| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | */ |
| 12 | /* double log1p(double x) |
| 13 | * Return the natural logarithm of 1+x. |
| 14 | * |
| 15 | * Method : |
| 16 | * 1. Argument Reduction: find k and f such that |
| 17 | * 1+x = 2^k * (1+f), |
| 18 | * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 19 | * |
| 20 | * Note. If k=0, then f=x is exact. However, if k!=0, then f |
| 21 | * may not be representable exactly. In that case, a correction |
| 22 | * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
| 23 | * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
| 24 | * and add back the correction term c/u. |
| 25 | * (Note: when x > 2**53, one can simply return log(x)) |
| 26 | * |
| 27 | * 2. Approximation of log(1+f): See log.c |
| 28 | * |
| 29 | * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c |
| 30 | * |
| 31 | * Special cases: |
| 32 | * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
| 33 | * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
| 34 | * log1p(NaN) is that NaN with no signal. |
| 35 | * |
| 36 | * Accuracy: |
| 37 | * according to an error analysis, the error is always less than |
| 38 | * 1 ulp (unit in the last place). |
| 39 | * |
| 40 | * Constants: |
| 41 | * The hexadecimal values are the intended ones for the following |
| 42 | * constants. The decimal values may be used, provided that the |
| 43 | * compiler will convert from decimal to binary accurately enough |
| 44 | * to produce the hexadecimal values shown. |
| 45 | * |
| 46 | * Note: Assuming log() return accurate answer, the following |
| 47 | * algorithm can be used to compute log1p(x) to within a few ULP: |
| 48 | * |
| 49 | * u = 1+x; |
| 50 | * if(u==1.0) return x ; else |
| 51 | * return log(u)*(x/(u-1.0)); |
| 52 | * |
| 53 | * See HP-15C Advanced Functions Handbook, p.193. |
| 54 | */ |
| 55 | |
| 56 | use core::f64; |
| 57 | |
| 58 | const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ |
| 59 | const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ |
| 60 | const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ |
| 61 | const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ |
| 62 | const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ |
| 63 | const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ |
| 64 | const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ |
| 65 | const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ |
| 66 | const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 67 | |
| 68 | /// The natural logarithm of 1+`x` (f64). |
| 69 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 70 | pub fn log1p(x: f64) -> f64 { |
| 71 | let mut ui: u64 = x.to_bits(); |
| 72 | let hfsq: f64; |
| 73 | let mut f: f64 = 0.; |
| 74 | let mut c: f64 = 0.; |
| 75 | let s: f64; |
| 76 | let z: f64; |
| 77 | let r: f64; |
| 78 | let w: f64; |
| 79 | let t1: f64; |
| 80 | let t2: f64; |
| 81 | let dk: f64; |
| 82 | let hx: u32; |
| 83 | let mut hu: u32; |
| 84 | let mut k: i32; |
| 85 | |
| 86 | hx = (ui >> 32) as u32; |
| 87 | k = 1; |
| 88 | if hx < 0x3fda827a || (hx >> 31) > 0 { |
| 89 | /* 1+x < sqrt(2)+ */ |
| 90 | if hx >= 0xbff00000 { |
| 91 | /* x <= -1.0 */ |
| 92 | if x == -1. { |
| 93 | return x / 0.0; /* log1p(-1) = -inf */ |
| 94 | } |
| 95 | return (x - x) / 0.0; /* log1p(x<-1) = NaN */ |
| 96 | } |
| 97 | if hx << 1 < 0x3ca00000 << 1 { |
| 98 | /* |x| < 2**-53 */ |
| 99 | /* underflow if subnormal */ |
| 100 | if (hx & 0x7ff00000) == 0 { |
| 101 | force_eval!(x as f32); |
| 102 | } |
| 103 | return x; |
| 104 | } |
| 105 | if hx <= 0xbfd2bec4 { |
| 106 | /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
| 107 | k = 0; |
| 108 | c = 0.; |
| 109 | f = x; |
| 110 | } |
| 111 | } else if hx >= 0x7ff00000 { |
| 112 | return x; |
| 113 | } |
| 114 | if k > 0 { |
| 115 | ui = (1. + x).to_bits(); |
| 116 | hu = (ui >> 32) as u32; |
| 117 | hu += 0x3ff00000 - 0x3fe6a09e; |
| 118 | k = (hu >> 20) as i32 - 0x3ff; |
| 119 | /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ |
| 120 | if k < 54 { |
| 121 | c = if k >= 2 { |
| 122 | 1. - (f64::from_bits(ui) - x) |
| 123 | } else { |
| 124 | x - (f64::from_bits(ui) - 1.) |
| 125 | }; |
| 126 | c /= f64::from_bits(ui); |
| 127 | } else { |
| 128 | c = 0.; |
| 129 | } |
| 130 | /* reduce u into [sqrt(2)/2, sqrt(2)] */ |
| 131 | hu = (hu & 0x000fffff) + 0x3fe6a09e; |
| 132 | ui = ((hu as u64) << 32) | (ui & 0xffffffff); |
| 133 | f = f64::from_bits(ui) - 1.; |
| 134 | } |
| 135 | hfsq = 0.5 * f * f; |
| 136 | s = f / (2.0 + f); |
| 137 | z = s * s; |
| 138 | w = z * z; |
| 139 | t1 = w * (LG2 + w * (LG4 + w * LG6)); |
| 140 | t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); |
| 141 | r = t2 + t1; |
| 142 | dk = k as f64; |
| 143 | s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI |
| 144 | } |
| 145 | |