| 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | // pow(x,y) return x**y |
| 13 | // |
| 14 | // n |
| 15 | // Method: Let x = 2 * (1+f) |
| 16 | // 1. Compute and return log2(x) in two pieces: |
| 17 | // log2(x) = w1 + w2, |
| 18 | // where w1 has 53-24 = 29 bit trailing zeros. |
| 19 | // 2. Perform y*log2(x) = n+y' by simulating multi-precision |
| 20 | // arithmetic, where |y'|<=0.5. |
| 21 | // 3. Return x**y = 2**n*exp(y'*log2) |
| 22 | // |
| 23 | // Special cases: |
| 24 | // 1. (anything) ** 0 is 1 |
| 25 | // 2. 1 ** (anything) is 1 |
| 26 | // 3. (anything except 1) ** NAN is NAN |
| 27 | // 4. NAN ** (anything except 0) is NAN |
| 28 | // 5. +-(|x| > 1) ** +INF is +INF |
| 29 | // 6. +-(|x| > 1) ** -INF is +0 |
| 30 | // 7. +-(|x| < 1) ** +INF is +0 |
| 31 | // 8. +-(|x| < 1) ** -INF is +INF |
| 32 | // 9. -1 ** +-INF is 1 |
| 33 | // 10. +0 ** (+anything except 0, NAN) is +0 |
| 34 | // 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| 35 | // 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero |
| 36 | // 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero |
| 37 | // 14. -0 ** (+odd integer) is -0 |
| 38 | // 15. -0 ** (-odd integer) is -INF, raise divbyzero |
| 39 | // 16. +INF ** (+anything except 0,NAN) is +INF |
| 40 | // 17. +INF ** (-anything except 0,NAN) is +0 |
| 41 | // 18. -INF ** (+odd integer) is -INF |
| 42 | // 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) |
| 43 | // 20. (anything) ** 1 is (anything) |
| 44 | // 21. (anything) ** -1 is 1/(anything) |
| 45 | // 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| 46 | // 23. (-anything except 0 and inf) ** (non-integer) is NAN |
| 47 | // |
| 48 | // Accuracy: |
| 49 | // pow(x,y) returns x**y nearly rounded. In particular |
| 50 | // pow(integer,integer) |
| 51 | // always returns the correct integer provided it is |
| 52 | // representable. |
| 53 | // |
| 54 | // Constants : |
| 55 | // The hexadecimal values are the intended ones for the following |
| 56 | // constants. The decimal values may be used, provided that the |
| 57 | // compiler will convert from decimal to binary accurately enough |
| 58 | // to produce the hexadecimal values shown. |
| 59 | // |
| 60 | use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word}; |
| 61 | |
| 62 | const BP: [f64; 2] = [1.0, 1.5]; |
| 63 | const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ |
| 64 | const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ |
| 65 | const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ |
| 66 | const HUGE: f64 = 1.0e300; |
| 67 | const TINY: f64 = 1.0e-300; |
| 68 | |
| 69 | // poly coefs for (3/2)*(log(x)-2s-2/3*s**3: |
| 70 | const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ |
| 71 | const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ |
| 72 | const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ |
| 73 | const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ |
| 74 | const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ |
| 75 | const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ |
| 76 | const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ |
| 77 | const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ |
| 78 | const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ |
| 79 | const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ |
| 80 | const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ |
| 81 | const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ |
| 82 | const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ |
| 83 | const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ |
| 84 | const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ |
| 85 | const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ |
| 86 | const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ |
| 87 | const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ |
| 88 | const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ |
| 89 | const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ |
| 90 | const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ |
| 91 | |
| 92 | /// Returns `x` to the power of `y` (f64). |
| 93 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 94 | pub fn pow(x: f64, y: f64) -> f64 { |
| 95 | let t1: f64; |
| 96 | let t2: f64; |
| 97 | |
| 98 | let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); |
| 99 | let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); |
| 100 | |
| 101 | let mut ix: i32 = hx & 0x7fffffff_i32; |
| 102 | let iy: i32 = hy & 0x7fffffff_i32; |
| 103 | |
| 104 | /* x**0 = 1, even if x is NaN */ |
| 105 | if ((iy as u32) | ly) == 0 { |
| 106 | return 1.0; |
| 107 | } |
| 108 | |
| 109 | /* 1**y = 1, even if y is NaN */ |
| 110 | if hx == 0x3ff00000 && lx == 0 { |
| 111 | return 1.0; |
| 112 | } |
| 113 | |
| 114 | /* NaN if either arg is NaN */ |
| 115 | if ix > 0x7ff00000 |
| 116 | || (ix == 0x7ff00000 && lx != 0) |
| 117 | || iy > 0x7ff00000 |
| 118 | || (iy == 0x7ff00000 && ly != 0) |
| 119 | { |
| 120 | return x + y; |
| 121 | } |
| 122 | |
| 123 | /* determine if y is an odd int when x < 0 |
| 124 | * yisint = 0 ... y is not an integer |
| 125 | * yisint = 1 ... y is an odd int |
| 126 | * yisint = 2 ... y is an even int |
| 127 | */ |
| 128 | let mut yisint: i32 = 0; |
| 129 | let mut k: i32; |
| 130 | let mut j: i32; |
| 131 | if hx < 0 { |
| 132 | if iy >= 0x43400000 { |
| 133 | yisint = 2; /* even integer y */ |
| 134 | } else if iy >= 0x3ff00000 { |
| 135 | k = (iy >> 20) - 0x3ff; /* exponent */ |
| 136 | |
| 137 | if k > 20 { |
| 138 | j = (ly >> (52 - k)) as i32; |
| 139 | |
| 140 | if (j << (52 - k)) == (ly as i32) { |
| 141 | yisint = 2 - (j & 1); |
| 142 | } |
| 143 | } else if ly == 0 { |
| 144 | j = iy >> (20 - k); |
| 145 | |
| 146 | if (j << (20 - k)) == iy { |
| 147 | yisint = 2 - (j & 1); |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | if ly == 0 { |
| 154 | /* special value of y */ |
| 155 | if iy == 0x7ff00000 { |
| 156 | /* y is +-inf */ |
| 157 | |
| 158 | return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { |
| 159 | /* (-1)**+-inf is 1 */ |
| 160 | 1.0 |
| 161 | } else if ix >= 0x3ff00000 { |
| 162 | /* (|x|>1)**+-inf = inf,0 */ |
| 163 | if hy >= 0 { y } else { 0.0 } |
| 164 | } else { |
| 165 | /* (|x|<1)**+-inf = 0,inf */ |
| 166 | if hy >= 0 { 0.0 } else { -y } |
| 167 | }; |
| 168 | } |
| 169 | |
| 170 | if iy == 0x3ff00000 { |
| 171 | /* y is +-1 */ |
| 172 | return if hy >= 0 { x } else { 1.0 / x }; |
| 173 | } |
| 174 | |
| 175 | if hy == 0x40000000 { |
| 176 | /* y is 2 */ |
| 177 | return x * x; |
| 178 | } |
| 179 | |
| 180 | if hy == 0x3fe00000 { |
| 181 | /* y is 0.5 */ |
| 182 | if hx >= 0 { |
| 183 | /* x >= +0 */ |
| 184 | return sqrt(x); |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | let mut ax: f64 = fabs(x); |
| 190 | if lx == 0 { |
| 191 | /* special value of x */ |
| 192 | if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { |
| 193 | /* x is +-0,+-inf,+-1 */ |
| 194 | let mut z: f64 = ax; |
| 195 | |
| 196 | if hy < 0 { |
| 197 | /* z = (1/|x|) */ |
| 198 | z = 1.0 / z; |
| 199 | } |
| 200 | |
| 201 | if hx < 0 { |
| 202 | if ((ix - 0x3ff00000) | yisint) == 0 { |
| 203 | z = (z - z) / (z - z); /* (-1)**non-int is NaN */ |
| 204 | } else if yisint == 1 { |
| 205 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | return z; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | let mut s: f64 = 1.0; /* sign of result */ |
| 214 | if hx < 0 { |
| 215 | if yisint == 0 { |
| 216 | /* (x<0)**(non-int) is NaN */ |
| 217 | return (x - x) / (x - x); |
| 218 | } |
| 219 | |
| 220 | if yisint == 1 { |
| 221 | /* (x<0)**(odd int) */ |
| 222 | s = -1.0; |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | /* |y| is HUGE */ |
| 227 | if iy > 0x41e00000 { |
| 228 | /* if |y| > 2**31 */ |
| 229 | if iy > 0x43f00000 { |
| 230 | /* if |y| > 2**64, must o/uflow */ |
| 231 | if ix <= 0x3fefffff { |
| 232 | return if hy < 0 { HUGE * HUGE } else { TINY * TINY }; |
| 233 | } |
| 234 | |
| 235 | if ix >= 0x3ff00000 { |
| 236 | return if hy > 0 { HUGE * HUGE } else { TINY * TINY }; |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | /* over/underflow if x is not close to one */ |
| 241 | if ix < 0x3fefffff { |
| 242 | return if hy < 0 { |
| 243 | s * HUGE * HUGE |
| 244 | } else { |
| 245 | s * TINY * TINY |
| 246 | }; |
| 247 | } |
| 248 | if ix > 0x3ff00000 { |
| 249 | return if hy > 0 { |
| 250 | s * HUGE * HUGE |
| 251 | } else { |
| 252 | s * TINY * TINY |
| 253 | }; |
| 254 | } |
| 255 | |
| 256 | /* now |1-x| is TINY <= 2**-20, suffice to compute |
| 257 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
| 258 | let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ |
| 259 | let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); |
| 260 | let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ |
| 261 | let v: f64 = t * IVLN2_L - w * IVLN2; |
| 262 | t1 = with_set_low_word(u + v, 0); |
| 263 | t2 = v - (t1 - u); |
| 264 | } else { |
| 265 | // double ss,s2,s_h,s_l,t_h,t_l; |
| 266 | let mut n: i32 = 0; |
| 267 | |
| 268 | if ix < 0x00100000 { |
| 269 | /* take care subnormal number */ |
| 270 | ax *= TWO53; |
| 271 | n -= 53; |
| 272 | ix = get_high_word(ax) as i32; |
| 273 | } |
| 274 | |
| 275 | n += (ix >> 20) - 0x3ff; |
| 276 | j = ix & 0x000fffff; |
| 277 | |
| 278 | /* determine interval */ |
| 279 | let k: i32; |
| 280 | ix = j | 0x3ff00000; /* normalize ix */ |
| 281 | if j <= 0x3988E { |
| 282 | /* |x|<sqrt(3/2) */ |
| 283 | k = 0; |
| 284 | } else if j < 0xBB67A { |
| 285 | /* |x|<sqrt(3) */ |
| 286 | k = 1; |
| 287 | } else { |
| 288 | k = 0; |
| 289 | n += 1; |
| 290 | ix -= 0x00100000; |
| 291 | } |
| 292 | ax = with_set_high_word(ax, ix as u32); |
| 293 | |
| 294 | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| 295 | let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ |
| 296 | let v: f64 = 1.0 / (ax + i!(BP, k as usize)); |
| 297 | let ss: f64 = u * v; |
| 298 | let s_h = with_set_low_word(ss, 0); |
| 299 | |
| 300 | /* t_h=ax+bp[k] High */ |
| 301 | let t_h: f64 = with_set_high_word( |
| 302 | 0.0, |
| 303 | ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), |
| 304 | ); |
| 305 | let t_l: f64 = ax - (t_h - i!(BP, k as usize)); |
| 306 | let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); |
| 307 | |
| 308 | /* compute log(ax) */ |
| 309 | let s2: f64 = ss * ss; |
| 310 | let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); |
| 311 | r += s_l * (s_h + ss); |
| 312 | let s2: f64 = s_h * s_h; |
| 313 | let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); |
| 314 | let t_l: f64 = r - ((t_h - 3.0) - s2); |
| 315 | |
| 316 | /* u+v = ss*(1+...) */ |
| 317 | let u: f64 = s_h * t_h; |
| 318 | let v: f64 = s_l * t_h + t_l * ss; |
| 319 | |
| 320 | /* 2/(3log2)*(ss+...) */ |
| 321 | let p_h: f64 = with_set_low_word(u + v, 0); |
| 322 | let p_l = v - (p_h - u); |
| 323 | let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| 324 | let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); |
| 325 | |
| 326 | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| 327 | let t: f64 = n as f64; |
| 328 | t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0); |
| 329 | t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); |
| 330 | } |
| 331 | |
| 332 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| 333 | let y1: f64 = with_set_low_word(y, 0); |
| 334 | let p_l: f64 = (y - y1) * t1 + y * t2; |
| 335 | let mut p_h: f64 = y1 * t1; |
| 336 | let z: f64 = p_l + p_h; |
| 337 | let mut j: i32 = (z.to_bits() >> 32) as i32; |
| 338 | let i: i32 = z.to_bits() as i32; |
| 339 | // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); |
| 340 | |
| 341 | if j >= 0x40900000 { |
| 342 | /* z >= 1024 */ |
| 343 | if (j - 0x40900000) | i != 0 { |
| 344 | /* if z > 1024 */ |
| 345 | return s * HUGE * HUGE; /* overflow */ |
| 346 | } |
| 347 | |
| 348 | if p_l + OVT > z - p_h { |
| 349 | return s * HUGE * HUGE; /* overflow */ |
| 350 | } |
| 351 | } else if (j & 0x7fffffff) >= 0x4090cc00 { |
| 352 | /* z <= -1075 */ |
| 353 | // FIXME: instead of abs(j) use unsigned j |
| 354 | |
| 355 | if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { |
| 356 | /* z < -1075 */ |
| 357 | return s * TINY * TINY; /* underflow */ |
| 358 | } |
| 359 | |
| 360 | if p_l <= z - p_h { |
| 361 | return s * TINY * TINY; /* underflow */ |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | /* compute 2**(p_h+p_l) */ |
| 366 | let i: i32 = j & 0x7fffffff_i32; |
| 367 | k = (i >> 20) - 0x3ff; |
| 368 | let mut n: i32 = 0; |
| 369 | |
| 370 | if i > 0x3fe00000 { |
| 371 | /* if |z| > 0.5, set n = [z+0.5] */ |
| 372 | n = j + (0x00100000 >> (k + 1)); |
| 373 | k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ |
| 374 | let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); |
| 375 | n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); |
| 376 | if j < 0 { |
| 377 | n = -n; |
| 378 | } |
| 379 | p_h -= t; |
| 380 | } |
| 381 | |
| 382 | let t: f64 = with_set_low_word(p_l + p_h, 0); |
| 383 | let u: f64 = t * LG2_H; |
| 384 | let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; |
| 385 | let mut z: f64 = u + v; |
| 386 | let w: f64 = v - (z - u); |
| 387 | let t: f64 = z * z; |
| 388 | let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); |
| 389 | let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); |
| 390 | z = 1.0 - (r - z); |
| 391 | j = get_high_word(z) as i32; |
| 392 | j += n << 20; |
| 393 | |
| 394 | if (j >> 20) <= 0 { |
| 395 | /* subnormal output */ |
| 396 | z = scalbn(z, n); |
| 397 | } else { |
| 398 | z = with_set_high_word(z, j as u32); |
| 399 | } |
| 400 | |
| 401 | s * z |
| 402 | } |
| 403 | |
| 404 | #[cfg (test)] |
| 405 | mod tests { |
| 406 | extern crate core; |
| 407 | |
| 408 | use self::core::f64::consts::{E, PI}; |
| 409 | use super::pow; |
| 410 | |
| 411 | const POS_ZERO: &[f64] = &[0.0]; |
| 412 | const NEG_ZERO: &[f64] = &[-0.0]; |
| 413 | const POS_ONE: &[f64] = &[1.0]; |
| 414 | const NEG_ONE: &[f64] = &[-1.0]; |
| 415 | const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI]; |
| 416 | const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI]; |
| 417 | const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON]; |
| 418 | const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON]; |
| 419 | const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX]; |
| 420 | const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0]; |
| 421 | const POS_ODDS: &[f64] = &[3.0, 7.0]; |
| 422 | const NEG_ODDS: &[f64] = &[-7.0, -3.0]; |
| 423 | const NANS: &[f64] = &[f64::NAN]; |
| 424 | const POS_INF: &[f64] = &[f64::INFINITY]; |
| 425 | const NEG_INF: &[f64] = &[f64::NEG_INFINITY]; |
| 426 | |
| 427 | const ALL: &[&[f64]] = &[ |
| 428 | POS_ZERO, |
| 429 | NEG_ZERO, |
| 430 | NANS, |
| 431 | NEG_SMALL_FLOATS, |
| 432 | POS_SMALL_FLOATS, |
| 433 | NEG_FLOATS, |
| 434 | POS_FLOATS, |
| 435 | NEG_EVENS, |
| 436 | POS_EVENS, |
| 437 | NEG_ODDS, |
| 438 | POS_ODDS, |
| 439 | NEG_INF, |
| 440 | POS_INF, |
| 441 | NEG_ONE, |
| 442 | POS_ONE, |
| 443 | ]; |
| 444 | const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF]; |
| 445 | const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF]; |
| 446 | |
| 447 | fn pow_test(base: f64, exponent: f64, expected: f64) { |
| 448 | let res = pow(base, exponent); |
| 449 | assert!( |
| 450 | if expected.is_nan() { |
| 451 | res.is_nan() |
| 452 | } else { |
| 453 | pow(base, exponent) == expected |
| 454 | }, |
| 455 | "{} ** {} was {} instead of {}" , |
| 456 | base, |
| 457 | exponent, |
| 458 | res, |
| 459 | expected |
| 460 | ); |
| 461 | } |
| 462 | |
| 463 | fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) { |
| 464 | sets.iter() |
| 465 | .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected))); |
| 466 | } |
| 467 | |
| 468 | fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) { |
| 469 | sets.iter() |
| 470 | .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected))); |
| 471 | } |
| 472 | |
| 473 | fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) { |
| 474 | sets.iter().for_each(|s| { |
| 475 | s.iter().for_each(|val| { |
| 476 | let exp = expected(*val); |
| 477 | let res = computed(*val); |
| 478 | |
| 479 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
| 480 | let exp = force_eval!(exp); |
| 481 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
| 482 | let res = force_eval!(res); |
| 483 | assert!( |
| 484 | if exp.is_nan() { |
| 485 | res.is_nan() |
| 486 | } else { |
| 487 | exp == res |
| 488 | }, |
| 489 | "test for {} was {} instead of {}" , |
| 490 | val, |
| 491 | res, |
| 492 | exp |
| 493 | ); |
| 494 | }) |
| 495 | }); |
| 496 | } |
| 497 | |
| 498 | #[test ] |
| 499 | fn zero_as_exponent() { |
| 500 | test_sets_as_base(ALL, 0.0, 1.0); |
| 501 | test_sets_as_base(ALL, -0.0, 1.0); |
| 502 | } |
| 503 | |
| 504 | #[test ] |
| 505 | fn one_as_base() { |
| 506 | test_sets_as_exponent(1.0, ALL, 1.0); |
| 507 | } |
| 508 | |
| 509 | #[test ] |
| 510 | fn nan_inputs() { |
| 511 | // NAN as the base: |
| 512 | // (f64::NAN ^ anything *but 0* should be f64::NAN) |
| 513 | test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN); |
| 514 | |
| 515 | // f64::NAN as the exponent: |
| 516 | // (anything *but 1* ^ f64::NAN should be f64::NAN) |
| 517 | test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN); |
| 518 | } |
| 519 | |
| 520 | #[test ] |
| 521 | fn infinity_as_base() { |
| 522 | // Positive Infinity as the base: |
| 523 | // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity) |
| 524 | test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY); |
| 525 | |
| 526 | // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0) |
| 527 | test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0); |
| 528 | |
| 529 | // Negative Infinity as the base: |
| 530 | // (-Infinity ^ positive odd ints should be -Infinity) |
| 531 | test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY); |
| 532 | |
| 533 | // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything)) |
| 534 | // We can lump in pos/neg odd ints here because they don't seem to |
| 535 | // cause panics (div by zero) in release mode (I think). |
| 536 | test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| { |
| 537 | pow(-0.0, -v) |
| 538 | }); |
| 539 | } |
| 540 | |
| 541 | #[test ] |
| 542 | fn infinity_as_exponent() { |
| 543 | // Positive/Negative base greater than 1: |
| 544 | // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base) |
| 545 | test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY); |
| 546 | |
| 547 | // (pos/neg > 1 ^ -Infinity should be 0.0) |
| 548 | test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0); |
| 549 | |
| 550 | // Positive/Negative base less than 1: |
| 551 | let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS]; |
| 552 | |
| 553 | // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base) |
| 554 | test_sets_as_base(base_below_one, f64::INFINITY, 0.0); |
| 555 | |
| 556 | // (pos/neg < 1 ^ -Infinity should be Infinity) |
| 557 | test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY); |
| 558 | |
| 559 | // Positive/Negative 1 as the base: |
| 560 | // (pos/neg 1 ^ Infinity should be 1) |
| 561 | test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0); |
| 562 | |
| 563 | // (pos/neg 1 ^ -Infinity should be 1) |
| 564 | test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0); |
| 565 | } |
| 566 | |
| 567 | #[test ] |
| 568 | fn zero_as_base() { |
| 569 | // Positive Zero as the base: |
| 570 | // (+0 ^ anything positive but 0 and f64::NAN should be +0) |
| 571 | test_sets_as_exponent(0.0, &POS[1..], 0.0); |
| 572 | |
| 573 | // (+0 ^ anything negative but 0 and f64::NAN should be Infinity) |
| 574 | // (this should panic because we're dividing by zero) |
| 575 | test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY); |
| 576 | |
| 577 | // Negative Zero as the base: |
| 578 | // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0) |
| 579 | test_sets_as_exponent(-0.0, &POS[3..], 0.0); |
| 580 | |
| 581 | // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity) |
| 582 | // (should panic because of divide by zero) |
| 583 | test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY); |
| 584 | |
| 585 | // (-0 ^ positive odd ints should be -0) |
| 586 | test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0); |
| 587 | |
| 588 | // (-0 ^ negative odd ints should be -Infinity) |
| 589 | // (should panic because of divide by zero) |
| 590 | test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY); |
| 591 | } |
| 592 | |
| 593 | #[test ] |
| 594 | fn special_cases() { |
| 595 | // One as the exponent: |
| 596 | // (anything ^ 1 should be anything - i.e. the base) |
| 597 | test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v); |
| 598 | |
| 599 | // Negative One as the exponent: |
| 600 | // (anything ^ -1 should be 1/anything) |
| 601 | test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v); |
| 602 | |
| 603 | // Factoring -1 out: |
| 604 | // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer)) |
| 605 | [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS] |
| 606 | .iter() |
| 607 | .for_each(|int_set| { |
| 608 | int_set.iter().for_each(|int| { |
| 609 | test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| { |
| 610 | pow(-1.0, *int) * pow(v, *int) |
| 611 | }); |
| 612 | }) |
| 613 | }); |
| 614 | |
| 615 | // Negative base (imaginary results): |
| 616 | // (-anything except 0 and Infinity ^ non-integer should be NAN) |
| 617 | NEG[1..(NEG.len() - 1)].iter().for_each(|set| { |
| 618 | set.iter().for_each(|val| { |
| 619 | test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN); |
| 620 | }) |
| 621 | }); |
| 622 | } |
| 623 | |
| 624 | #[test ] |
| 625 | fn normal_cases() { |
| 626 | assert_eq!(pow(2.0, 20.0), (1 << 20) as f64); |
| 627 | assert_eq!(pow(-1.0, 9.0), -1.0); |
| 628 | assert!(pow(-1.0, 2.2).is_nan()); |
| 629 | assert!(pow(-1.0, -1.14).is_nan()); |
| 630 | } |
| 631 | } |
| 632 | |