| 1 | /* SPDX-License-Identifier: MIT */ |
| 2 | /* origin: musl src/math/fma.c. Ported to generic Rust algorithm in 2025, TG. */ |
| 3 | |
| 4 | use super::support::{DInt, FpResult, HInt, IntTy, Round, Status}; |
| 5 | use super::{CastFrom, CastInto, Float, Int, MinInt}; |
| 6 | |
| 7 | /// Fused multiply add (f64) |
| 8 | /// |
| 9 | /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). |
| 10 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 11 | pub fn fma(x: f64, y: f64, z: f64) -> f64 { |
| 12 | select_implementation! { |
| 13 | name: fma, |
| 14 | use_arch: all(target_arch = "aarch64" , target_feature = "neon" ), |
| 15 | args: x, y, z, |
| 16 | } |
| 17 | |
| 18 | fma_round(x, y, z, Round::Nearest).val |
| 19 | } |
| 20 | |
| 21 | /// Fused multiply add (f128) |
| 22 | /// |
| 23 | /// Computes `(x*y)+z`, rounded as one ternary operation (i.e. calculated with infinite precision). |
| 24 | #[cfg (f128_enabled)] |
| 25 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 26 | pub fn fmaf128(x: f128, y: f128, z: f128) -> f128 { |
| 27 | fma_round(x, y, z, Round::Nearest).val |
| 28 | } |
| 29 | |
| 30 | /// Fused multiply-add that works when there is not a larger float size available. Computes |
| 31 | /// `(x * y) + z`. |
| 32 | #[inline ] |
| 33 | pub fn fma_round<F>(x: F, y: F, z: F, _round: Round) -> FpResult<F> |
| 34 | where |
| 35 | F: Float, |
| 36 | F: CastFrom<F::SignedInt>, |
| 37 | F: CastFrom<i8>, |
| 38 | F::Int: HInt, |
| 39 | u32: CastInto<F::Int>, |
| 40 | { |
| 41 | let one = IntTy::<F>::ONE; |
| 42 | let zero = IntTy::<F>::ZERO; |
| 43 | |
| 44 | // Normalize such that the top of the mantissa is zero and we have a guard bit. |
| 45 | let nx = Norm::from_float(x); |
| 46 | let ny = Norm::from_float(y); |
| 47 | let nz = Norm::from_float(z); |
| 48 | |
| 49 | if nx.is_zero_nan_inf() || ny.is_zero_nan_inf() { |
| 50 | // Value will overflow, defer to non-fused operations. |
| 51 | return FpResult::ok(x * y + z); |
| 52 | } |
| 53 | |
| 54 | if nz.is_zero_nan_inf() { |
| 55 | if nz.is_zero() { |
| 56 | // Empty add component means we only need to multiply. |
| 57 | return FpResult::ok(x * y); |
| 58 | } |
| 59 | // `z` is NaN or infinity, which sets the result. |
| 60 | return FpResult::ok(z); |
| 61 | } |
| 62 | |
| 63 | // multiply: r = x * y |
| 64 | let zhi: F::Int; |
| 65 | let zlo: F::Int; |
| 66 | let (mut rlo, mut rhi) = nx.m.widen_mul(ny.m).lo_hi(); |
| 67 | |
| 68 | // Exponent result of multiplication |
| 69 | let mut e: i32 = nx.e + ny.e; |
| 70 | // Needed shift to align `z` to the multiplication result |
| 71 | let mut d: i32 = nz.e - e; |
| 72 | let sbits = F::BITS as i32; |
| 73 | |
| 74 | // Scale `z`. Shift `z <<= kz`, `r >>= kr`, so `kz+kr == d`, set `e = e+kr` (== ez-kz) |
| 75 | if d > 0 { |
| 76 | // The magnitude of `z` is larger than `x * y` |
| 77 | if d < sbits { |
| 78 | // Maximum shift of one `F::BITS` means shifted `z` will fit into `2 * F::BITS`. Shift |
| 79 | // it into `(zhi, zlo)`. No exponent adjustment necessary. |
| 80 | zlo = nz.m << d; |
| 81 | zhi = nz.m >> (sbits - d); |
| 82 | } else { |
| 83 | // Shift larger than `sbits`, `z` only needs the top half `zhi`. Place it there (acts |
| 84 | // as a shift by `sbits`). |
| 85 | zlo = zero; |
| 86 | zhi = nz.m; |
| 87 | d -= sbits; |
| 88 | |
| 89 | // `z`'s exponent is large enough that it now needs to be taken into account. |
| 90 | e = nz.e - sbits; |
| 91 | |
| 92 | if d == 0 { |
| 93 | // Exactly `sbits`, nothing to do |
| 94 | } else if d < sbits { |
| 95 | // Remaining shift fits within `sbits`. Leave `z` in place, shift `x * y` |
| 96 | rlo = (rhi << (sbits - d)) | (rlo >> d); |
| 97 | // Set the sticky bit |
| 98 | rlo |= IntTy::<F>::from((rlo << (sbits - d)) != zero); |
| 99 | rhi = rhi >> d; |
| 100 | } else { |
| 101 | // `z`'s magnitude is enough that `x * y` is irrelevant. It was nonzero, so set |
| 102 | // the sticky bit. |
| 103 | rlo = one; |
| 104 | rhi = zero; |
| 105 | } |
| 106 | } |
| 107 | } else { |
| 108 | // `z`'s magnitude once shifted fits entirely within `zlo` |
| 109 | zhi = zero; |
| 110 | d = -d; |
| 111 | if d == 0 { |
| 112 | // No shift needed |
| 113 | zlo = nz.m; |
| 114 | } else if d < sbits { |
| 115 | // Shift s.t. `nz.m` fits into `zlo` |
| 116 | let sticky = IntTy::<F>::from((nz.m << (sbits - d)) != zero); |
| 117 | zlo = (nz.m >> d) | sticky; |
| 118 | } else { |
| 119 | // Would be entirely shifted out, only set the sticky bit |
| 120 | zlo = one; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /* addition */ |
| 125 | |
| 126 | let mut neg = nx.neg ^ ny.neg; |
| 127 | let samesign: bool = !neg ^ nz.neg; |
| 128 | let mut rhi_nonzero = true; |
| 129 | |
| 130 | if samesign { |
| 131 | // r += z |
| 132 | rlo = rlo.wrapping_add(zlo); |
| 133 | rhi += zhi + IntTy::<F>::from(rlo < zlo); |
| 134 | } else { |
| 135 | // r -= z |
| 136 | let (res, borrow) = rlo.overflowing_sub(zlo); |
| 137 | rlo = res; |
| 138 | rhi = rhi.wrapping_sub(zhi.wrapping_add(IntTy::<F>::from(borrow))); |
| 139 | if (rhi >> (F::BITS - 1)) != zero { |
| 140 | rlo = rlo.signed().wrapping_neg().unsigned(); |
| 141 | rhi = rhi.signed().wrapping_neg().unsigned() - IntTy::<F>::from(rlo != zero); |
| 142 | neg = !neg; |
| 143 | } |
| 144 | rhi_nonzero = rhi != zero; |
| 145 | } |
| 146 | |
| 147 | /* Construct result */ |
| 148 | |
| 149 | // Shift result into `rhi`, left-aligned. Last bit is sticky |
| 150 | if rhi_nonzero { |
| 151 | // `d` > 0, need to shift both `rhi` and `rlo` into result |
| 152 | e += sbits; |
| 153 | d = rhi.leading_zeros() as i32 - 1; |
| 154 | rhi = (rhi << d) | (rlo >> (sbits - d)); |
| 155 | // Update sticky |
| 156 | rhi |= IntTy::<F>::from((rlo << d) != zero); |
| 157 | } else if rlo != zero { |
| 158 | // `rhi` is zero, `rlo` is the entire result and needs to be shifted |
| 159 | d = rlo.leading_zeros() as i32 - 1; |
| 160 | if d < 0 { |
| 161 | // Shift and set sticky |
| 162 | rhi = (rlo >> 1) | (rlo & one); |
| 163 | } else { |
| 164 | rhi = rlo << d; |
| 165 | } |
| 166 | } else { |
| 167 | // exact +/- 0.0 |
| 168 | return FpResult::ok(x * y + z); |
| 169 | } |
| 170 | |
| 171 | e -= d; |
| 172 | |
| 173 | // Use int->float conversion to populate the significand. |
| 174 | // i is in [1 << (BITS - 2), (1 << (BITS - 1)) - 1] |
| 175 | let mut i: F::SignedInt = rhi.signed(); |
| 176 | |
| 177 | if neg { |
| 178 | i = -i; |
| 179 | } |
| 180 | |
| 181 | // `|r|` is in `[0x1p62,0x1p63]` for `f64` |
| 182 | let mut r: F = F::cast_from_lossy(i); |
| 183 | |
| 184 | /* Account for subnormal and rounding */ |
| 185 | |
| 186 | // Unbiased exponent for the maximum value of `r` |
| 187 | let max_pow = F::BITS - 1 + F::EXP_BIAS; |
| 188 | |
| 189 | let mut status = Status::OK; |
| 190 | |
| 191 | if e < -(max_pow as i32 - 2) { |
| 192 | // Result is subnormal before rounding |
| 193 | if e == -(max_pow as i32 - 1) { |
| 194 | let mut c = F::from_parts(false, max_pow, zero); |
| 195 | if neg { |
| 196 | c = -c; |
| 197 | } |
| 198 | |
| 199 | if r == c { |
| 200 | // Min normal after rounding, |
| 201 | status.set_underflow(true); |
| 202 | r = F::MIN_POSITIVE_NORMAL.copysign(r); |
| 203 | return FpResult::new(r, status); |
| 204 | } |
| 205 | |
| 206 | if (rhi << (F::SIG_BITS + 1)) != zero { |
| 207 | // Account for truncated bits. One bit will be lost in the `scalbn` call, add |
| 208 | // another top bit to avoid double rounding if inexact. |
| 209 | let iu: F::Int = (rhi >> 1) | (rhi & one) | (one << (F::BITS - 2)); |
| 210 | i = iu.signed(); |
| 211 | |
| 212 | if neg { |
| 213 | i = -i; |
| 214 | } |
| 215 | |
| 216 | r = F::cast_from_lossy(i); |
| 217 | |
| 218 | // Remove the top bit |
| 219 | r = F::cast_from(2i8) * r - c; |
| 220 | status.set_underflow(true); |
| 221 | } |
| 222 | } else { |
| 223 | // Only round once when scaled |
| 224 | d = F::EXP_BITS as i32 - 1; |
| 225 | let sticky = IntTy::<F>::from(rhi << (F::BITS as i32 - d) != zero); |
| 226 | i = (((rhi >> d) | sticky) << d).signed(); |
| 227 | |
| 228 | if neg { |
| 229 | i = -i; |
| 230 | } |
| 231 | |
| 232 | r = F::cast_from_lossy(i); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | // Use our exponent to scale the final value. |
| 237 | FpResult::new(super::generic::scalbn(r, e), status) |
| 238 | } |
| 239 | |
| 240 | /// Representation of `F` that has handled subnormals. |
| 241 | #[derive (Clone, Copy, Debug)] |
| 242 | struct Norm<F: Float> { |
| 243 | /// Normalized significand with one guard bit, unsigned. |
| 244 | m: F::Int, |
| 245 | /// Exponent of the mantissa such that `m * 2^e = x`. Accounts for the shift in the mantissa |
| 246 | /// and the guard bit; that is, 1.0 will normalize as `m = 1 << 53` and `e = -53`. |
| 247 | e: i32, |
| 248 | neg: bool, |
| 249 | } |
| 250 | |
| 251 | impl<F: Float> Norm<F> { |
| 252 | /// Unbias the exponent and account for the mantissa's precision, including the guard bit. |
| 253 | const EXP_UNBIAS: u32 = F::EXP_BIAS + F::SIG_BITS + 1; |
| 254 | |
| 255 | /// Values greater than this had a saturated exponent (infinity or NaN), OR were zero and we |
| 256 | /// adjusted the exponent such that it exceeds this threashold. |
| 257 | const ZERO_INF_NAN: u32 = F::EXP_SAT - Self::EXP_UNBIAS; |
| 258 | |
| 259 | fn from_float(x: F) -> Self { |
| 260 | let mut ix = x.to_bits(); |
| 261 | let mut e = x.ex() as i32; |
| 262 | let neg = x.is_sign_negative(); |
| 263 | if e == 0 { |
| 264 | // Normalize subnormals by multiplication |
| 265 | let scale_i = F::BITS - 1; |
| 266 | let scale_f = F::from_parts(false, scale_i + F::EXP_BIAS, F::Int::ZERO); |
| 267 | let scaled = x * scale_f; |
| 268 | ix = scaled.to_bits(); |
| 269 | e = scaled.ex() as i32; |
| 270 | e = if e == 0 { |
| 271 | // If the exponent is still zero, the input was zero. Artifically set this value |
| 272 | // such that the final `e` will exceed `ZERO_INF_NAN`. |
| 273 | 1 << F::EXP_BITS |
| 274 | } else { |
| 275 | // Otherwise, account for the scaling we just did. |
| 276 | e - scale_i as i32 |
| 277 | }; |
| 278 | } |
| 279 | |
| 280 | e -= Self::EXP_UNBIAS as i32; |
| 281 | |
| 282 | // Absolute value, set the implicit bit, and shift to create a guard bit |
| 283 | ix &= F::SIG_MASK; |
| 284 | ix |= F::IMPLICIT_BIT; |
| 285 | ix <<= 1; |
| 286 | |
| 287 | Self { m: ix, e, neg } |
| 288 | } |
| 289 | |
| 290 | /// True if the value was zero, infinity, or NaN. |
| 291 | fn is_zero_nan_inf(self) -> bool { |
| 292 | self.e >= Self::ZERO_INF_NAN as i32 |
| 293 | } |
| 294 | |
| 295 | /// The only value we have |
| 296 | fn is_zero(self) -> bool { |
| 297 | // The only exponent that strictly exceeds this value is our sentinel value for zero. |
| 298 | self.e > Self::ZERO_INF_NAN as i32 |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | #[cfg (test)] |
| 303 | mod tests { |
| 304 | use super::*; |
| 305 | |
| 306 | /// Test the generic `fma_round` algorithm for a given float. |
| 307 | fn spec_test<F>() |
| 308 | where |
| 309 | F: Float, |
| 310 | F: CastFrom<F::SignedInt>, |
| 311 | F: CastFrom<i8>, |
| 312 | F::Int: HInt, |
| 313 | u32: CastInto<F::Int>, |
| 314 | { |
| 315 | let x = F::from_bits(F::Int::ONE); |
| 316 | let y = F::from_bits(F::Int::ONE); |
| 317 | let z = F::ZERO; |
| 318 | |
| 319 | let fma = |x, y, z| fma_round(x, y, z, Round::Nearest).val; |
| 320 | |
| 321 | // 754-2020 says "When the exact result of (a × b) + c is non-zero yet the result of |
| 322 | // fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the |
| 323 | // exact result" |
| 324 | assert_biteq!(fma(x, y, z), F::ZERO); |
| 325 | assert_biteq!(fma(x, -y, z), F::NEG_ZERO); |
| 326 | assert_biteq!(fma(-x, y, z), F::NEG_ZERO); |
| 327 | assert_biteq!(fma(-x, -y, z), F::ZERO); |
| 328 | } |
| 329 | |
| 330 | #[test ] |
| 331 | fn spec_test_f32() { |
| 332 | spec_test::<f32>(); |
| 333 | } |
| 334 | |
| 335 | #[test ] |
| 336 | fn spec_test_f64() { |
| 337 | spec_test::<f64>(); |
| 338 | |
| 339 | let expect_underflow = [ |
| 340 | ( |
| 341 | hf64!("0x1.0p-1070" ), |
| 342 | hf64!("0x1.0p-1070" ), |
| 343 | hf64!("0x1.ffffffffffffp-1023" ), |
| 344 | hf64!("0x0.ffffffffffff8p-1022" ), |
| 345 | ), |
| 346 | ( |
| 347 | // FIXME: we raise underflow but this should only be inexact (based on C and |
| 348 | // `rustc_apfloat`). |
| 349 | hf64!("0x1.0p-1070" ), |
| 350 | hf64!("0x1.0p-1070" ), |
| 351 | hf64!("-0x1.0p-1022" ), |
| 352 | hf64!("-0x1.0p-1022" ), |
| 353 | ), |
| 354 | ]; |
| 355 | |
| 356 | for (x, y, z, res) in expect_underflow { |
| 357 | let FpResult { val, status } = fma_round(x, y, z, Round::Nearest); |
| 358 | assert_biteq!(val, res); |
| 359 | assert_eq!(status, Status::UNDERFLOW); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | #[test ] |
| 364 | #[cfg (f128_enabled)] |
| 365 | fn spec_test_f128() { |
| 366 | spec_test::<f128>(); |
| 367 | } |
| 368 | |
| 369 | #[test ] |
| 370 | fn fma_segfault() { |
| 371 | // These two inputs cause fma to segfault on release due to overflow: |
| 372 | assert_eq!( |
| 373 | fma( |
| 374 | -0.0000000000000002220446049250313, |
| 375 | -0.0000000000000002220446049250313, |
| 376 | -0.0000000000000002220446049250313 |
| 377 | ), |
| 378 | -0.00000000000000022204460492503126, |
| 379 | ); |
| 380 | |
| 381 | let result = fma(-0.992, -0.992, -0.992); |
| 382 | //force rounding to storage format on x87 to prevent superious errors. |
| 383 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
| 384 | let result = force_eval!(result); |
| 385 | assert_eq!(result, -0.007936000000000007,); |
| 386 | } |
| 387 | |
| 388 | #[test ] |
| 389 | fn fma_sbb() { |
| 390 | assert_eq!( |
| 391 | fma(-(1.0 - f64::EPSILON), f64::MIN, f64::MIN), |
| 392 | -3991680619069439e277 |
| 393 | ); |
| 394 | } |
| 395 | |
| 396 | #[test ] |
| 397 | fn fma_underflow() { |
| 398 | assert_eq!( |
| 399 | fma(1.1102230246251565e-16, -9.812526705433188e-305, 1.0894e-320), |
| 400 | 0.0, |
| 401 | ); |
| 402 | } |
| 403 | } |
| 404 | |