| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* |
| 13 | * jn(n, x), yn(n, x) |
| 14 | * floating point Bessel's function of the 1st and 2nd kind |
| 15 | * of order n |
| 16 | * |
| 17 | * Special cases: |
| 18 | * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
| 19 | * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
| 20 | * Note 2. About jn(n,x), yn(n,x) |
| 21 | * For n=0, j0(x) is called, |
| 22 | * for n=1, j1(x) is called, |
| 23 | * for n<=x, forward recursion is used starting |
| 24 | * from values of j0(x) and j1(x). |
| 25 | * for n>x, a continued fraction approximation to |
| 26 | * j(n,x)/j(n-1,x) is evaluated and then backward |
| 27 | * recursion is used starting from a supposed value |
| 28 | * for j(n,x). The resulting value of j(0,x) is |
| 29 | * compared with the actual value to correct the |
| 30 | * supposed value of j(n,x). |
| 31 | * |
| 32 | * yn(n,x) is similar in all respects, except |
| 33 | * that forward recursion is used for all |
| 34 | * values of n>1. |
| 35 | */ |
| 36 | |
| 37 | use super::{cos, fabs, get_high_word, get_low_word, j0, j1, log, sin, sqrt, y0, y1}; |
| 38 | |
| 39 | const INVSQRTPI: f64 = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */ |
| 40 | |
| 41 | /// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f64). |
| 42 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 43 | pub fn jn(n: i32, mut x: f64) -> f64 { |
| 44 | let mut ix: u32; |
| 45 | let lx: u32; |
| 46 | let nm1: i32; |
| 47 | let mut i: i32; |
| 48 | let mut sign: bool; |
| 49 | let mut a: f64; |
| 50 | let mut b: f64; |
| 51 | let mut temp: f64; |
| 52 | |
| 53 | ix = get_high_word(x); |
| 54 | lx = get_low_word(x); |
| 55 | sign = (ix >> 31) != 0; |
| 56 | ix &= 0x7fffffff; |
| 57 | |
| 58 | // -lx == !lx + 1 |
| 59 | if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 { |
| 60 | /* nan */ |
| 61 | return x; |
| 62 | } |
| 63 | |
| 64 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
| 65 | * Thus, J(-n,x) = J(n,-x) |
| 66 | */ |
| 67 | /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */ |
| 68 | if n == 0 { |
| 69 | return j0(x); |
| 70 | } |
| 71 | if n < 0 { |
| 72 | nm1 = -(n + 1); |
| 73 | x = -x; |
| 74 | sign = !sign; |
| 75 | } else { |
| 76 | nm1 = n - 1; |
| 77 | } |
| 78 | if nm1 == 0 { |
| 79 | return j1(x); |
| 80 | } |
| 81 | |
| 82 | sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */ |
| 83 | x = fabs(x); |
| 84 | if (ix | lx) == 0 || ix == 0x7ff00000 { |
| 85 | /* if x is 0 or inf */ |
| 86 | b = 0.0; |
| 87 | } else if (nm1 as f64) < x { |
| 88 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| 89 | if ix >= 0x52d00000 { |
| 90 | /* x > 2**302 */ |
| 91 | /* (x >> n**2) |
| 92 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 93 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 94 | * Let s=sin(x), c=cos(x), |
| 95 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| 96 | * |
| 97 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
| 98 | * ---------------------------------- |
| 99 | * 0 s-c c+s |
| 100 | * 1 -s-c -c+s |
| 101 | * 2 -s+c -c-s |
| 102 | * 3 s+c c-s |
| 103 | */ |
| 104 | temp = match nm1 & 3 { |
| 105 | 0 => -cos(x) + sin(x), |
| 106 | 1 => -cos(x) - sin(x), |
| 107 | 2 => cos(x) - sin(x), |
| 108 | // 3 |
| 109 | _ => cos(x) + sin(x), |
| 110 | }; |
| 111 | b = INVSQRTPI * temp / sqrt(x); |
| 112 | } else { |
| 113 | a = j0(x); |
| 114 | b = j1(x); |
| 115 | i = 0; |
| 116 | while i < nm1 { |
| 117 | i += 1; |
| 118 | temp = b; |
| 119 | b = b * (2.0 * (i as f64) / x) - a; /* avoid underflow */ |
| 120 | a = temp; |
| 121 | } |
| 122 | } |
| 123 | } else if ix < 0x3e100000 { |
| 124 | /* x < 2**-29 */ |
| 125 | /* x is tiny, return the first Taylor expansion of J(n,x) |
| 126 | * J(n,x) = 1/n!*(x/2)^n - ... |
| 127 | */ |
| 128 | if nm1 > 32 { |
| 129 | /* underflow */ |
| 130 | b = 0.0; |
| 131 | } else { |
| 132 | temp = x * 0.5; |
| 133 | b = temp; |
| 134 | a = 1.0; |
| 135 | i = 2; |
| 136 | while i <= nm1 + 1 { |
| 137 | a *= i as f64; /* a = n! */ |
| 138 | b *= temp; /* b = (x/2)^n */ |
| 139 | i += 1; |
| 140 | } |
| 141 | b = b / a; |
| 142 | } |
| 143 | } else { |
| 144 | /* use backward recurrence */ |
| 145 | /* x x^2 x^2 |
| 146 | * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| 147 | * 2n - 2(n+1) - 2(n+2) |
| 148 | * |
| 149 | * 1 1 1 |
| 150 | * (for large x) = ---- ------ ------ ..... |
| 151 | * 2n 2(n+1) 2(n+2) |
| 152 | * -- - ------ - ------ - |
| 153 | * x x x |
| 154 | * |
| 155 | * Let w = 2n/x and h=2/x, then the above quotient |
| 156 | * is equal to the continued fraction: |
| 157 | * 1 |
| 158 | * = ----------------------- |
| 159 | * 1 |
| 160 | * w - ----------------- |
| 161 | * 1 |
| 162 | * w+h - --------- |
| 163 | * w+2h - ... |
| 164 | * |
| 165 | * To determine how many terms needed, let |
| 166 | * Q(0) = w, Q(1) = w(w+h) - 1, |
| 167 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| 168 | * When Q(k) > 1e4 good for single |
| 169 | * When Q(k) > 1e9 good for double |
| 170 | * When Q(k) > 1e17 good for quadruple |
| 171 | */ |
| 172 | /* determine k */ |
| 173 | let mut t: f64; |
| 174 | let mut q0: f64; |
| 175 | let mut q1: f64; |
| 176 | let mut w: f64; |
| 177 | let h: f64; |
| 178 | let mut z: f64; |
| 179 | let mut tmp: f64; |
| 180 | let nf: f64; |
| 181 | |
| 182 | let mut k: i32; |
| 183 | |
| 184 | nf = (nm1 as f64) + 1.0; |
| 185 | w = 2.0 * nf / x; |
| 186 | h = 2.0 / x; |
| 187 | z = w + h; |
| 188 | q0 = w; |
| 189 | q1 = w * z - 1.0; |
| 190 | k = 1; |
| 191 | while q1 < 1.0e9 { |
| 192 | k += 1; |
| 193 | z += h; |
| 194 | tmp = z * q1 - q0; |
| 195 | q0 = q1; |
| 196 | q1 = tmp; |
| 197 | } |
| 198 | t = 0.0; |
| 199 | i = k; |
| 200 | while i >= 0 { |
| 201 | t = 1.0 / (2.0 * ((i as f64) + nf) / x - t); |
| 202 | i -= 1; |
| 203 | } |
| 204 | a = t; |
| 205 | b = 1.0; |
| 206 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| 207 | * Hence, if n*(log(2n/x)) > ... |
| 208 | * single 8.8722839355e+01 |
| 209 | * double 7.09782712893383973096e+02 |
| 210 | * long double 1.1356523406294143949491931077970765006170e+04 |
| 211 | * then recurrent value may overflow and the result is |
| 212 | * likely underflow to zero |
| 213 | */ |
| 214 | tmp = nf * log(fabs(w)); |
| 215 | if tmp < 7.09782712893383973096e+02 { |
| 216 | i = nm1; |
| 217 | while i > 0 { |
| 218 | temp = b; |
| 219 | b = b * (2.0 * (i as f64)) / x - a; |
| 220 | a = temp; |
| 221 | i -= 1; |
| 222 | } |
| 223 | } else { |
| 224 | i = nm1; |
| 225 | while i > 0 { |
| 226 | temp = b; |
| 227 | b = b * (2.0 * (i as f64)) / x - a; |
| 228 | a = temp; |
| 229 | /* scale b to avoid spurious overflow */ |
| 230 | let x1p500 = f64::from_bits(0x5f30000000000000); // 0x1p500 == 2^500 |
| 231 | if b > x1p500 { |
| 232 | a /= b; |
| 233 | t /= b; |
| 234 | b = 1.0; |
| 235 | } |
| 236 | i -= 1; |
| 237 | } |
| 238 | } |
| 239 | z = j0(x); |
| 240 | w = j1(x); |
| 241 | if fabs(z) >= fabs(w) { |
| 242 | b = t * z / b; |
| 243 | } else { |
| 244 | b = t * w / a; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | if sign { -b } else { b } |
| 249 | } |
| 250 | |
| 251 | /// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f64). |
| 252 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 253 | pub fn yn(n: i32, x: f64) -> f64 { |
| 254 | let mut ix: u32; |
| 255 | let lx: u32; |
| 256 | let mut ib: u32; |
| 257 | let nm1: i32; |
| 258 | let mut sign: bool; |
| 259 | let mut i: i32; |
| 260 | let mut a: f64; |
| 261 | let mut b: f64; |
| 262 | let mut temp: f64; |
| 263 | |
| 264 | ix = get_high_word(x); |
| 265 | lx = get_low_word(x); |
| 266 | sign = (ix >> 31) != 0; |
| 267 | ix &= 0x7fffffff; |
| 268 | |
| 269 | // -lx == !lx + 1 |
| 270 | if ix | ((lx | (!lx).wrapping_add(1)) >> 31) > 0x7ff00000 { |
| 271 | /* nan */ |
| 272 | return x; |
| 273 | } |
| 274 | if sign && (ix | lx) != 0 { |
| 275 | /* x < 0 */ |
| 276 | return 0.0 / 0.0; |
| 277 | } |
| 278 | if ix == 0x7ff00000 { |
| 279 | return 0.0; |
| 280 | } |
| 281 | |
| 282 | if n == 0 { |
| 283 | return y0(x); |
| 284 | } |
| 285 | if n < 0 { |
| 286 | nm1 = -(n + 1); |
| 287 | sign = (n & 1) != 0; |
| 288 | } else { |
| 289 | nm1 = n - 1; |
| 290 | sign = false; |
| 291 | } |
| 292 | if nm1 == 0 { |
| 293 | if sign { |
| 294 | return -y1(x); |
| 295 | } else { |
| 296 | return y1(x); |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | if ix >= 0x52d00000 { |
| 301 | /* x > 2**302 */ |
| 302 | /* (x >> n**2) |
| 303 | * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 304 | * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 305 | * Let s=sin(x), c=cos(x), |
| 306 | * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| 307 | * |
| 308 | * n sin(xn)*sqt2 cos(xn)*sqt2 |
| 309 | * ---------------------------------- |
| 310 | * 0 s-c c+s |
| 311 | * 1 -s-c -c+s |
| 312 | * 2 -s+c -c-s |
| 313 | * 3 s+c c-s |
| 314 | */ |
| 315 | temp = match nm1 & 3 { |
| 316 | 0 => -sin(x) - cos(x), |
| 317 | 1 => -sin(x) + cos(x), |
| 318 | 2 => sin(x) + cos(x), |
| 319 | // 3 |
| 320 | _ => sin(x) - cos(x), |
| 321 | }; |
| 322 | b = INVSQRTPI * temp / sqrt(x); |
| 323 | } else { |
| 324 | a = y0(x); |
| 325 | b = y1(x); |
| 326 | /* quit if b is -inf */ |
| 327 | ib = get_high_word(b); |
| 328 | i = 0; |
| 329 | while i < nm1 && ib != 0xfff00000 { |
| 330 | i += 1; |
| 331 | temp = b; |
| 332 | b = (2.0 * (i as f64) / x) * b - a; |
| 333 | ib = get_high_word(b); |
| 334 | a = temp; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | if sign { -b } else { b } |
| 339 | } |
| 340 | |