| 1 | use core::f64; |
| 2 | |
| 3 | use super::sqrt; |
| 4 | |
| 5 | const SPLIT: f64 = 134217728. + 1.; // 0x1p27 + 1 === (2 ^ 27) + 1 |
| 6 | |
| 7 | fn sq(x: f64) -> (f64, f64) { |
| 8 | let xh: f64; |
| 9 | let xl: f64; |
| 10 | let xc: f64; |
| 11 | |
| 12 | xc = x * SPLIT; |
| 13 | xh = x - xc + xc; |
| 14 | xl = x - xh; |
| 15 | let hi: f64 = x * x; |
| 16 | let lo: f64 = xh * xh - hi + 2. * xh * xl + xl * xl; |
| 17 | (hi, lo) |
| 18 | } |
| 19 | |
| 20 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 21 | pub fn hypot(mut x: f64, mut y: f64) -> f64 { |
| 22 | let x1p700 = f64::from_bits(0x6bb0000000000000); // 0x1p700 === 2 ^ 700 |
| 23 | let x1p_700 = f64::from_bits(0x1430000000000000); // 0x1p-700 === 2 ^ -700 |
| 24 | |
| 25 | let mut uxi = x.to_bits(); |
| 26 | let mut uyi = y.to_bits(); |
| 27 | let uti; |
| 28 | let ex: i64; |
| 29 | let ey: i64; |
| 30 | let mut z: f64; |
| 31 | |
| 32 | /* arrange |x| >= |y| */ |
| 33 | uxi &= -1i64 as u64 >> 1; |
| 34 | uyi &= -1i64 as u64 >> 1; |
| 35 | if uxi < uyi { |
| 36 | uti = uxi; |
| 37 | uxi = uyi; |
| 38 | uyi = uti; |
| 39 | } |
| 40 | |
| 41 | /* special cases */ |
| 42 | ex = (uxi >> 52) as i64; |
| 43 | ey = (uyi >> 52) as i64; |
| 44 | x = f64::from_bits(uxi); |
| 45 | y = f64::from_bits(uyi); |
| 46 | /* note: hypot(inf,nan) == inf */ |
| 47 | if ey == 0x7ff { |
| 48 | return y; |
| 49 | } |
| 50 | if ex == 0x7ff || uyi == 0 { |
| 51 | return x; |
| 52 | } |
| 53 | /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */ |
| 54 | /* 64 difference is enough for ld80 double_t */ |
| 55 | if ex - ey > 64 { |
| 56 | return x + y; |
| 57 | } |
| 58 | |
| 59 | /* precise sqrt argument in nearest rounding mode without overflow */ |
| 60 | /* xh*xh must not overflow and xl*xl must not underflow in sq */ |
| 61 | z = 1.; |
| 62 | if ex > 0x3ff + 510 { |
| 63 | z = x1p700; |
| 64 | x *= x1p_700; |
| 65 | y *= x1p_700; |
| 66 | } else if ey < 0x3ff - 450 { |
| 67 | z = x1p_700; |
| 68 | x *= x1p700; |
| 69 | y *= x1p700; |
| 70 | } |
| 71 | let (hx, lx) = sq(x); |
| 72 | let (hy, ly) = sq(y); |
| 73 | z * sqrt(ly + lx + hy + hx) |
| 74 | } |
| 75 | |