| 1 | use crate::scalar::{Float, Scalar}; |
| 2 | use crate::{vector, Point, Vector}; |
| 3 | use arrayvec::ArrayVec; |
| 4 | |
| 5 | #[inline ] |
| 6 | pub fn min_max<S: Float>(a: S, b: S) -> (S, S) { |
| 7 | if a < b { |
| 8 | (a, b) |
| 9 | } else { |
| 10 | (b, a) |
| 11 | } |
| 12 | } |
| 13 | |
| 14 | #[inline ] |
| 15 | pub fn tangent<S: Float>(v: Vector<S>) -> Vector<S> { |
| 16 | vector(-v.y, y:v.x) |
| 17 | } |
| 18 | |
| 19 | #[inline ] |
| 20 | pub fn normalized_tangent<S: Scalar>(v: Vector<S>) -> Vector<S> { |
| 21 | tangent(v).normalize() |
| 22 | } |
| 23 | |
| 24 | /// Angle between vectors v1 and v2 (oriented clockwise assuming y points downwards). |
| 25 | /// The result is a number between `0` and `2 * PI`. |
| 26 | /// |
| 27 | /// ex: `directed_angle([0,1], [1,0]) = 3/2 Pi rad` |
| 28 | /// |
| 29 | /// ```text |
| 30 | /// x __ |
| 31 | /// 0--> / \ |
| 32 | /// y| | x--> v2 |
| 33 | /// v \ |v1 |
| 34 | /// v |
| 35 | /// ``` |
| 36 | /// |
| 37 | /// Or, assuming y points upwards: |
| 38 | /// `directed_angle([0,-1], [1,0]) = 1/2 Pi rad` |
| 39 | /// |
| 40 | /// ```text |
| 41 | /// ^ v2 |
| 42 | /// y| x--> |
| 43 | /// 0--> v1 | / |
| 44 | /// x v- |
| 45 | /// ``` |
| 46 | /// |
| 47 | #[inline ] |
| 48 | pub fn directed_angle<S: Scalar>(v1: Vector<S>, v2: Vector<S>) -> S { |
| 49 | let angle: S = S::fast_atan2(v2.y, v2.x) - S::fast_atan2(v1.y, v1.x); |
| 50 | |
| 51 | if angle < S::ZERO { |
| 52 | angle + S::TWO * S::PI() |
| 53 | } else { |
| 54 | angle |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | pub fn directed_angle2<S: Scalar>(center: Point<S>, a: Point<S>, b: Point<S>) -> S { |
| 59 | directed_angle(v1:a - center, v2:b - center) |
| 60 | } |
| 61 | |
| 62 | pub fn cubic_polynomial_roots<S: Scalar>(a: S, b: S, c: S, d: S) -> ArrayVec<S, 3> { |
| 63 | let mut result = ArrayVec::new(); |
| 64 | |
| 65 | let m = a.abs().max(b.abs()).max(c.abs()).max(d.abs()); |
| 66 | let epsilon = S::epsilon_for(m); |
| 67 | |
| 68 | if S::abs(a) < epsilon { |
| 69 | if S::abs(b) < epsilon { |
| 70 | if S::abs(c) < epsilon { |
| 71 | return result; |
| 72 | } |
| 73 | // linear equation |
| 74 | result.push(-d / c); |
| 75 | return result; |
| 76 | } |
| 77 | // quadratic equation |
| 78 | let delta = c * c - S::FOUR * b * d; |
| 79 | if delta > S::ZERO { |
| 80 | let sqrt_delta = S::sqrt(delta); |
| 81 | result.push((-c - sqrt_delta) / (S::TWO * b)); |
| 82 | result.push((-c + sqrt_delta) / (S::TWO * b)); |
| 83 | } else if S::abs(delta) < epsilon { |
| 84 | result.push(-c / (S::TWO * b)); |
| 85 | } |
| 86 | return result; |
| 87 | } |
| 88 | |
| 89 | let frac_1_3 = S::ONE / S::THREE; |
| 90 | |
| 91 | let bn = b / a; |
| 92 | let cn = c / a; |
| 93 | let dn = d / a; |
| 94 | |
| 95 | let delta0 = (S::THREE * cn - bn * bn) / S::NINE; |
| 96 | let delta1 = (S::NINE * bn * cn - S::value(27.0) * dn - S::TWO * bn * bn * bn) / S::value(54.0); |
| 97 | let delta_01 = delta0 * delta0 * delta0 + delta1 * delta1; |
| 98 | |
| 99 | if delta_01 >= S::ZERO { |
| 100 | let delta_p_sqrt = delta1 + S::sqrt(delta_01); |
| 101 | let delta_m_sqrt = delta1 - S::sqrt(delta_01); |
| 102 | |
| 103 | let s = delta_p_sqrt.signum() * S::abs(delta_p_sqrt).powf(frac_1_3); |
| 104 | let t = delta_m_sqrt.signum() * S::abs(delta_m_sqrt).powf(frac_1_3); |
| 105 | |
| 106 | result.push(-bn * frac_1_3 + (s + t)); |
| 107 | |
| 108 | // Don't add the repeated root when s + t == 0. |
| 109 | if S::abs(s - t) < epsilon && S::abs(s + t) >= epsilon { |
| 110 | result.push(-bn * frac_1_3 - (s + t) / S::TWO); |
| 111 | } |
| 112 | } else { |
| 113 | let theta = S::acos(delta1 / S::sqrt(-delta0 * delta0 * delta0)); |
| 114 | let two_sqrt_delta0 = S::TWO * S::sqrt(-delta0); |
| 115 | result.push(two_sqrt_delta0 * Float::cos(theta * frac_1_3) - bn * frac_1_3); |
| 116 | result.push( |
| 117 | two_sqrt_delta0 * Float::cos((theta + S::TWO * S::PI()) * frac_1_3) - bn * frac_1_3, |
| 118 | ); |
| 119 | result.push( |
| 120 | two_sqrt_delta0 * Float::cos((theta + S::FOUR * S::PI()) * frac_1_3) - bn * frac_1_3, |
| 121 | ); |
| 122 | } |
| 123 | |
| 124 | //result.sort(); |
| 125 | |
| 126 | result |
| 127 | } |
| 128 | |
| 129 | #[test ] |
| 130 | fn cubic_polynomial() { |
| 131 | fn assert_approx_eq(a: ArrayVec<f32, 3>, b: &[f32], epsilon: f32) { |
| 132 | for i in 0..a.len() { |
| 133 | if f32::abs(a[i] - b[i]) > epsilon { |
| 134 | std::println!("{a:?} != {b:?}" ); |
| 135 | } |
| 136 | assert!((a[i] - b[i]).abs() <= epsilon); |
| 137 | } |
| 138 | assert_eq!(a.len(), b.len()); |
| 139 | } |
| 140 | |
| 141 | assert_approx_eq( |
| 142 | cubic_polynomial_roots(2.0, -4.0, 2.0, 0.0), |
| 143 | &[0.0, 1.0], |
| 144 | 0.0000001, |
| 145 | ); |
| 146 | assert_approx_eq( |
| 147 | cubic_polynomial_roots(-1.0, 1.0, -1.0, 1.0), |
| 148 | &[1.0], |
| 149 | 0.000001, |
| 150 | ); |
| 151 | assert_approx_eq( |
| 152 | cubic_polynomial_roots(-2.0, 2.0, -1.0, 10.0), |
| 153 | &[2.0], |
| 154 | 0.00005, |
| 155 | ); |
| 156 | // (x - 1)^3, with a triple root, should only return one root. |
| 157 | assert_approx_eq( |
| 158 | cubic_polynomial_roots(1.0, -3.0, 3.0, -1.0), |
| 159 | &[1.0], |
| 160 | 0.00005, |
| 161 | ); |
| 162 | |
| 163 | // Quadratics. |
| 164 | assert_approx_eq( |
| 165 | cubic_polynomial_roots(0.0, 1.0, -5.0, -14.0), |
| 166 | &[-2.0, 7.0], |
| 167 | 0.00005, |
| 168 | ); |
| 169 | // (x - 3)^2, with a double root, should only return one root. |
| 170 | assert_approx_eq(cubic_polynomial_roots(0.0, 1.0, -6.0, 9.0), &[3.0], 0.00005); |
| 171 | |
| 172 | // Linear. |
| 173 | assert_approx_eq(cubic_polynomial_roots(0.0, 0.0, 2.0, 1.0), &[-0.5], 0.00005); |
| 174 | |
| 175 | // Constant. |
| 176 | assert_approx_eq(cubic_polynomial_roots(0.0, 0.0, 0.0, 0.0), &[], 0.00005); |
| 177 | } |
| 178 | |