| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* |
| 13 | * Return the base 10 logarithm of x. See log.c for most comments. |
| 14 | * |
| 15 | * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 |
| 16 | * as in log.c, then combine and scale in extra precision: |
| 17 | * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2) |
| 18 | */ |
| 19 | |
| 20 | use core::f64; |
| 21 | |
| 22 | const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */ |
| 23 | const IVLN10LO: f64 = 2.50829467116452752298e-11; /* 0x3dbb9438, 0xca9aadd5 */ |
| 24 | const LOG10_2HI: f64 = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */ |
| 25 | const LOG10_2LO: f64 = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
| 26 | const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ |
| 27 | const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ |
| 28 | const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ |
| 29 | const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ |
| 30 | const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ |
| 31 | const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ |
| 32 | const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 33 | |
| 34 | /// The base 10 logarithm of `x` (f64). |
| 35 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 36 | pub fn log10(mut x: f64) -> f64 { |
| 37 | let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54 |
| 38 | |
| 39 | let mut ui: u64 = x.to_bits(); |
| 40 | let hfsq: f64; |
| 41 | let f: f64; |
| 42 | let s: f64; |
| 43 | let z: f64; |
| 44 | let r: f64; |
| 45 | let mut w: f64; |
| 46 | let t1: f64; |
| 47 | let t2: f64; |
| 48 | let dk: f64; |
| 49 | let y: f64; |
| 50 | let mut hi: f64; |
| 51 | let lo: f64; |
| 52 | let mut val_hi: f64; |
| 53 | let mut val_lo: f64; |
| 54 | let mut hx: u32; |
| 55 | let mut k: i32; |
| 56 | |
| 57 | hx = (ui >> 32) as u32; |
| 58 | k = 0; |
| 59 | if hx < 0x00100000 || (hx >> 31) > 0 { |
| 60 | if ui << 1 == 0 { |
| 61 | return -1. / (x * x); /* log(+-0)=-inf */ |
| 62 | } |
| 63 | if (hx >> 31) > 0 { |
| 64 | return (x - x) / 0.0; /* log(-#) = NaN */ |
| 65 | } |
| 66 | /* subnormal number, scale x up */ |
| 67 | k -= 54; |
| 68 | x *= x1p54; |
| 69 | ui = x.to_bits(); |
| 70 | hx = (ui >> 32) as u32; |
| 71 | } else if hx >= 0x7ff00000 { |
| 72 | return x; |
| 73 | } else if hx == 0x3ff00000 && ui << 32 == 0 { |
| 74 | return 0.; |
| 75 | } |
| 76 | |
| 77 | /* reduce x into [sqrt(2)/2, sqrt(2)] */ |
| 78 | hx += 0x3ff00000 - 0x3fe6a09e; |
| 79 | k += (hx >> 20) as i32 - 0x3ff; |
| 80 | hx = (hx & 0x000fffff) + 0x3fe6a09e; |
| 81 | ui = ((hx as u64) << 32) | (ui & 0xffffffff); |
| 82 | x = f64::from_bits(ui); |
| 83 | |
| 84 | f = x - 1.0; |
| 85 | hfsq = 0.5 * f * f; |
| 86 | s = f / (2.0 + f); |
| 87 | z = s * s; |
| 88 | w = z * z; |
| 89 | t1 = w * (LG2 + w * (LG4 + w * LG6)); |
| 90 | t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); |
| 91 | r = t2 + t1; |
| 92 | |
| 93 | /* See log2.c for details. */ |
| 94 | /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ |
| 95 | hi = f - hfsq; |
| 96 | ui = hi.to_bits(); |
| 97 | ui &= (-1i64 as u64) << 32; |
| 98 | hi = f64::from_bits(ui); |
| 99 | lo = f - hi - hfsq + s * (hfsq + r); |
| 100 | |
| 101 | /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */ |
| 102 | val_hi = hi * IVLN10HI; |
| 103 | dk = k as f64; |
| 104 | y = dk * LOG10_2HI; |
| 105 | val_lo = dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI; |
| 106 | |
| 107 | /* |
| 108 | * Extra precision in for adding y is not strictly needed |
| 109 | * since there is no very large cancellation near x = sqrt(2) or |
| 110 | * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs |
| 111 | * with some parallelism and it reduces the error for many args. |
| 112 | */ |
| 113 | w = y + val_hi; |
| 114 | val_lo += (y - w) + val_hi; |
| 115 | val_hi = w; |
| 116 | |
| 117 | val_lo + val_hi |
| 118 | } |
| 119 | |