1 | use super::super::{CastFrom, CastInto, Float, IntTy, MinInt}; |
2 | |
3 | /// Scale the exponent. |
4 | /// |
5 | /// From N3220: |
6 | /// |
7 | /// > The scalbn and scalbln functions compute `x * b^n`, where `b = FLT_RADIX` if the return type |
8 | /// > of the function is a standard floating type, or `b = 10` if the return type of the function |
9 | /// > is a decimal floating type. A range error occurs for some finite x, depending on n. |
10 | /// > |
11 | /// > [...] |
12 | /// > |
13 | /// > * `scalbn(±0, n)` returns `±0`. |
14 | /// > * `scalbn(x, 0)` returns `x`. |
15 | /// > * `scalbn(±∞, n)` returns `±∞`. |
16 | /// > |
17 | /// > If the calculation does not overflow or underflow, the returned value is exact and |
18 | /// > independent of the current rounding direction mode. |
19 | #[inline ] |
20 | pub fn scalbn<F: Float>(mut x: F, mut n: i32) -> F |
21 | where |
22 | u32: CastInto<F::Int>, |
23 | F::Int: CastFrom<i32>, |
24 | F::Int: CastFrom<u32>, |
25 | { |
26 | let zero = IntTy::<F>::ZERO; |
27 | |
28 | // Bits including the implicit bit |
29 | let sig_total_bits = F::SIG_BITS + 1; |
30 | |
31 | // Maximum and minimum values when biased |
32 | let exp_max = F::EXP_MAX; |
33 | let exp_min = F::EXP_MIN; |
34 | |
35 | // 2 ^ Emax, maximum positive with null significand (0x1p1023 for f64) |
36 | let f_exp_max = F::from_parts(false, F::EXP_BIAS << 1, zero); |
37 | |
38 | // 2 ^ Emin, minimum positive normal with null significand (0x1p-1022 for f64) |
39 | let f_exp_min = F::from_parts(false, 1, zero); |
40 | |
41 | // 2 ^ sig_total_bits, moltiplier to normalize subnormals (0x1p53 for f64) |
42 | let f_pow_subnorm = F::from_parts(false, sig_total_bits + F::EXP_BIAS, zero); |
43 | |
44 | /* |
45 | * The goal is to multiply `x` by a scale factor that applies `n`. However, there are cases |
46 | * where `2^n` is not representable by `F` but the result should be, e.g. `x = 2^Emin` with |
47 | * `n = -EMin + 2` (one out of range of 2^Emax). To get around this, reduce the magnitude of |
48 | * the final scale operation by prescaling by the max/min power representable by `F`. |
49 | */ |
50 | |
51 | if n > exp_max { |
52 | // Worse case positive `n`: `x` is the minimum subnormal value, the result is `F::MAX`. |
53 | // This can be reached by three scaling multiplications (two here and one final). |
54 | debug_assert!(-exp_min + F::SIG_BITS as i32 + exp_max <= exp_max * 3); |
55 | |
56 | x *= f_exp_max; |
57 | n -= exp_max; |
58 | if n > exp_max { |
59 | x *= f_exp_max; |
60 | n -= exp_max; |
61 | if n > exp_max { |
62 | n = exp_max; |
63 | } |
64 | } |
65 | } else if n < exp_min { |
66 | // When scaling toward 0, the prescaling is limited to a value that does not allow `x` to |
67 | // go subnormal. This avoids double rounding. |
68 | if F::BITS > 16 { |
69 | // `mul` s.t. `!(x * mul).is_subnormal() ∀ x` |
70 | let mul = f_exp_min * f_pow_subnorm; |
71 | let add = -exp_min - sig_total_bits as i32; |
72 | |
73 | // Worse case negative `n`: `x` is the maximum positive value, the result is `F::MIN`. |
74 | // This must be reachable by three scaling multiplications (two here and one final). |
75 | debug_assert!(-exp_min + F::SIG_BITS as i32 + exp_max <= add * 2 + -exp_min); |
76 | |
77 | x *= mul; |
78 | n += add; |
79 | |
80 | if n < exp_min { |
81 | x *= mul; |
82 | n += add; |
83 | |
84 | if n < exp_min { |
85 | n = exp_min; |
86 | } |
87 | } |
88 | } else { |
89 | // `f16` is unique compared to other float types in that the difference between the |
90 | // minimum exponent and the significand bits (`add = -exp_min - sig_total_bits`) is |
91 | // small, only three. The above method depend on decrementing `n` by `add` two times; |
92 | // for other float types this works out because `add` is a substantial fraction of |
93 | // the exponent range. For `f16`, however, 3 is relatively small compared to the |
94 | // exponent range (which is 39), so that requires ~10 prescale rounds rather than two. |
95 | // |
96 | // Work aroudn this by using a different algorithm that calculates the prescale |
97 | // dynamically based on the maximum possible value. This adds more operations per round |
98 | // since it needs to construct the scale, but works better in the general case. |
99 | let add = -(n + sig_total_bits as i32).clamp(exp_min, sig_total_bits as i32); |
100 | let mul = F::from_parts(false, (F::EXP_BIAS as i32 - add) as u32, zero); |
101 | |
102 | x *= mul; |
103 | n += add; |
104 | |
105 | if n < exp_min { |
106 | let add = -(n + sig_total_bits as i32).clamp(exp_min, sig_total_bits as i32); |
107 | let mul = F::from_parts(false, (F::EXP_BIAS as i32 - add) as u32, zero); |
108 | |
109 | x *= mul; |
110 | n += add; |
111 | |
112 | if n < exp_min { |
113 | n = exp_min; |
114 | } |
115 | } |
116 | } |
117 | } |
118 | |
119 | let scale = F::from_parts(false, (F::EXP_BIAS as i32 + n) as u32, zero); |
120 | x * scale |
121 | } |
122 | |