| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* asin(x) |
| 13 | * Method : |
| 14 | * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
| 15 | * we approximate asin(x) on [0,0.5] by |
| 16 | * asin(x) = x + x*x^2*R(x^2) |
| 17 | * where |
| 18 | * R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
| 19 | * and its remez error is bounded by |
| 20 | * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
| 21 | * |
| 22 | * For x in [0.5,1] |
| 23 | * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
| 24 | * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
| 25 | * then for x>0.98 |
| 26 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| 27 | * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
| 28 | * For x<=0.98, let pio4_hi = pio2_hi/2, then |
| 29 | * f = hi part of s; |
| 30 | * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
| 31 | * and |
| 32 | * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
| 33 | * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
| 34 | * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
| 35 | * |
| 36 | * Special cases: |
| 37 | * if x is NaN, return x itself; |
| 38 | * if |x|>1, return NaN with invalid signal. |
| 39 | * |
| 40 | */ |
| 41 | |
| 42 | use super::{fabs, get_high_word, get_low_word, sqrt, with_set_low_word}; |
| 43 | |
| 44 | const PIO2_HI: f64 = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */ |
| 45 | const PIO2_LO: f64 = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */ |
| 46 | /* coefficients for R(x^2) */ |
| 47 | const P_S0: f64 = 1.66666666666666657415e-01; /* 0x3FC55555, 0x55555555 */ |
| 48 | const P_S1: f64 = -3.25565818622400915405e-01; /* 0xBFD4D612, 0x03EB6F7D */ |
| 49 | const P_S2: f64 = 2.01212532134862925881e-01; /* 0x3FC9C155, 0x0E884455 */ |
| 50 | const P_S3: f64 = -4.00555345006794114027e-02; /* 0xBFA48228, 0xB5688F3B */ |
| 51 | const P_S4: f64 = 7.91534994289814532176e-04; /* 0x3F49EFE0, 0x7501B288 */ |
| 52 | const P_S5: f64 = 3.47933107596021167570e-05; /* 0x3F023DE1, 0x0DFDF709 */ |
| 53 | const Q_S1: f64 = -2.40339491173441421878e+00; /* 0xC0033A27, 0x1C8A2D4B */ |
| 54 | const Q_S2: f64 = 2.02094576023350569471e+00; /* 0x40002AE5, 0x9C598AC8 */ |
| 55 | const Q_S3: f64 = -6.88283971605453293030e-01; /* 0xBFE6066C, 0x1B8D0159 */ |
| 56 | const Q_S4: f64 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
| 57 | |
| 58 | fn comp_r(z: f64) -> f64 { |
| 59 | let p: f64 = z * (P_S0 + z * (P_S1 + z * (P_S2 + z * (P_S3 + z * (P_S4 + z * P_S5))))); |
| 60 | let q: f64 = 1.0 + z * (Q_S1 + z * (Q_S2 + z * (Q_S3 + z * Q_S4))); |
| 61 | p / q |
| 62 | } |
| 63 | |
| 64 | /// Arcsine (f64) |
| 65 | /// |
| 66 | /// Computes the inverse sine (arc sine) of the argument `x`. |
| 67 | /// Arguments to asin must be in the range -1 to 1. |
| 68 | /// Returns values in radians, in the range of -pi/2 to pi/2. |
| 69 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 70 | pub fn asin(mut x: f64) -> f64 { |
| 71 | let z: f64; |
| 72 | let r: f64; |
| 73 | let s: f64; |
| 74 | let hx: u32; |
| 75 | let ix: u32; |
| 76 | |
| 77 | hx = get_high_word(x); |
| 78 | ix = hx & 0x7fffffff; |
| 79 | /* |x| >= 1 or nan */ |
| 80 | if ix >= 0x3ff00000 { |
| 81 | let lx: u32; |
| 82 | lx = get_low_word(x); |
| 83 | if ((ix - 0x3ff00000) | lx) == 0 { |
| 84 | /* asin(1) = +-pi/2 with inexact */ |
| 85 | return x * PIO2_HI + f64::from_bits(0x3870000000000000); |
| 86 | } else { |
| 87 | return 0.0 / (x - x); |
| 88 | } |
| 89 | } |
| 90 | /* |x| < 0.5 */ |
| 91 | if ix < 0x3fe00000 { |
| 92 | /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */ |
| 93 | if (0x00100000..0x3e500000).contains(&ix) { |
| 94 | return x; |
| 95 | } else { |
| 96 | return x + x * comp_r(x * x); |
| 97 | } |
| 98 | } |
| 99 | /* 1 > |x| >= 0.5 */ |
| 100 | z = (1.0 - fabs(x)) * 0.5; |
| 101 | s = sqrt(z); |
| 102 | r = comp_r(z); |
| 103 | if ix >= 0x3fef3333 { |
| 104 | /* if |x| > 0.975 */ |
| 105 | x = PIO2_HI - (2. * (s + s * r) - PIO2_LO); |
| 106 | } else { |
| 107 | let f: f64; |
| 108 | let c: f64; |
| 109 | /* f+c = sqrt(z) */ |
| 110 | f = with_set_low_word(s, 0); |
| 111 | c = (z - f * f) / (s + f); |
| 112 | x = 0.5 * PIO2_HI - (2.0 * s * r - (PIO2_LO - 2.0 * c) - (0.5 * PIO2_HI - 2.0 * f)); |
| 113 | } |
| 114 | if hx >> 31 != 0 { -x } else { x } |
| 115 | } |
| 116 | |