1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ |
2 | /* |
3 | * ==================================================== |
4 | * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
5 | * |
6 | * Permission to use, copy, modify, and distribute this |
7 | * software is freely granted, provided that this notice |
8 | * is preserved. |
9 | * ==================================================== |
10 | */ |
11 | |
12 | // pow(x,y) return x**y |
13 | // |
14 | // n |
15 | // Method: Let x = 2 * (1+f) |
16 | // 1. Compute and return log2(x) in two pieces: |
17 | // log2(x) = w1 + w2, |
18 | // where w1 has 53-24 = 29 bit trailing zeros. |
19 | // 2. Perform y*log2(x) = n+y' by simulating multi-precision |
20 | // arithmetic, where |y'|<=0.5. |
21 | // 3. Return x**y = 2**n*exp(y'*log2) |
22 | // |
23 | // Special cases: |
24 | // 1. (anything) ** 0 is 1 |
25 | // 2. 1 ** (anything) is 1 |
26 | // 3. (anything except 1) ** NAN is NAN |
27 | // 4. NAN ** (anything except 0) is NAN |
28 | // 5. +-(|x| > 1) ** +INF is +INF |
29 | // 6. +-(|x| > 1) ** -INF is +0 |
30 | // 7. +-(|x| < 1) ** +INF is +0 |
31 | // 8. +-(|x| < 1) ** -INF is +INF |
32 | // 9. -1 ** +-INF is 1 |
33 | // 10. +0 ** (+anything except 0, NAN) is +0 |
34 | // 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
35 | // 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero |
36 | // 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero |
37 | // 14. -0 ** (+odd integer) is -0 |
38 | // 15. -0 ** (-odd integer) is -INF, raise divbyzero |
39 | // 16. +INF ** (+anything except 0,NAN) is +INF |
40 | // 17. +INF ** (-anything except 0,NAN) is +0 |
41 | // 18. -INF ** (+odd integer) is -INF |
42 | // 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) |
43 | // 20. (anything) ** 1 is (anything) |
44 | // 21. (anything) ** -1 is 1/(anything) |
45 | // 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
46 | // 23. (-anything except 0 and inf) ** (non-integer) is NAN |
47 | // |
48 | // Accuracy: |
49 | // pow(x,y) returns x**y nearly rounded. In particular |
50 | // pow(integer,integer) |
51 | // always returns the correct integer provided it is |
52 | // representable. |
53 | // |
54 | // Constants : |
55 | // The hexadecimal values are the intended ones for the following |
56 | // constants. The decimal values may be used, provided that the |
57 | // compiler will convert from decimal to binary accurately enough |
58 | // to produce the hexadecimal values shown. |
59 | // |
60 | use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word}; |
61 | |
62 | const BP: [f64; 2] = [1.0, 1.5]; |
63 | const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ |
64 | const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ |
65 | const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ |
66 | const HUGE: f64 = 1.0e300; |
67 | const TINY: f64 = 1.0e-300; |
68 | |
69 | // poly coefs for (3/2)*(log(x)-2s-2/3*s**3: |
70 | const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ |
71 | const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ |
72 | const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ |
73 | const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ |
74 | const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ |
75 | const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ |
76 | const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ |
77 | const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ |
78 | const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ |
79 | const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ |
80 | const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ |
81 | const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ |
82 | const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ |
83 | const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ |
84 | const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ |
85 | const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ |
86 | const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ |
87 | const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ |
88 | const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ |
89 | const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ |
90 | const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ |
91 | |
92 | /// Returns `x` to the power of `y` (f64). |
93 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
94 | pub fn pow(x: f64, y: f64) -> f64 { |
95 | let t1: f64; |
96 | let t2: f64; |
97 | |
98 | let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); |
99 | let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); |
100 | |
101 | let mut ix: i32 = hx & 0x7fffffff_i32; |
102 | let iy: i32 = hy & 0x7fffffff_i32; |
103 | |
104 | /* x**0 = 1, even if x is NaN */ |
105 | if ((iy as u32) | ly) == 0 { |
106 | return 1.0; |
107 | } |
108 | |
109 | /* 1**y = 1, even if y is NaN */ |
110 | if hx == 0x3ff00000 && lx == 0 { |
111 | return 1.0; |
112 | } |
113 | |
114 | /* NaN if either arg is NaN */ |
115 | if ix > 0x7ff00000 |
116 | || (ix == 0x7ff00000 && lx != 0) |
117 | || iy > 0x7ff00000 |
118 | || (iy == 0x7ff00000 && ly != 0) |
119 | { |
120 | return x + y; |
121 | } |
122 | |
123 | /* determine if y is an odd int when x < 0 |
124 | * yisint = 0 ... y is not an integer |
125 | * yisint = 1 ... y is an odd int |
126 | * yisint = 2 ... y is an even int |
127 | */ |
128 | let mut yisint: i32 = 0; |
129 | let mut k: i32; |
130 | let mut j: i32; |
131 | if hx < 0 { |
132 | if iy >= 0x43400000 { |
133 | yisint = 2; /* even integer y */ |
134 | } else if iy >= 0x3ff00000 { |
135 | k = (iy >> 20) - 0x3ff; /* exponent */ |
136 | |
137 | if k > 20 { |
138 | j = (ly >> (52 - k)) as i32; |
139 | |
140 | if (j << (52 - k)) == (ly as i32) { |
141 | yisint = 2 - (j & 1); |
142 | } |
143 | } else if ly == 0 { |
144 | j = iy >> (20 - k); |
145 | |
146 | if (j << (20 - k)) == iy { |
147 | yisint = 2 - (j & 1); |
148 | } |
149 | } |
150 | } |
151 | } |
152 | |
153 | if ly == 0 { |
154 | /* special value of y */ |
155 | if iy == 0x7ff00000 { |
156 | /* y is +-inf */ |
157 | |
158 | return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { |
159 | /* (-1)**+-inf is 1 */ |
160 | 1.0 |
161 | } else if ix >= 0x3ff00000 { |
162 | /* (|x|>1)**+-inf = inf,0 */ |
163 | if hy >= 0 { y } else { 0.0 } |
164 | } else { |
165 | /* (|x|<1)**+-inf = 0,inf */ |
166 | if hy >= 0 { 0.0 } else { -y } |
167 | }; |
168 | } |
169 | |
170 | if iy == 0x3ff00000 { |
171 | /* y is +-1 */ |
172 | return if hy >= 0 { x } else { 1.0 / x }; |
173 | } |
174 | |
175 | if hy == 0x40000000 { |
176 | /* y is 2 */ |
177 | return x * x; |
178 | } |
179 | |
180 | if hy == 0x3fe00000 { |
181 | /* y is 0.5 */ |
182 | if hx >= 0 { |
183 | /* x >= +0 */ |
184 | return sqrt(x); |
185 | } |
186 | } |
187 | } |
188 | |
189 | let mut ax: f64 = fabs(x); |
190 | if lx == 0 { |
191 | /* special value of x */ |
192 | if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { |
193 | /* x is +-0,+-inf,+-1 */ |
194 | let mut z: f64 = ax; |
195 | |
196 | if hy < 0 { |
197 | /* z = (1/|x|) */ |
198 | z = 1.0 / z; |
199 | } |
200 | |
201 | if hx < 0 { |
202 | if ((ix - 0x3ff00000) | yisint) == 0 { |
203 | z = (z - z) / (z - z); /* (-1)**non-int is NaN */ |
204 | } else if yisint == 1 { |
205 | z = -z; /* (x<0)**odd = -(|x|**odd) */ |
206 | } |
207 | } |
208 | |
209 | return z; |
210 | } |
211 | } |
212 | |
213 | let mut s: f64 = 1.0; /* sign of result */ |
214 | if hx < 0 { |
215 | if yisint == 0 { |
216 | /* (x<0)**(non-int) is NaN */ |
217 | return (x - x) / (x - x); |
218 | } |
219 | |
220 | if yisint == 1 { |
221 | /* (x<0)**(odd int) */ |
222 | s = -1.0; |
223 | } |
224 | } |
225 | |
226 | /* |y| is HUGE */ |
227 | if iy > 0x41e00000 { |
228 | /* if |y| > 2**31 */ |
229 | if iy > 0x43f00000 { |
230 | /* if |y| > 2**64, must o/uflow */ |
231 | if ix <= 0x3fefffff { |
232 | return if hy < 0 { HUGE * HUGE } else { TINY * TINY }; |
233 | } |
234 | |
235 | if ix >= 0x3ff00000 { |
236 | return if hy > 0 { HUGE * HUGE } else { TINY * TINY }; |
237 | } |
238 | } |
239 | |
240 | /* over/underflow if x is not close to one */ |
241 | if ix < 0x3fefffff { |
242 | return if hy < 0 { |
243 | s * HUGE * HUGE |
244 | } else { |
245 | s * TINY * TINY |
246 | }; |
247 | } |
248 | if ix > 0x3ff00000 { |
249 | return if hy > 0 { |
250 | s * HUGE * HUGE |
251 | } else { |
252 | s * TINY * TINY |
253 | }; |
254 | } |
255 | |
256 | /* now |1-x| is TINY <= 2**-20, suffice to compute |
257 | log(x) by x-x^2/2+x^3/3-x^4/4 */ |
258 | let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ |
259 | let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); |
260 | let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ |
261 | let v: f64 = t * IVLN2_L - w * IVLN2; |
262 | t1 = with_set_low_word(u + v, 0); |
263 | t2 = v - (t1 - u); |
264 | } else { |
265 | // double ss,s2,s_h,s_l,t_h,t_l; |
266 | let mut n: i32 = 0; |
267 | |
268 | if ix < 0x00100000 { |
269 | /* take care subnormal number */ |
270 | ax *= TWO53; |
271 | n -= 53; |
272 | ix = get_high_word(ax) as i32; |
273 | } |
274 | |
275 | n += (ix >> 20) - 0x3ff; |
276 | j = ix & 0x000fffff; |
277 | |
278 | /* determine interval */ |
279 | let k: i32; |
280 | ix = j | 0x3ff00000; /* normalize ix */ |
281 | if j <= 0x3988E { |
282 | /* |x|<sqrt(3/2) */ |
283 | k = 0; |
284 | } else if j < 0xBB67A { |
285 | /* |x|<sqrt(3) */ |
286 | k = 1; |
287 | } else { |
288 | k = 0; |
289 | n += 1; |
290 | ix -= 0x00100000; |
291 | } |
292 | ax = with_set_high_word(ax, ix as u32); |
293 | |
294 | /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
295 | let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ |
296 | let v: f64 = 1.0 / (ax + i!(BP, k as usize)); |
297 | let ss: f64 = u * v; |
298 | let s_h = with_set_low_word(ss, 0); |
299 | |
300 | /* t_h=ax+bp[k] High */ |
301 | let t_h: f64 = with_set_high_word( |
302 | 0.0, |
303 | ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), |
304 | ); |
305 | let t_l: f64 = ax - (t_h - i!(BP, k as usize)); |
306 | let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); |
307 | |
308 | /* compute log(ax) */ |
309 | let s2: f64 = ss * ss; |
310 | let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); |
311 | r += s_l * (s_h + ss); |
312 | let s2: f64 = s_h * s_h; |
313 | let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); |
314 | let t_l: f64 = r - ((t_h - 3.0) - s2); |
315 | |
316 | /* u+v = ss*(1+...) */ |
317 | let u: f64 = s_h * t_h; |
318 | let v: f64 = s_l * t_h + t_l * ss; |
319 | |
320 | /* 2/(3log2)*(ss+...) */ |
321 | let p_h: f64 = with_set_low_word(u + v, 0); |
322 | let p_l = v - (p_h - u); |
323 | let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ |
324 | let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); |
325 | |
326 | /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
327 | let t: f64 = n as f64; |
328 | t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0); |
329 | t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); |
330 | } |
331 | |
332 | /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
333 | let y1: f64 = with_set_low_word(y, 0); |
334 | let p_l: f64 = (y - y1) * t1 + y * t2; |
335 | let mut p_h: f64 = y1 * t1; |
336 | let z: f64 = p_l + p_h; |
337 | let mut j: i32 = (z.to_bits() >> 32) as i32; |
338 | let i: i32 = z.to_bits() as i32; |
339 | // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); |
340 | |
341 | if j >= 0x40900000 { |
342 | /* z >= 1024 */ |
343 | if (j - 0x40900000) | i != 0 { |
344 | /* if z > 1024 */ |
345 | return s * HUGE * HUGE; /* overflow */ |
346 | } |
347 | |
348 | if p_l + OVT > z - p_h { |
349 | return s * HUGE * HUGE; /* overflow */ |
350 | } |
351 | } else if (j & 0x7fffffff) >= 0x4090cc00 { |
352 | /* z <= -1075 */ |
353 | // FIXME: instead of abs(j) use unsigned j |
354 | |
355 | if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { |
356 | /* z < -1075 */ |
357 | return s * TINY * TINY; /* underflow */ |
358 | } |
359 | |
360 | if p_l <= z - p_h { |
361 | return s * TINY * TINY; /* underflow */ |
362 | } |
363 | } |
364 | |
365 | /* compute 2**(p_h+p_l) */ |
366 | let i: i32 = j & 0x7fffffff_i32; |
367 | k = (i >> 20) - 0x3ff; |
368 | let mut n: i32 = 0; |
369 | |
370 | if i > 0x3fe00000 { |
371 | /* if |z| > 0.5, set n = [z+0.5] */ |
372 | n = j + (0x00100000 >> (k + 1)); |
373 | k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ |
374 | let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); |
375 | n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); |
376 | if j < 0 { |
377 | n = -n; |
378 | } |
379 | p_h -= t; |
380 | } |
381 | |
382 | let t: f64 = with_set_low_word(p_l + p_h, 0); |
383 | let u: f64 = t * LG2_H; |
384 | let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; |
385 | let mut z: f64 = u + v; |
386 | let w: f64 = v - (z - u); |
387 | let t: f64 = z * z; |
388 | let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); |
389 | let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); |
390 | z = 1.0 - (r - z); |
391 | j = get_high_word(z) as i32; |
392 | j += n << 20; |
393 | |
394 | if (j >> 20) <= 0 { |
395 | /* subnormal output */ |
396 | z = scalbn(z, n); |
397 | } else { |
398 | z = with_set_high_word(z, j as u32); |
399 | } |
400 | |
401 | s * z |
402 | } |
403 | |
404 | #[cfg (test)] |
405 | mod tests { |
406 | extern crate core; |
407 | |
408 | use self::core::f64::consts::{E, PI}; |
409 | use super::pow; |
410 | |
411 | const POS_ZERO: &[f64] = &[0.0]; |
412 | const NEG_ZERO: &[f64] = &[-0.0]; |
413 | const POS_ONE: &[f64] = &[1.0]; |
414 | const NEG_ONE: &[f64] = &[-1.0]; |
415 | const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI]; |
416 | const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI]; |
417 | const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON]; |
418 | const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON]; |
419 | const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX]; |
420 | const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0]; |
421 | const POS_ODDS: &[f64] = &[3.0, 7.0]; |
422 | const NEG_ODDS: &[f64] = &[-7.0, -3.0]; |
423 | const NANS: &[f64] = &[f64::NAN]; |
424 | const POS_INF: &[f64] = &[f64::INFINITY]; |
425 | const NEG_INF: &[f64] = &[f64::NEG_INFINITY]; |
426 | |
427 | const ALL: &[&[f64]] = &[ |
428 | POS_ZERO, |
429 | NEG_ZERO, |
430 | NANS, |
431 | NEG_SMALL_FLOATS, |
432 | POS_SMALL_FLOATS, |
433 | NEG_FLOATS, |
434 | POS_FLOATS, |
435 | NEG_EVENS, |
436 | POS_EVENS, |
437 | NEG_ODDS, |
438 | POS_ODDS, |
439 | NEG_INF, |
440 | POS_INF, |
441 | NEG_ONE, |
442 | POS_ONE, |
443 | ]; |
444 | const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF]; |
445 | const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF]; |
446 | |
447 | fn pow_test(base: f64, exponent: f64, expected: f64) { |
448 | let res = pow(base, exponent); |
449 | assert!( |
450 | if expected.is_nan() { |
451 | res.is_nan() |
452 | } else { |
453 | pow(base, exponent) == expected |
454 | }, |
455 | "{} ** {} was {} instead of {}" , |
456 | base, |
457 | exponent, |
458 | res, |
459 | expected |
460 | ); |
461 | } |
462 | |
463 | fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) { |
464 | sets.iter() |
465 | .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected))); |
466 | } |
467 | |
468 | fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) { |
469 | sets.iter() |
470 | .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected))); |
471 | } |
472 | |
473 | fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) { |
474 | sets.iter().for_each(|s| { |
475 | s.iter().for_each(|val| { |
476 | let exp = expected(*val); |
477 | let res = computed(*val); |
478 | |
479 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
480 | let exp = force_eval!(exp); |
481 | #[cfg (all(target_arch = "x86" , not(target_feature = "sse2" )))] |
482 | let res = force_eval!(res); |
483 | assert!( |
484 | if exp.is_nan() { |
485 | res.is_nan() |
486 | } else { |
487 | exp == res |
488 | }, |
489 | "test for {} was {} instead of {}" , |
490 | val, |
491 | res, |
492 | exp |
493 | ); |
494 | }) |
495 | }); |
496 | } |
497 | |
498 | #[test ] |
499 | fn zero_as_exponent() { |
500 | test_sets_as_base(ALL, 0.0, 1.0); |
501 | test_sets_as_base(ALL, -0.0, 1.0); |
502 | } |
503 | |
504 | #[test ] |
505 | fn one_as_base() { |
506 | test_sets_as_exponent(1.0, ALL, 1.0); |
507 | } |
508 | |
509 | #[test ] |
510 | fn nan_inputs() { |
511 | // NAN as the base: |
512 | // (f64::NAN ^ anything *but 0* should be f64::NAN) |
513 | test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN); |
514 | |
515 | // f64::NAN as the exponent: |
516 | // (anything *but 1* ^ f64::NAN should be f64::NAN) |
517 | test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN); |
518 | } |
519 | |
520 | #[test ] |
521 | fn infinity_as_base() { |
522 | // Positive Infinity as the base: |
523 | // (+Infinity ^ positive anything but 0 and f64::NAN should be +Infinity) |
524 | test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY); |
525 | |
526 | // (+Infinity ^ negative anything except 0 and f64::NAN should be 0.0) |
527 | test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0); |
528 | |
529 | // Negative Infinity as the base: |
530 | // (-Infinity ^ positive odd ints should be -Infinity) |
531 | test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY); |
532 | |
533 | // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything)) |
534 | // We can lump in pos/neg odd ints here because they don't seem to |
535 | // cause panics (div by zero) in release mode (I think). |
536 | test_sets(ALL, &|v: f64| pow(f64::NEG_INFINITY, v), &|v: f64| { |
537 | pow(-0.0, -v) |
538 | }); |
539 | } |
540 | |
541 | #[test ] |
542 | fn infinity_as_exponent() { |
543 | // Positive/Negative base greater than 1: |
544 | // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes f64::NAN as the base) |
545 | test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY); |
546 | |
547 | // (pos/neg > 1 ^ -Infinity should be 0.0) |
548 | test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0); |
549 | |
550 | // Positive/Negative base less than 1: |
551 | let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS]; |
552 | |
553 | // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes f64::NAN as the base) |
554 | test_sets_as_base(base_below_one, f64::INFINITY, 0.0); |
555 | |
556 | // (pos/neg < 1 ^ -Infinity should be Infinity) |
557 | test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY); |
558 | |
559 | // Positive/Negative 1 as the base: |
560 | // (pos/neg 1 ^ Infinity should be 1) |
561 | test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0); |
562 | |
563 | // (pos/neg 1 ^ -Infinity should be 1) |
564 | test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0); |
565 | } |
566 | |
567 | #[test ] |
568 | fn zero_as_base() { |
569 | // Positive Zero as the base: |
570 | // (+0 ^ anything positive but 0 and f64::NAN should be +0) |
571 | test_sets_as_exponent(0.0, &POS[1..], 0.0); |
572 | |
573 | // (+0 ^ anything negative but 0 and f64::NAN should be Infinity) |
574 | // (this should panic because we're dividing by zero) |
575 | test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY); |
576 | |
577 | // Negative Zero as the base: |
578 | // (-0 ^ anything positive but 0, f64::NAN, and odd ints should be +0) |
579 | test_sets_as_exponent(-0.0, &POS[3..], 0.0); |
580 | |
581 | // (-0 ^ anything negative but 0, f64::NAN, and odd ints should be Infinity) |
582 | // (should panic because of divide by zero) |
583 | test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY); |
584 | |
585 | // (-0 ^ positive odd ints should be -0) |
586 | test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0); |
587 | |
588 | // (-0 ^ negative odd ints should be -Infinity) |
589 | // (should panic because of divide by zero) |
590 | test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY); |
591 | } |
592 | |
593 | #[test ] |
594 | fn special_cases() { |
595 | // One as the exponent: |
596 | // (anything ^ 1 should be anything - i.e. the base) |
597 | test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v); |
598 | |
599 | // Negative One as the exponent: |
600 | // (anything ^ -1 should be 1/anything) |
601 | test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v); |
602 | |
603 | // Factoring -1 out: |
604 | // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer)) |
605 | [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS] |
606 | .iter() |
607 | .for_each(|int_set| { |
608 | int_set.iter().for_each(|int| { |
609 | test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| { |
610 | pow(-1.0, *int) * pow(v, *int) |
611 | }); |
612 | }) |
613 | }); |
614 | |
615 | // Negative base (imaginary results): |
616 | // (-anything except 0 and Infinity ^ non-integer should be NAN) |
617 | NEG[1..(NEG.len() - 1)].iter().for_each(|set| { |
618 | set.iter().for_each(|val| { |
619 | test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| f64::NAN); |
620 | }) |
621 | }); |
622 | } |
623 | |
624 | #[test ] |
625 | fn normal_cases() { |
626 | assert_eq!(pow(2.0, 20.0), (1 << 20) as f64); |
627 | assert_eq!(pow(-1.0, 9.0), -1.0); |
628 | assert!(pow(-1.0, 2.2).is_nan()); |
629 | assert!(pow(-1.0, -1.14).is_nan()); |
630 | } |
631 | } |
632 | |