finite()
|
164 | }
|
165 |
|
166 | /// Is this point NaN?
|
167 | #[inline ]
|
168 | pub fn is_nan(self) -> bool {
|
169 | self.0.is_nan()
|
170 | }
|
171 | }
|
172 |
|
173 | impl ParamCurve for ConstPoint {
|
174 | #[inline ]
|
175 | fn eval(&self, _t: f64) -> Point {
|
176 | self.0
|
177 | }
|
178 |
|
179 | #[inline ]
|
180 | fn subsegment(&self, _range: Range<f64>) -> ConstPoint {
|
181 | *self
|
182 | }
|
183 | }
|
184 |
|
185 | impl ParamCurveDeriv for ConstPoint {
|
186 | type DerivResult = ConstPoint;
|
187 |
|
188 | #[inline ]
|
189 | fn deriv(&self) -> ConstPoint {
|
190 | ConstPoint(Point::new(x:0.0, y:0.0))
|
191 | }
|
192 | }
|
193 |
|
194 | impl ParamCurveArclen for ConstPoint {
|
195 | #[inline ]
|
196 | fn arclen(&self, _accuracy: f64) -> f64 {
|
197 | 0.0
|
198 | }
|
199 |
|
200 | #[inline ]
|
201 | fn inv_arclen(&self, _arclen: f64, _accuracy: f64) -> f64 {
|
202 | 0.0
|
203 | }
|
204 | }
|
205 |
|
206 | impl Mul<Line> for Affine {
|
207 | type Output = Line;
|
208 |
|
209 | #[inline ]
|
210 | fn mul(self, other: Line) -> Line {
|
211 | Line {
|
212 | p0: self * other.p0,
|
213 | p1: self * other.p1,
|
214 | }
|
215 | }
|
216 | }
|
217 |
|
218 | impl Add<Vec2> for Line {
|
219 | type Output = Line;
|
220 |
|
221 | #[inline ]
|
222 | fn add(self, v: Vec2) -> Line {
|
223 | Line::new(self.p0 + v, self.p1 + v)
|
224 | }
|
225 | }
|
226 |
|
227 | impl Sub<Vec2> for Line {
|
228 | type Output = Line;
|
229 |
|
230 | #[inline ]
|
231 | fn sub(self, v: Vec2) -> Line {
|
232 | Line::new(self.p0 - v, self.p1 - v)
|
233 | }
|
234 | }
|
235 |
|
236 | /// An iterator yielding the path for a single line.
|
237 | #[doc (hidden)]
|
238 | pub struct LinePathIter {
|
239 | line: Line,
|
240 | ix: usize,
|
241 | }
|
242 |
|
243 | impl Shape for Line {
|
244 | type PathElementsIter<'iter> = LinePathIter;
|
245 |
|
246 | #[inline ]
|
247 | fn path_elements(&self, _tolerance: f64) -> LinePathIter {
|
248 | LinePathIter { line: *self, ix: 0 }
|
249 | }
|
250 |
|
251 | /// Returning zero here is consistent with the contract (area is
|
252 | /// only meaningful for closed shapes), but an argument can be made
|
253 | /// that the contract should be tightened to include the Green's
|
254 | /// theorem contribution.
|
255 | fn area(&self) -> f64 {
|
256 | 0.0
|
257 | }
|
258 |
|
259 | #[inline ]
|
260 | fn perimeter(&self, _accuracy: f64) -> f64 {
|
261 | (self.p1 - self.p0).hypot()
|
262 | }
|
263 |
|
264 | /// Same consideration as `area`.
|
265 | fn winding(&self, _pt: Point) -> i32 {
|
266 | 0
|
267 | }
|
268 |
|
269 | #[inline ]
|
270 | fn bounding_box(&self) -> Rect {
|
271 | Rect::from_points(self.p0, self.p1)
|
272 | }
|
273 |
|
274 | #[inline ]
|
275 | fn as_line(&self) -> Option<Line> {
|
276 | Some(*self)
|
277 | }
|
278 | }
|
279 |
|
280 | impl Iterator for LinePathIter {
|
281 | type Item = PathEl;
|
282 |
|
283 | fn next(&mut self) -> Option<PathEl> {
|
284 | self.ix += 1;
|
285 | match self.ix {
|
286 | 1 => Some(PathEl::MoveTo(self.line.p0)),
|
287 | 2 => Some(PathEl::LineTo(self.line.p1)),
|
288 | _ => None,
|
289 | }
|
290 | }
|
291 | }
|
292 |
|
293 | #[cfg (test)]
|
294 | mod tests {
|
295 | use crate::{Line, ParamCurveArclen, Point};
|
296 |
|
297 | #[test ]
|
298 | fn line_arclen() {
|
299 | let l = Line::new((0.0, 0.0), (1.0, 1.0));
|
300 | let true_len = 2.0f64.sqrt();
|
301 | let epsilon = 1e-9;
|
302 | assert!(l.arclen(epsilon) - true_len < epsilon);
|
303 |
|
304 | let t = l.inv_arclen(true_len / 3.0, epsilon);
|
305 | assert!((t - 1.0 / 3.0).abs() < epsilon);
|
306 | }
|
307 |
|
308 | #[test ]
|
309 | fn line_is_finite() {
|
310 | assert!((Line {
|
311 | p0: Point { x: 0., y: 0. },
|
312 | p1: Point { x: 1., y: 1. }
|
313 | })
|
314 | .is_finite());
|
315 |
|
316 | assert!(!(Line {
|
317 | p0: Point { x: 0., y: 0. },
|
318 | p1: Point {
|
319 | x: f64::INFINITY,
|
320 | y: 1.
|
321 | }
|
322 | })
|
323 | .is_finite());
|
324 |
|
325 | assert!(!(Line {
|
326 | p0: Point { x: 0., y: 0. },
|
327 | p1: Point {
|
328 | x: 0.,
|
329 | y: f64::INFINITY
|
330 | }
|
331 | })
|
332 | .is_finite());
|
333 | }
|
334 | }
|
335 | |