1 | /* SPDX-License-Identifier: MIT */ |
2 | /* origin: musl src/math/sqrt.c. Ported to generic Rust algorithm in 2025, TG. */ |
3 | |
4 | //! Generic square root algorithm. |
5 | //! |
6 | //! This routine operates around `m_u2`, a U.2 (fixed point with two integral bits) mantissa |
7 | //! within the range [1, 4). A table lookup provides an initial estimate, then goldschmidt |
8 | //! iterations at various widths are used to approach the real values. |
9 | //! |
10 | //! For the iterations, `r` is a U0 number that approaches `1/sqrt(m_u2)`, and `s` is a U2 number |
11 | //! that approaches `sqrt(m_u2)`. Recall that m_u2 ∈ [1, 4). |
12 | //! |
13 | //! With Newton-Raphson iterations, this would be: |
14 | //! |
15 | //! - `w = r * r w ~ 1 / m` |
16 | //! - `u = 3 - m * w u ~ 3 - m * w = 3 - m / m = 2` |
17 | //! - `r = r * u / 2 r ~ r` |
18 | //! |
19 | //! (Note that the righthand column does not show anything analytically meaningful (i.e. r ~ r), |
20 | //! since the value of performing one iteration is in reducing the error representable by `~`). |
21 | //! |
22 | //! Instead of Newton-Raphson iterations, Goldschmidt iterations are used to calculate |
23 | //! `s = m * r`: |
24 | //! |
25 | //! - `s = m * r s ~ m / sqrt(m)` |
26 | //! - `u = 3 - s * r u ~ 3 - (m / sqrt(m)) * (1 / sqrt(m)) = 3 - m / m = 2` |
27 | //! - `r = r * u / 2 r ~ r` |
28 | //! - `s = s * u / 2 s ~ s` |
29 | //! |
30 | //! The above is precise because it uses the original value `m`. There is also a faster version |
31 | //! that performs fewer steps but does not use `m`: |
32 | //! |
33 | //! - `u = 3 - s * r u ~ 3 - 1` |
34 | //! - `r = r * u / 2 r ~ r` |
35 | //! - `s = s * u / 2 s ~ s` |
36 | //! |
37 | //! Rounding errors accumulate faster with the second version, so it is only used for subsequent |
38 | //! iterations within the same width integer. The first version is always used for the first |
39 | //! iteration at a new width in order to avoid this accumulation. |
40 | //! |
41 | //! Goldschmidt has the advantage over Newton-Raphson that `sqrt(x)` and `1/sqrt(x)` are |
42 | //! computed at the same time, i.e. there is no need to calculate `1/sqrt(x)` and invert it. |
43 | |
44 | use super::super::support::{FpResult, IntTy, Round, Status, cold_path}; |
45 | use super::super::{CastFrom, CastInto, DInt, Float, HInt, Int, MinInt}; |
46 | |
47 | #[inline ] |
48 | pub fn sqrt<F>(x: F) -> F |
49 | where |
50 | F: Float + SqrtHelper, |
51 | F::Int: HInt, |
52 | F::Int: From<u8>, |
53 | F::Int: From<F::ISet2>, |
54 | F::Int: CastInto<F::ISet1>, |
55 | F::Int: CastInto<F::ISet2>, |
56 | u32: CastInto<F::Int>, |
57 | { |
58 | sqrt_round(x, Round::Nearest).val |
59 | } |
60 | |
61 | #[inline ] |
62 | pub fn sqrt_round<F>(x: F, _round: Round) -> FpResult<F> |
63 | where |
64 | F: Float + SqrtHelper, |
65 | F::Int: HInt, |
66 | F::Int: From<u8>, |
67 | F::Int: From<F::ISet2>, |
68 | F::Int: CastInto<F::ISet1>, |
69 | F::Int: CastInto<F::ISet2>, |
70 | u32: CastInto<F::Int>, |
71 | { |
72 | let zero = IntTy::<F>::ZERO; |
73 | let one = IntTy::<F>::ONE; |
74 | |
75 | let mut ix = x.to_bits(); |
76 | |
77 | // Top is the exponent and sign, which may or may not be shifted. If the float fits into a |
78 | // `u32`, we can get by without paying shifting costs. |
79 | let noshift = F::BITS <= u32::BITS; |
80 | let (mut top, special_case) = if noshift { |
81 | let exp_lsb = one << F::SIG_BITS; |
82 | let special_case = ix.wrapping_sub(exp_lsb) >= F::EXP_MASK - exp_lsb; |
83 | (Exp::NoShift(()), special_case) |
84 | } else { |
85 | let top = u32::cast_from(ix >> F::SIG_BITS); |
86 | let special_case = top.wrapping_sub(1) >= F::EXP_SAT - 1; |
87 | (Exp::Shifted(top), special_case) |
88 | }; |
89 | |
90 | // Handle NaN, zero, and out of domain (<= 0) |
91 | if special_case { |
92 | cold_path(); |
93 | |
94 | // +/-0 |
95 | if ix << 1 == zero { |
96 | return FpResult::ok(x); |
97 | } |
98 | |
99 | // Positive infinity |
100 | if ix == F::EXP_MASK { |
101 | return FpResult::ok(x); |
102 | } |
103 | |
104 | // NaN or negative |
105 | if ix > F::EXP_MASK { |
106 | return FpResult::new(F::NAN, Status::INVALID); |
107 | } |
108 | |
109 | // Normalize subnormals by multiplying by 1.0 << SIG_BITS (e.g. 0x1p52 for doubles). |
110 | let scaled = x * F::from_parts(false, F::SIG_BITS + F::EXP_BIAS, zero); |
111 | ix = scaled.to_bits(); |
112 | match top { |
113 | Exp::Shifted(ref mut v) => { |
114 | *v = scaled.ex(); |
115 | *v = (*v).wrapping_sub(F::SIG_BITS); |
116 | } |
117 | Exp::NoShift(()) => { |
118 | ix = ix.wrapping_sub((F::SIG_BITS << F::SIG_BITS).cast()); |
119 | } |
120 | } |
121 | } |
122 | |
123 | // Reduce arguments such that `x = 4^e * m`: |
124 | // |
125 | // - m_u2 ∈ [1, 4), a fixed point U2.BITS number |
126 | // - 2^e is the exponent part of the result |
127 | let (m_u2, exp) = match top { |
128 | Exp::Shifted(top) => { |
129 | // We now know `x` is positive, so `top` is just its (biased) exponent |
130 | let mut e = top; |
131 | // Construct a fixed point representation of the mantissa. |
132 | let mut m_u2 = (ix | F::IMPLICIT_BIT) << F::EXP_BITS; |
133 | let even = (e & 1) != 0; |
134 | if even { |
135 | m_u2 >>= 1; |
136 | } |
137 | e = (e.wrapping_add(F::EXP_SAT >> 1)) >> 1; |
138 | (m_u2, Exp::Shifted(e)) |
139 | } |
140 | Exp::NoShift(()) => { |
141 | let even = ix & (one << F::SIG_BITS) != zero; |
142 | |
143 | // Exponent part of the return value |
144 | let mut e_noshift = ix >> 1; |
145 | // ey &= (F::EXP_MASK << 2) >> 2; // clear the top exponent bit (result = 1.0) |
146 | e_noshift += (F::EXP_MASK ^ (F::SIGN_MASK >> 1)) >> 1; |
147 | e_noshift &= F::EXP_MASK; |
148 | |
149 | let m1 = (ix << F::EXP_BITS) | F::SIGN_MASK; |
150 | let m0 = (ix << (F::EXP_BITS - 1)) & !F::SIGN_MASK; |
151 | let m_u2 = if even { m0 } else { m1 }; |
152 | |
153 | (m_u2, Exp::NoShift(e_noshift)) |
154 | } |
155 | }; |
156 | |
157 | // Extract the top 6 bits of the significand with the lowest bit of the exponent. |
158 | let i = usize::cast_from(ix >> (F::SIG_BITS - 6)) & 0b1111111; |
159 | |
160 | // Start with an initial guess for `r = 1 / sqrt(m)` from the table, and shift `m` as an |
161 | // initial value for `s = sqrt(m)`. See the module documentation for details. |
162 | let r1_u0: F::ISet1 = F::ISet1::cast_from(RSQRT_TAB[i]) << (F::ISet1::BITS - 16); |
163 | let s1_u2: F::ISet1 = ((m_u2) >> (F::BITS - F::ISet1::BITS)).cast(); |
164 | |
165 | // Perform iterations, if any, at quarter width (used for `f128`). |
166 | let (r1_u0, _s1_u2) = goldschmidt::<F, F::ISet1>(r1_u0, s1_u2, F::SET1_ROUNDS, false); |
167 | |
168 | // Widen values and perform iterations at half width (used for `f64` and `f128`). |
169 | let r2_u0: F::ISet2 = F::ISet2::from(r1_u0) << (F::ISet2::BITS - F::ISet1::BITS); |
170 | let s2_u2: F::ISet2 = ((m_u2) >> (F::BITS - F::ISet2::BITS)).cast(); |
171 | let (r2_u0, _s2_u2) = goldschmidt::<F, F::ISet2>(r2_u0, s2_u2, F::SET2_ROUNDS, false); |
172 | |
173 | // Perform final iterations at full width (used for all float types). |
174 | let r_u0: F::Int = F::Int::from(r2_u0) << (F::BITS - F::ISet2::BITS); |
175 | let s_u2: F::Int = m_u2; |
176 | let (_r_u0, s_u2) = goldschmidt::<F, F::Int>(r_u0, s_u2, F::FINAL_ROUNDS, true); |
177 | |
178 | // Shift back to mantissa position. |
179 | let mut m = s_u2 >> (F::EXP_BITS - 2); |
180 | |
181 | // The musl source includes the following comment (with literals replaced): |
182 | // |
183 | // > s < sqrt(m) < s + 0x1.09p-SIG_BITS |
184 | // > compute nearest rounded result: the nearest result to SIG_BITS bits is either s or |
185 | // > s+0x1p-SIG_BITS, we can decide by comparing (2^SIG_BITS s + 0.5)^2 to 2^(2*SIG_BITS) m. |
186 | // |
187 | // Expanding this with , with `SIG_BITS = p` and adjusting based on the operations done to |
188 | // `d0` and `d1`: |
189 | // |
190 | // - `2^(2p)m ≟ ((2^p)m + 0.5)^2` |
191 | // - `2^(2p)m ≟ 2^(2p)m^2 + (2^p)m + 0.25` |
192 | // - `2^(2p)m - m^2 ≟ (2^(2p) - 1)m^2 + (2^p)m + 0.25` |
193 | // - `(1 - 2^(2p))m + m^2 ≟ (1 - 2^(2p))m^2 + (1 - 2^p)m + 0.25` (?) |
194 | // |
195 | // I do not follow how the rounding bit is extracted from this comparison with the below |
196 | // operations. In any case, the algorithm is well tested. |
197 | |
198 | // The value needed to shift `m_u2` by to create `m*2^(2p)`. `2p = 2 * F::SIG_BITS`, |
199 | // `F::BITS - 2` accounts for the offset that `m_u2` already has. |
200 | let shift = 2 * F::SIG_BITS - (F::BITS - 2); |
201 | |
202 | // `2^(2p)m - m^2` |
203 | let d0 = (m_u2 << shift).wrapping_sub(m.wrapping_mul(m)); |
204 | // `m - 2^(2p)m + m^2` |
205 | let d1 = m.wrapping_sub(d0); |
206 | m += d1 >> (F::BITS - 1); |
207 | m &= F::SIG_MASK; |
208 | |
209 | match exp { |
210 | Exp::Shifted(e) => m |= IntTy::<F>::cast_from(e) << F::SIG_BITS, |
211 | Exp::NoShift(e) => m |= e, |
212 | }; |
213 | |
214 | let mut y = F::from_bits(m); |
215 | |
216 | // FIXME(f16): the fenv math does not work for `f16` |
217 | if F::BITS > 16 { |
218 | // Handle rounding and inexact. `(m + 1)^2 == 2^shift m` is exact; for all other cases, add |
219 | // a tiny value to cause fenv effects. |
220 | let d2 = d1.wrapping_add(m).wrapping_add(one); |
221 | let mut tiny = if d2 == zero { |
222 | cold_path(); |
223 | zero |
224 | } else { |
225 | F::IMPLICIT_BIT |
226 | }; |
227 | |
228 | tiny |= (d1 ^ d2) & F::SIGN_MASK; |
229 | let t = F::from_bits(tiny); |
230 | y = y + t; |
231 | } |
232 | |
233 | FpResult::ok(y) |
234 | } |
235 | |
236 | /// Multiply at the wider integer size, returning the high half. |
237 | fn wmulh<I: HInt>(a: I, b: I) -> I { |
238 | a.widen_mul(b).hi() |
239 | } |
240 | |
241 | /// Perform `count` goldschmidt iterations, returning `(r_u0, s_u?)`. |
242 | /// |
243 | /// - `r_u0` is the reciprocal `r ~ 1 / sqrt(m)`, as U0. |
244 | /// - `s_u2` is the square root, `s ~ sqrt(m)`, as U2. |
245 | /// - `count` is the number of iterations to perform. |
246 | /// - `final_set` should be true if this is the last round (same-sized integer). If so, the |
247 | /// returned `s` will be U3, for later shifting. Otherwise, the returned `s` is U2. |
248 | /// |
249 | /// Note that performance relies on the optimizer being able to unroll these loops (reasonably |
250 | /// trivial, `count` is a constant when called). |
251 | #[inline ] |
252 | fn goldschmidt<F, I>(mut r_u0: I, mut s_u2: I, count: u32, final_set: bool) -> (I, I) |
253 | where |
254 | F: SqrtHelper, |
255 | I: HInt + From<u8>, |
256 | { |
257 | let three_u2 = I::from(0b11u8) << (I::BITS - 2); |
258 | let mut u_u0 = r_u0; |
259 | |
260 | for i in 0..count { |
261 | // First iteration: `s = m*r` (`u_u0 = r_u0` set above) |
262 | // Subsequent iterations: `s=s*u/2` |
263 | s_u2 = wmulh(s_u2, u_u0); |
264 | |
265 | // Perform `s /= 2` if: |
266 | // |
267 | // 1. This is not the first iteration (the first iteration is `s = m*r`)... |
268 | // 2. ... and this is not the last set of iterations |
269 | // 3. ... or, if this is the last set, it is not the last iteration |
270 | // |
271 | // This step is not performed for the final iteration because the shift is combined with |
272 | // a later shift (moving `s` into the mantissa). |
273 | if i > 0 && (!final_set || i + 1 < count) { |
274 | s_u2 <<= 1; |
275 | } |
276 | |
277 | // u = 3 - s*r |
278 | let d_u2 = wmulh(s_u2, r_u0); |
279 | u_u0 = three_u2.wrapping_sub(d_u2); |
280 | |
281 | // r = r*u/2 |
282 | r_u0 = wmulh(r_u0, u_u0) << 1; |
283 | } |
284 | |
285 | (r_u0, s_u2) |
286 | } |
287 | |
288 | /// Representation of whether we shift the exponent into a `u32`, or modify it in place to save |
289 | /// the shift operations. |
290 | enum Exp<T> { |
291 | /// The exponent has been shifted to a `u32` and is LSB-aligned. |
292 | Shifted(u32), |
293 | /// The exponent is in its natural position in integer repr. |
294 | NoShift(T), |
295 | } |
296 | |
297 | /// Size-specific constants related to the square root routine. |
298 | pub trait SqrtHelper: Float { |
299 | /// Integer for the first set of rounds. If unused, set to the same type as the next set. |
300 | type ISet1: HInt + Into<Self::ISet2> + CastFrom<Self::Int> + From<u8>; |
301 | /// Integer for the second set of rounds. If unused, set to the same type as the next set. |
302 | type ISet2: HInt + From<Self::ISet1> + From<u8>; |
303 | |
304 | /// Number of rounds at `ISet1`. |
305 | const SET1_ROUNDS: u32 = 0; |
306 | /// Number of rounds at `ISet2`. |
307 | const SET2_ROUNDS: u32 = 0; |
308 | /// Number of rounds at `Self::Int`. |
309 | const FINAL_ROUNDS: u32; |
310 | } |
311 | |
312 | #[cfg (f16_enabled)] |
313 | impl SqrtHelper for f16 { |
314 | type ISet1 = u16; // unused |
315 | type ISet2 = u16; // unused |
316 | |
317 | const FINAL_ROUNDS: u32 = 2; |
318 | } |
319 | |
320 | impl SqrtHelper for f32 { |
321 | type ISet1 = u32; // unused |
322 | type ISet2 = u32; // unused |
323 | |
324 | const FINAL_ROUNDS: u32 = 3; |
325 | } |
326 | |
327 | impl SqrtHelper for f64 { |
328 | type ISet1 = u32; // unused |
329 | type ISet2 = u32; |
330 | |
331 | const SET2_ROUNDS: u32 = 2; |
332 | const FINAL_ROUNDS: u32 = 2; |
333 | } |
334 | |
335 | #[cfg (f128_enabled)] |
336 | impl SqrtHelper for f128 { |
337 | type ISet1 = u32; |
338 | type ISet2 = u64; |
339 | |
340 | const SET1_ROUNDS: u32 = 1; |
341 | const SET2_ROUNDS: u32 = 2; |
342 | const FINAL_ROUNDS: u32 = 2; |
343 | } |
344 | |
345 | /// A U0.16 representation of `1/sqrt(x)`. |
346 | /// |
347 | /// The index is a 7-bit number consisting of a single exponent bit and 6 bits of significand. |
348 | #[rustfmt::skip] |
349 | static RSQRT_TAB: [u16; 128] = [ |
350 | 0xb451, 0xb2f0, 0xb196, 0xb044, 0xaef9, 0xadb6, 0xac79, 0xab43, |
351 | 0xaa14, 0xa8eb, 0xa7c8, 0xa6aa, 0xa592, 0xa480, 0xa373, 0xa26b, |
352 | 0xa168, 0xa06a, 0x9f70, 0x9e7b, 0x9d8a, 0x9c9d, 0x9bb5, 0x9ad1, |
353 | 0x99f0, 0x9913, 0x983a, 0x9765, 0x9693, 0x95c4, 0x94f8, 0x9430, |
354 | 0x936b, 0x92a9, 0x91ea, 0x912e, 0x9075, 0x8fbe, 0x8f0a, 0x8e59, |
355 | 0x8daa, 0x8cfe, 0x8c54, 0x8bac, 0x8b07, 0x8a64, 0x89c4, 0x8925, |
356 | 0x8889, 0x87ee, 0x8756, 0x86c0, 0x862b, 0x8599, 0x8508, 0x8479, |
357 | 0x83ec, 0x8361, 0x82d8, 0x8250, 0x81c9, 0x8145, 0x80c2, 0x8040, |
358 | 0xff02, 0xfd0e, 0xfb25, 0xf947, 0xf773, 0xf5aa, 0xf3ea, 0xf234, |
359 | 0xf087, 0xeee3, 0xed47, 0xebb3, 0xea27, 0xe8a3, 0xe727, 0xe5b2, |
360 | 0xe443, 0xe2dc, 0xe17a, 0xe020, 0xdecb, 0xdd7d, 0xdc34, 0xdaf1, |
361 | 0xd9b3, 0xd87b, 0xd748, 0xd61a, 0xd4f1, 0xd3cd, 0xd2ad, 0xd192, |
362 | 0xd07b, 0xcf69, 0xce5b, 0xcd51, 0xcc4a, 0xcb48, 0xca4a, 0xc94f, |
363 | 0xc858, 0xc764, 0xc674, 0xc587, 0xc49d, 0xc3b7, 0xc2d4, 0xc1f4, |
364 | 0xc116, 0xc03c, 0xbf65, 0xbe90, 0xbdbe, 0xbcef, 0xbc23, 0xbb59, |
365 | 0xba91, 0xb9cc, 0xb90a, 0xb84a, 0xb78c, 0xb6d0, 0xb617, 0xb560, |
366 | ]; |
367 | |
368 | #[cfg (test)] |
369 | mod tests { |
370 | use super::*; |
371 | |
372 | /// Test behavior specified in IEEE 754 `squareRoot`. |
373 | fn spec_test<F>() |
374 | where |
375 | F: Float + SqrtHelper, |
376 | F::Int: HInt, |
377 | F::Int: From<u8>, |
378 | F::Int: From<F::ISet2>, |
379 | F::Int: CastInto<F::ISet1>, |
380 | F::Int: CastInto<F::ISet2>, |
381 | u32: CastInto<F::Int>, |
382 | { |
383 | // Values that should return a NaN and raise invalid |
384 | let nan = [F::NEG_INFINITY, F::NEG_ONE, F::NAN, F::MIN]; |
385 | |
386 | // Values that return unaltered |
387 | let roundtrip = [F::ZERO, F::NEG_ZERO, F::INFINITY]; |
388 | |
389 | for x in nan { |
390 | let FpResult { val, status } = sqrt_round(x, Round::Nearest); |
391 | assert!(val.is_nan()); |
392 | assert!(status == Status::INVALID); |
393 | } |
394 | |
395 | for x in roundtrip { |
396 | let FpResult { val, status } = sqrt_round(x, Round::Nearest); |
397 | assert_biteq!(val, x); |
398 | assert!(status == Status::OK); |
399 | } |
400 | } |
401 | |
402 | #[test ] |
403 | #[cfg (f16_enabled)] |
404 | fn sanity_check_f16() { |
405 | assert_biteq!(sqrt(100.0f16), 10.0); |
406 | assert_biteq!(sqrt(4.0f16), 2.0); |
407 | } |
408 | |
409 | #[test ] |
410 | #[cfg (f16_enabled)] |
411 | fn spec_tests_f16() { |
412 | spec_test::<f16>(); |
413 | } |
414 | |
415 | #[test ] |
416 | #[cfg (f16_enabled)] |
417 | #[allow (clippy::approx_constant)] |
418 | fn conformance_tests_f16() { |
419 | let cases = [ |
420 | (f16::PI, 0x3f17_u16), |
421 | // 10_000.0, using a hex literal for MSRV hack (Rust < 1.67 checks literal widths as |
422 | // part of the AST, so the `cfg` is irrelevant here). |
423 | (f16::from_bits(0x70e2), 0x5640_u16), |
424 | (f16::from_bits(0x0000000f), 0x13bf_u16), |
425 | (f16::INFINITY, f16::INFINITY.to_bits()), |
426 | ]; |
427 | |
428 | for (input, output) in cases { |
429 | assert_biteq!( |
430 | sqrt(input), |
431 | f16::from_bits(output), |
432 | "input: {input:?} ({:#018x})" , |
433 | input.to_bits() |
434 | ); |
435 | } |
436 | } |
437 | |
438 | #[test ] |
439 | fn sanity_check_f32() { |
440 | assert_biteq!(sqrt(100.0f32), 10.0); |
441 | assert_biteq!(sqrt(4.0f32), 2.0); |
442 | } |
443 | |
444 | #[test ] |
445 | fn spec_tests_f32() { |
446 | spec_test::<f32>(); |
447 | } |
448 | |
449 | #[test ] |
450 | #[allow (clippy::approx_constant)] |
451 | fn conformance_tests_f32() { |
452 | let cases = [ |
453 | (f32::PI, 0x3fe2dfc5_u32), |
454 | (10000.0f32, 0x42c80000_u32), |
455 | (f32::from_bits(0x0000000f), 0x1b2f456f_u32), |
456 | (f32::INFINITY, f32::INFINITY.to_bits()), |
457 | ]; |
458 | |
459 | for (input, output) in cases { |
460 | assert_biteq!( |
461 | sqrt(input), |
462 | f32::from_bits(output), |
463 | "input: {input:?} ({:#018x})" , |
464 | input.to_bits() |
465 | ); |
466 | } |
467 | } |
468 | |
469 | #[test ] |
470 | fn sanity_check_f64() { |
471 | assert_biteq!(sqrt(100.0f64), 10.0); |
472 | assert_biteq!(sqrt(4.0f64), 2.0); |
473 | } |
474 | |
475 | #[test ] |
476 | fn spec_tests_f64() { |
477 | spec_test::<f64>(); |
478 | } |
479 | |
480 | #[test ] |
481 | #[allow (clippy::approx_constant)] |
482 | fn conformance_tests_f64() { |
483 | let cases = [ |
484 | (f64::PI, 0x3ffc5bf891b4ef6a_u64), |
485 | (10000.0, 0x4059000000000000_u64), |
486 | (f64::from_bits(0x0000000f), 0x1e7efbdeb14f4eda_u64), |
487 | (f64::INFINITY, f64::INFINITY.to_bits()), |
488 | ]; |
489 | |
490 | for (input, output) in cases { |
491 | assert_biteq!( |
492 | sqrt(input), |
493 | f64::from_bits(output), |
494 | "input: {input:?} ({:#018x})" , |
495 | input.to_bits() |
496 | ); |
497 | } |
498 | } |
499 | |
500 | #[test ] |
501 | #[cfg (f128_enabled)] |
502 | fn sanity_check_f128() { |
503 | assert_biteq!(sqrt(100.0f128), 10.0); |
504 | assert_biteq!(sqrt(4.0f128), 2.0); |
505 | } |
506 | |
507 | #[test ] |
508 | #[cfg (f128_enabled)] |
509 | fn spec_tests_f128() { |
510 | spec_test::<f128>(); |
511 | } |
512 | |
513 | #[test ] |
514 | #[cfg (f128_enabled)] |
515 | #[allow (clippy::approx_constant)] |
516 | fn conformance_tests_f128() { |
517 | let cases = [ |
518 | (f128::PI, 0x3fffc5bf891b4ef6aa79c3b0520d5db9_u128), |
519 | // 10_000.0, see `f16` for reasoning. |
520 | ( |
521 | f128::from_bits(0x400c3880000000000000000000000000), |
522 | 0x40059000000000000000000000000000_u128, |
523 | ), |
524 | ( |
525 | f128::from_bits(0x0000000f), |
526 | 0x1fc9efbdeb14f4ed9b17ae807907e1e9_u128, |
527 | ), |
528 | (f128::INFINITY, f128::INFINITY.to_bits()), |
529 | ]; |
530 | |
531 | for (input, output) in cases { |
532 | assert_biteq!( |
533 | sqrt(input), |
534 | f128::from_bits(output), |
535 | "input: {input:?} ({:#018x})" , |
536 | input.to_bits() |
537 | ); |
538 | } |
539 | } |
540 | } |
541 | |