| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | |
| 13 | use core::f64; |
| 14 | |
| 15 | const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ |
| 16 | const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */ |
| 17 | const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */ |
| 18 | const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ |
| 19 | /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ |
| 20 | const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */ |
| 21 | const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */ |
| 22 | const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */ |
| 23 | const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */ |
| 24 | const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ |
| 25 | |
| 26 | /// Exponential, base *e*, of x-1 (f64) |
| 27 | /// |
| 28 | /// Calculates the exponential of `x` and subtract 1, that is, *e* raised |
| 29 | /// to the power `x` minus 1 (where *e* is the base of the natural |
| 30 | /// system of logarithms, approximately 2.71828). |
| 31 | /// The result is accurate even for small values of `x`, |
| 32 | /// where using `exp(x)-1` would lose many significant digits. |
| 33 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 34 | pub fn expm1(mut x: f64) -> f64 { |
| 35 | let hi: f64; |
| 36 | let lo: f64; |
| 37 | let k: i32; |
| 38 | let c: f64; |
| 39 | let mut t: f64; |
| 40 | let mut y: f64; |
| 41 | |
| 42 | let mut ui = x.to_bits(); |
| 43 | let hx = ((ui >> 32) & 0x7fffffff) as u32; |
| 44 | let sign = (ui >> 63) as i32; |
| 45 | |
| 46 | /* filter out huge and non-finite argument */ |
| 47 | if hx >= 0x4043687A { |
| 48 | /* if |x|>=56*ln2 */ |
| 49 | if x.is_nan() { |
| 50 | return x; |
| 51 | } |
| 52 | if sign != 0 { |
| 53 | return -1.0; |
| 54 | } |
| 55 | if x > O_THRESHOLD { |
| 56 | x *= f64::from_bits(0x7fe0000000000000); |
| 57 | return x; |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | /* argument reduction */ |
| 62 | if hx > 0x3fd62e42 { |
| 63 | /* if |x| > 0.5 ln2 */ |
| 64 | if hx < 0x3FF0A2B2 { |
| 65 | /* and |x| < 1.5 ln2 */ |
| 66 | if sign == 0 { |
| 67 | hi = x - LN2_HI; |
| 68 | lo = LN2_LO; |
| 69 | k = 1; |
| 70 | } else { |
| 71 | hi = x + LN2_HI; |
| 72 | lo = -LN2_LO; |
| 73 | k = -1; |
| 74 | } |
| 75 | } else { |
| 76 | k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32; |
| 77 | t = k as f64; |
| 78 | hi = x - t * LN2_HI; /* t*ln2_hi is exact here */ |
| 79 | lo = t * LN2_LO; |
| 80 | } |
| 81 | x = hi - lo; |
| 82 | c = (hi - x) - lo; |
| 83 | } else if hx < 0x3c900000 { |
| 84 | /* |x| < 2**-54, return x */ |
| 85 | if hx < 0x00100000 { |
| 86 | force_eval!(x); |
| 87 | } |
| 88 | return x; |
| 89 | } else { |
| 90 | c = 0.0; |
| 91 | k = 0; |
| 92 | } |
| 93 | |
| 94 | /* x is now in primary range */ |
| 95 | let hfx = 0.5 * x; |
| 96 | let hxs = x * hfx; |
| 97 | let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); |
| 98 | t = 3.0 - r1 * hfx; |
| 99 | let mut e = hxs * ((r1 - t) / (6.0 - x * t)); |
| 100 | if k == 0 { |
| 101 | /* c is 0 */ |
| 102 | return x - (x * e - hxs); |
| 103 | } |
| 104 | e = x * (e - c) - c; |
| 105 | e -= hxs; |
| 106 | /* exp(x) ~ 2^k (x_reduced - e + 1) */ |
| 107 | if k == -1 { |
| 108 | return 0.5 * (x - e) - 0.5; |
| 109 | } |
| 110 | if k == 1 { |
| 111 | if x < -0.25 { |
| 112 | return -2.0 * (e - (x + 0.5)); |
| 113 | } |
| 114 | return 1.0 + 2.0 * (x - e); |
| 115 | } |
| 116 | ui = ((0x3ff + k) as u64) << 52; /* 2^k */ |
| 117 | let twopk = f64::from_bits(ui); |
| 118 | if !(0..=56).contains(&k) { |
| 119 | /* suffice to return exp(x)-1 */ |
| 120 | y = x - e + 1.0; |
| 121 | if k == 1024 { |
| 122 | y = y * 2.0 * f64::from_bits(0x7fe0000000000000); |
| 123 | } else { |
| 124 | y = y * twopk; |
| 125 | } |
| 126 | return y - 1.0; |
| 127 | } |
| 128 | ui = ((0x3ff - k) as u64) << 52; /* 2^-k */ |
| 129 | let uf = f64::from_bits(ui); |
| 130 | if k < 20 { |
| 131 | y = (x - e + (1.0 - uf)) * twopk; |
| 132 | } else { |
| 133 | y = (x - (e + uf) + 1.0) * twopk; |
| 134 | } |
| 135 | y |
| 136 | } |
| 137 | |
| 138 | #[cfg (test)] |
| 139 | mod tests { |
| 140 | #[test ] |
| 141 | fn sanity_check() { |
| 142 | assert_eq!(super::expm1(1.1), 2.0041660239464334); |
| 143 | } |
| 144 | } |
| 145 | |