| 1 | use core::{fmt, mem, ops}; |
| 2 | |
| 3 | use super::int_traits::{CastFrom, Int, MinInt}; |
| 4 | |
| 5 | /// Trait for some basic operations on floats |
| 6 | // #[allow(dead_code)] |
| 7 | pub trait Float: |
| 8 | Copy |
| 9 | + fmt::Debug |
| 10 | + PartialEq |
| 11 | + PartialOrd |
| 12 | + ops::AddAssign |
| 13 | + ops::MulAssign |
| 14 | + ops::Add<Output = Self> |
| 15 | + ops::Sub<Output = Self> |
| 16 | + ops::Mul<Output = Self> |
| 17 | + ops::Div<Output = Self> |
| 18 | + ops::Rem<Output = Self> |
| 19 | + ops::Neg<Output = Self> |
| 20 | + 'static |
| 21 | { |
| 22 | /// A uint of the same width as the float |
| 23 | type Int: Int<OtherSign = Self::SignedInt, Unsigned = Self::Int>; |
| 24 | |
| 25 | /// A int of the same width as the float |
| 26 | type SignedInt: Int |
| 27 | + MinInt<OtherSign = Self::Int, Unsigned = Self::Int> |
| 28 | + ops::Neg<Output = Self::SignedInt>; |
| 29 | |
| 30 | const ZERO: Self; |
| 31 | const NEG_ZERO: Self; |
| 32 | const ONE: Self; |
| 33 | const NEG_ONE: Self; |
| 34 | const INFINITY: Self; |
| 35 | const NEG_INFINITY: Self; |
| 36 | const NAN: Self; |
| 37 | const NEG_NAN: Self; |
| 38 | const MAX: Self; |
| 39 | const MIN: Self; |
| 40 | const EPSILON: Self; |
| 41 | const PI: Self; |
| 42 | const NEG_PI: Self; |
| 43 | const FRAC_PI_2: Self; |
| 44 | |
| 45 | const MIN_POSITIVE_NORMAL: Self; |
| 46 | |
| 47 | /// The bitwidth of the float type |
| 48 | const BITS: u32; |
| 49 | |
| 50 | /// The bitwidth of the significand |
| 51 | const SIG_BITS: u32; |
| 52 | |
| 53 | /// The bitwidth of the exponent |
| 54 | const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1; |
| 55 | |
| 56 | /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite |
| 57 | /// representation. |
| 58 | /// |
| 59 | /// This shifted fully right, use `EXP_MASK` for the shifted value. |
| 60 | const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1; |
| 61 | |
| 62 | /// The exponent bias value |
| 63 | const EXP_BIAS: u32 = Self::EXP_SAT >> 1; |
| 64 | |
| 65 | /// Maximum unbiased exponent value. |
| 66 | const EXP_MAX: i32 = Self::EXP_BIAS as i32; |
| 67 | |
| 68 | /// Minimum *NORMAL* unbiased exponent value. |
| 69 | const EXP_MIN: i32 = -(Self::EXP_MAX - 1); |
| 70 | |
| 71 | /// Minimum subnormal exponent value. |
| 72 | const EXP_MIN_SUBNORM: i32 = Self::EXP_MIN - Self::SIG_BITS as i32; |
| 73 | |
| 74 | /// A mask for the sign bit |
| 75 | const SIGN_MASK: Self::Int; |
| 76 | |
| 77 | /// A mask for the significand |
| 78 | const SIG_MASK: Self::Int; |
| 79 | |
| 80 | /// A mask for the exponent |
| 81 | const EXP_MASK: Self::Int; |
| 82 | |
| 83 | /// The implicit bit of the float format |
| 84 | const IMPLICIT_BIT: Self::Int; |
| 85 | |
| 86 | /// Returns `self` transmuted to `Self::Int` |
| 87 | fn to_bits(self) -> Self::Int; |
| 88 | |
| 89 | /// Returns `self` transmuted to `Self::SignedInt` |
| 90 | #[allow (dead_code)] |
| 91 | fn to_bits_signed(self) -> Self::SignedInt { |
| 92 | self.to_bits().signed() |
| 93 | } |
| 94 | |
| 95 | /// Check bitwise equality. |
| 96 | #[allow (dead_code)] |
| 97 | fn biteq(self, rhs: Self) -> bool { |
| 98 | self.to_bits() == rhs.to_bits() |
| 99 | } |
| 100 | |
| 101 | /// Checks if two floats have the same bit representation. *Except* for NaNs! NaN can be |
| 102 | /// represented in multiple different ways. |
| 103 | /// |
| 104 | /// This method returns `true` if two NaNs are compared. Use [`biteq`](Self::biteq) instead |
| 105 | /// if `NaN` should not be treated separately. |
| 106 | #[allow (dead_code)] |
| 107 | fn eq_repr(self, rhs: Self) -> bool { |
| 108 | if self.is_nan() && rhs.is_nan() { |
| 109 | true |
| 110 | } else { |
| 111 | self.biteq(rhs) |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | /// Returns true if the value is NaN. |
| 116 | fn is_nan(self) -> bool; |
| 117 | |
| 118 | /// Returns true if the value is +inf or -inf. |
| 119 | fn is_infinite(self) -> bool; |
| 120 | |
| 121 | /// Returns true if the sign is negative. Extracts the sign bit regardless of zero or NaN. |
| 122 | fn is_sign_negative(self) -> bool; |
| 123 | |
| 124 | /// Returns true if the sign is positive. Extracts the sign bit regardless of zero or NaN. |
| 125 | fn is_sign_positive(self) -> bool { |
| 126 | !self.is_sign_negative() |
| 127 | } |
| 128 | |
| 129 | /// Returns if `self` is subnormal. |
| 130 | #[allow (dead_code)] |
| 131 | fn is_subnormal(self) -> bool { |
| 132 | (self.to_bits() & Self::EXP_MASK) == Self::Int::ZERO |
| 133 | } |
| 134 | |
| 135 | /// Returns the exponent, not adjusting for bias, not accounting for subnormals or zero. |
| 136 | fn ex(self) -> u32 { |
| 137 | u32::cast_from(self.to_bits() >> Self::SIG_BITS) & Self::EXP_SAT |
| 138 | } |
| 139 | |
| 140 | /// Extract the exponent and adjust it for bias, not accounting for subnormals or zero. |
| 141 | fn exp_unbiased(self) -> i32 { |
| 142 | self.ex().signed() - (Self::EXP_BIAS as i32) |
| 143 | } |
| 144 | |
| 145 | /// Returns the significand with no implicit bit (or the "fractional" part) |
| 146 | #[allow (dead_code)] |
| 147 | fn frac(self) -> Self::Int { |
| 148 | self.to_bits() & Self::SIG_MASK |
| 149 | } |
| 150 | |
| 151 | /// Returns a `Self::Int` transmuted back to `Self` |
| 152 | fn from_bits(a: Self::Int) -> Self; |
| 153 | |
| 154 | /// Constructs a `Self` from its parts. Inputs are treated as bits and shifted into position. |
| 155 | fn from_parts(negative: bool, exponent: u32, significand: Self::Int) -> Self { |
| 156 | let sign = if negative { |
| 157 | Self::Int::ONE |
| 158 | } else { |
| 159 | Self::Int::ZERO |
| 160 | }; |
| 161 | Self::from_bits( |
| 162 | (sign << (Self::BITS - 1)) |
| 163 | | (Self::Int::cast_from(exponent & Self::EXP_SAT) << Self::SIG_BITS) |
| 164 | | (significand & Self::SIG_MASK), |
| 165 | ) |
| 166 | } |
| 167 | |
| 168 | #[allow (dead_code)] |
| 169 | fn abs(self) -> Self; |
| 170 | |
| 171 | /// Returns a number composed of the magnitude of self and the sign of sign. |
| 172 | fn copysign(self, other: Self) -> Self; |
| 173 | |
| 174 | /// Fused multiply add, rounding once. |
| 175 | fn fma(self, y: Self, z: Self) -> Self; |
| 176 | |
| 177 | /// Returns (normalized exponent, normalized significand) |
| 178 | #[allow (dead_code)] |
| 179 | fn normalize(significand: Self::Int) -> (i32, Self::Int); |
| 180 | |
| 181 | /// Returns a number that represents the sign of self. |
| 182 | #[allow (dead_code)] |
| 183 | fn signum(self) -> Self { |
| 184 | if self.is_nan() { |
| 185 | self |
| 186 | } else { |
| 187 | Self::ONE.copysign(self) |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /// Access the associated `Int` type from a float (helper to avoid ambiguous associated types). |
| 193 | pub type IntTy<F> = <F as Float>::Int; |
| 194 | |
| 195 | macro_rules! float_impl { |
| 196 | ( |
| 197 | $ty:ident, |
| 198 | $ity:ident, |
| 199 | $sity:ident, |
| 200 | $bits:expr, |
| 201 | $significand_bits:expr, |
| 202 | $from_bits:path, |
| 203 | $to_bits:path, |
| 204 | $fma_fn:ident, |
| 205 | $fma_intrinsic:ident |
| 206 | ) => { |
| 207 | impl Float for $ty { |
| 208 | type Int = $ity; |
| 209 | type SignedInt = $sity; |
| 210 | |
| 211 | const ZERO: Self = 0.0; |
| 212 | const NEG_ZERO: Self = -0.0; |
| 213 | const ONE: Self = 1.0; |
| 214 | const NEG_ONE: Self = -1.0; |
| 215 | const INFINITY: Self = Self::INFINITY; |
| 216 | const NEG_INFINITY: Self = Self::NEG_INFINITY; |
| 217 | const NAN: Self = Self::NAN; |
| 218 | // NAN isn't guaranteed to be positive but it usually is. We only use this for |
| 219 | // tests. |
| 220 | const NEG_NAN: Self = $from_bits($to_bits(Self::NAN) | Self::SIGN_MASK); |
| 221 | const MAX: Self = -Self::MIN; |
| 222 | // Sign bit set, saturated mantissa, saturated exponent with last bit zeroed |
| 223 | const MIN: Self = $from_bits(Self::Int::MAX & !(1 << Self::SIG_BITS)); |
| 224 | const EPSILON: Self = <$ty>::EPSILON; |
| 225 | |
| 226 | // Exponent is a 1 in the LSB |
| 227 | const MIN_POSITIVE_NORMAL: Self = $from_bits(1 << Self::SIG_BITS); |
| 228 | |
| 229 | const PI: Self = core::$ty::consts::PI; |
| 230 | const NEG_PI: Self = -Self::PI; |
| 231 | const FRAC_PI_2: Self = core::$ty::consts::FRAC_PI_2; |
| 232 | |
| 233 | const BITS: u32 = $bits; |
| 234 | const SIG_BITS: u32 = $significand_bits; |
| 235 | |
| 236 | const SIGN_MASK: Self::Int = 1 << (Self::BITS - 1); |
| 237 | const SIG_MASK: Self::Int = (1 << Self::SIG_BITS) - 1; |
| 238 | const EXP_MASK: Self::Int = !(Self::SIGN_MASK | Self::SIG_MASK); |
| 239 | const IMPLICIT_BIT: Self::Int = 1 << Self::SIG_BITS; |
| 240 | |
| 241 | fn to_bits(self) -> Self::Int { |
| 242 | self.to_bits() |
| 243 | } |
| 244 | fn is_nan(self) -> bool { |
| 245 | self.is_nan() |
| 246 | } |
| 247 | fn is_infinite(self) -> bool { |
| 248 | self.is_infinite() |
| 249 | } |
| 250 | fn is_sign_negative(self) -> bool { |
| 251 | self.is_sign_negative() |
| 252 | } |
| 253 | fn from_bits(a: Self::Int) -> Self { |
| 254 | Self::from_bits(a) |
| 255 | } |
| 256 | fn abs(self) -> Self { |
| 257 | cfg_if! { |
| 258 | // FIXME(msrv): `abs` is available in `core` starting with 1.85. |
| 259 | if #[cfg(intrinsics_enabled)] { |
| 260 | self.abs() |
| 261 | } else { |
| 262 | super::super::generic::fabs(self) |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | fn copysign(self, other: Self) -> Self { |
| 267 | cfg_if! { |
| 268 | // FIXME(msrv): `copysign` is available in `core` starting with 1.85. |
| 269 | if #[cfg(intrinsics_enabled)] { |
| 270 | self.copysign(other) |
| 271 | } else { |
| 272 | super::super::generic::copysign(self, other) |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | fn fma(self, y: Self, z: Self) -> Self { |
| 277 | cfg_if! { |
| 278 | // fma is not yet available in `core` |
| 279 | if #[cfg(intrinsics_enabled)] { |
| 280 | unsafe{ core::intrinsics::$fma_intrinsic(self, y, z) } |
| 281 | } else { |
| 282 | super::super::$fma_fn(self, y, z) |
| 283 | } |
| 284 | } |
| 285 | } |
| 286 | fn normalize(significand: Self::Int) -> (i32, Self::Int) { |
| 287 | let shift = significand.leading_zeros().wrapping_sub(Self::EXP_BITS); |
| 288 | ( |
| 289 | 1i32.wrapping_sub(shift as i32), |
| 290 | significand << shift as Self::Int, |
| 291 | ) |
| 292 | } |
| 293 | } |
| 294 | }; |
| 295 | } |
| 296 | |
| 297 | #[cfg (f16_enabled)] |
| 298 | float_impl!( |
| 299 | f16, |
| 300 | u16, |
| 301 | i16, |
| 302 | 16, |
| 303 | 10, |
| 304 | f16::from_bits, |
| 305 | f16::to_bits, |
| 306 | fmaf16, |
| 307 | fmaf16 |
| 308 | ); |
| 309 | float_impl!( |
| 310 | f32, |
| 311 | u32, |
| 312 | i32, |
| 313 | 32, |
| 314 | 23, |
| 315 | f32_from_bits, |
| 316 | f32_to_bits, |
| 317 | fmaf, |
| 318 | fmaf32 |
| 319 | ); |
| 320 | float_impl!( |
| 321 | f64, |
| 322 | u64, |
| 323 | i64, |
| 324 | 64, |
| 325 | 52, |
| 326 | f64_from_bits, |
| 327 | f64_to_bits, |
| 328 | fma, |
| 329 | fmaf64 |
| 330 | ); |
| 331 | #[cfg (f128_enabled)] |
| 332 | float_impl!( |
| 333 | f128, |
| 334 | u128, |
| 335 | i128, |
| 336 | 128, |
| 337 | 112, |
| 338 | f128::from_bits, |
| 339 | f128::to_bits, |
| 340 | fmaf128, |
| 341 | fmaf128 |
| 342 | ); |
| 343 | |
| 344 | /* FIXME(msrv): vendor some things that are not const stable at our MSRV */ |
| 345 | |
| 346 | /// `f32::from_bits` |
| 347 | pub const fn f32_from_bits(bits: u32) -> f32 { |
| 348 | // SAFETY: POD cast with no preconditions |
| 349 | unsafe { mem::transmute::<u32, f32>(src:bits) } |
| 350 | } |
| 351 | |
| 352 | /// `f32::to_bits` |
| 353 | pub const fn f32_to_bits(x: f32) -> u32 { |
| 354 | // SAFETY: POD cast with no preconditions |
| 355 | unsafe { mem::transmute::<f32, u32>(src:x) } |
| 356 | } |
| 357 | |
| 358 | /// `f64::from_bits` |
| 359 | pub const fn f64_from_bits(bits: u64) -> f64 { |
| 360 | // SAFETY: POD cast with no preconditions |
| 361 | unsafe { mem::transmute::<u64, f64>(src:bits) } |
| 362 | } |
| 363 | |
| 364 | /// `f64::to_bits` |
| 365 | pub const fn f64_to_bits(x: f64) -> u64 { |
| 366 | // SAFETY: POD cast with no preconditions |
| 367 | unsafe { mem::transmute::<f64, u64>(src:x) } |
| 368 | } |
| 369 | |
| 370 | /// Trait for floats twice the bit width of another integer. |
| 371 | pub trait DFloat: Float { |
| 372 | /// Float that is half the bit width of the floatthis trait is implemented for. |
| 373 | type H: HFloat<D = Self>; |
| 374 | |
| 375 | /// Narrow the float type. |
| 376 | fn narrow(self) -> Self::H; |
| 377 | } |
| 378 | |
| 379 | /// Trait for floats half the bit width of another float. |
| 380 | pub trait HFloat: Float { |
| 381 | /// Float that is double the bit width of the float this trait is implemented for. |
| 382 | type D: DFloat<H = Self>; |
| 383 | |
| 384 | /// Widen the float type. |
| 385 | fn widen(self) -> Self::D; |
| 386 | } |
| 387 | |
| 388 | macro_rules! impl_d_float { |
| 389 | ($($X:ident $D:ident),*) => { |
| 390 | $( |
| 391 | impl DFloat for $D { |
| 392 | type H = $X; |
| 393 | |
| 394 | fn narrow(self) -> Self::H { |
| 395 | self as $X |
| 396 | } |
| 397 | } |
| 398 | )* |
| 399 | }; |
| 400 | } |
| 401 | |
| 402 | macro_rules! impl_h_float { |
| 403 | ($($H:ident $X:ident),*) => { |
| 404 | $( |
| 405 | impl HFloat for $H { |
| 406 | type D = $X; |
| 407 | |
| 408 | fn widen(self) -> Self::D { |
| 409 | self as $X |
| 410 | } |
| 411 | } |
| 412 | )* |
| 413 | }; |
| 414 | } |
| 415 | |
| 416 | impl_d_float!(f32 f64); |
| 417 | #[cfg (f16_enabled)] |
| 418 | impl_d_float!(f16 f32); |
| 419 | #[cfg (f128_enabled)] |
| 420 | impl_d_float!(f64 f128); |
| 421 | |
| 422 | impl_h_float!(f32 f64); |
| 423 | #[cfg (f16_enabled)] |
| 424 | impl_h_float!(f16 f32); |
| 425 | #[cfg (f128_enabled)] |
| 426 | impl_h_float!(f64 f128); |
| 427 | |
| 428 | #[cfg (test)] |
| 429 | mod tests { |
| 430 | use super::*; |
| 431 | |
| 432 | #[test ] |
| 433 | #[cfg (f16_enabled)] |
| 434 | fn check_f16() { |
| 435 | // Constants |
| 436 | assert_eq!(f16::EXP_SAT, 0b11111); |
| 437 | assert_eq!(f16::EXP_BIAS, 15); |
| 438 | assert_eq!(f16::EXP_MAX, 15); |
| 439 | assert_eq!(f16::EXP_MIN, -14); |
| 440 | assert_eq!(f16::EXP_MIN_SUBNORM, -24); |
| 441 | |
| 442 | // `exp_unbiased` |
| 443 | assert_eq!(f16::FRAC_PI_2.exp_unbiased(), 0); |
| 444 | assert_eq!((1.0f16 / 2.0).exp_unbiased(), -1); |
| 445 | assert_eq!(f16::MAX.exp_unbiased(), 15); |
| 446 | assert_eq!(f16::MIN.exp_unbiased(), 15); |
| 447 | assert_eq!(f16::MIN_POSITIVE.exp_unbiased(), -14); |
| 448 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 449 | // results for zero and subnormals. |
| 450 | assert_eq!(f16::ZERO.exp_unbiased(), -15); |
| 451 | assert_eq!(f16::from_bits(0x1).exp_unbiased(), -15); |
| 452 | assert_eq!(f16::MIN_POSITIVE, f16::MIN_POSITIVE_NORMAL); |
| 453 | |
| 454 | // `from_parts` |
| 455 | assert_biteq!(f16::from_parts(true, f16::EXP_BIAS, 0), -1.0f16); |
| 456 | assert_biteq!(f16::from_parts(false, 0, 1), f16::from_bits(0x1)); |
| 457 | } |
| 458 | |
| 459 | #[test ] |
| 460 | fn check_f32() { |
| 461 | // Constants |
| 462 | assert_eq!(f32::EXP_SAT, 0b11111111); |
| 463 | assert_eq!(f32::EXP_BIAS, 127); |
| 464 | assert_eq!(f32::EXP_MAX, 127); |
| 465 | assert_eq!(f32::EXP_MIN, -126); |
| 466 | assert_eq!(f32::EXP_MIN_SUBNORM, -149); |
| 467 | |
| 468 | // `exp_unbiased` |
| 469 | assert_eq!(f32::FRAC_PI_2.exp_unbiased(), 0); |
| 470 | assert_eq!((1.0f32 / 2.0).exp_unbiased(), -1); |
| 471 | assert_eq!(f32::MAX.exp_unbiased(), 127); |
| 472 | assert_eq!(f32::MIN.exp_unbiased(), 127); |
| 473 | assert_eq!(f32::MIN_POSITIVE.exp_unbiased(), -126); |
| 474 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 475 | // results for zero and subnormals. |
| 476 | assert_eq!(f32::ZERO.exp_unbiased(), -127); |
| 477 | assert_eq!(f32::from_bits(0x1).exp_unbiased(), -127); |
| 478 | assert_eq!(f32::MIN_POSITIVE, f32::MIN_POSITIVE_NORMAL); |
| 479 | |
| 480 | // `from_parts` |
| 481 | assert_biteq!(f32::from_parts(true, f32::EXP_BIAS, 0), -1.0f32); |
| 482 | assert_biteq!( |
| 483 | f32::from_parts(false, 10 + f32::EXP_BIAS, 0), |
| 484 | hf32!("0x1p10" ) |
| 485 | ); |
| 486 | assert_biteq!(f32::from_parts(false, 0, 1), f32::from_bits(0x1)); |
| 487 | } |
| 488 | |
| 489 | #[test ] |
| 490 | fn check_f64() { |
| 491 | // Constants |
| 492 | assert_eq!(f64::EXP_SAT, 0b11111111111); |
| 493 | assert_eq!(f64::EXP_BIAS, 1023); |
| 494 | assert_eq!(f64::EXP_MAX, 1023); |
| 495 | assert_eq!(f64::EXP_MIN, -1022); |
| 496 | assert_eq!(f64::EXP_MIN_SUBNORM, -1074); |
| 497 | |
| 498 | // `exp_unbiased` |
| 499 | assert_eq!(f64::FRAC_PI_2.exp_unbiased(), 0); |
| 500 | assert_eq!((1.0f64 / 2.0).exp_unbiased(), -1); |
| 501 | assert_eq!(f64::MAX.exp_unbiased(), 1023); |
| 502 | assert_eq!(f64::MIN.exp_unbiased(), 1023); |
| 503 | assert_eq!(f64::MIN_POSITIVE.exp_unbiased(), -1022); |
| 504 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 505 | // results for zero and subnormals. |
| 506 | assert_eq!(f64::ZERO.exp_unbiased(), -1023); |
| 507 | assert_eq!(f64::from_bits(0x1).exp_unbiased(), -1023); |
| 508 | assert_eq!(f64::MIN_POSITIVE, f64::MIN_POSITIVE_NORMAL); |
| 509 | |
| 510 | // `from_parts` |
| 511 | assert_biteq!(f64::from_parts(true, f64::EXP_BIAS, 0), -1.0f64); |
| 512 | assert_biteq!( |
| 513 | f64::from_parts(false, 10 + f64::EXP_BIAS, 0), |
| 514 | hf64!("0x1p10" ) |
| 515 | ); |
| 516 | assert_biteq!(f64::from_parts(false, 0, 1), f64::from_bits(0x1)); |
| 517 | } |
| 518 | |
| 519 | #[test ] |
| 520 | #[cfg (f128_enabled)] |
| 521 | fn check_f128() { |
| 522 | // Constants |
| 523 | assert_eq!(f128::EXP_SAT, 0b111111111111111); |
| 524 | assert_eq!(f128::EXP_BIAS, 16383); |
| 525 | assert_eq!(f128::EXP_MAX, 16383); |
| 526 | assert_eq!(f128::EXP_MIN, -16382); |
| 527 | assert_eq!(f128::EXP_MIN_SUBNORM, -16494); |
| 528 | |
| 529 | // `exp_unbiased` |
| 530 | assert_eq!(f128::FRAC_PI_2.exp_unbiased(), 0); |
| 531 | assert_eq!((1.0f128 / 2.0).exp_unbiased(), -1); |
| 532 | assert_eq!(f128::MAX.exp_unbiased(), 16383); |
| 533 | assert_eq!(f128::MIN.exp_unbiased(), 16383); |
| 534 | assert_eq!(f128::MIN_POSITIVE.exp_unbiased(), -16382); |
| 535 | // This is a convenience method and not ldexp, `exp_unbiased` does not return correct |
| 536 | // results for zero and subnormals. |
| 537 | assert_eq!(f128::ZERO.exp_unbiased(), -16383); |
| 538 | assert_eq!(f128::from_bits(0x1).exp_unbiased(), -16383); |
| 539 | assert_eq!(f128::MIN_POSITIVE, f128::MIN_POSITIVE_NORMAL); |
| 540 | |
| 541 | // `from_parts` |
| 542 | assert_biteq!(f128::from_parts(true, f128::EXP_BIAS, 0), -1.0f128); |
| 543 | assert_biteq!(f128::from_parts(false, 0, 1), f128::from_bits(0x1)); |
| 544 | } |
| 545 | } |
| 546 | |