| 1 | // Copyright 2013 The Servo Project Developers. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | use super::UnknownUnit; |
| 11 | use crate::approxeq::ApproxEq; |
| 12 | use crate::approxord::{max, min}; |
| 13 | use crate::length::Length; |
| 14 | use crate::num::*; |
| 15 | use crate::point::{point2, point3, Point2D, Point3D}; |
| 16 | use crate::scale::Scale; |
| 17 | use crate::size::{size2, size3, Size2D, Size3D}; |
| 18 | use crate::transform2d::Transform2D; |
| 19 | use crate::transform3d::Transform3D; |
| 20 | use crate::trig::Trig; |
| 21 | use crate::Angle; |
| 22 | use core::cmp::{Eq, PartialEq}; |
| 23 | use core::fmt; |
| 24 | use core::hash::Hash; |
| 25 | use core::iter::Sum; |
| 26 | use core::marker::PhantomData; |
| 27 | use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; |
| 28 | #[cfg (feature = "mint" )] |
| 29 | use mint; |
| 30 | use num_traits::real::Real; |
| 31 | use num_traits::{Float, NumCast, Signed}; |
| 32 | #[cfg (feature = "serde" )] |
| 33 | use serde; |
| 34 | |
| 35 | #[cfg (feature = "bytemuck" )] |
| 36 | use bytemuck::{Pod, Zeroable}; |
| 37 | |
| 38 | /// A 2d Vector tagged with a unit. |
| 39 | #[repr (C)] |
| 40 | pub struct Vector2D<T, U> { |
| 41 | /// The `x` (traditionally, horizontal) coordinate. |
| 42 | pub x: T, |
| 43 | /// The `y` (traditionally, vertical) coordinate. |
| 44 | pub y: T, |
| 45 | #[doc (hidden)] |
| 46 | pub _unit: PhantomData<U>, |
| 47 | } |
| 48 | |
| 49 | mint_vec!(Vector2D[x, y] = Vector2); |
| 50 | |
| 51 | impl<T: Copy, U> Copy for Vector2D<T, U> {} |
| 52 | |
| 53 | impl<T: Clone, U> Clone for Vector2D<T, U> { |
| 54 | fn clone(&self) -> Self { |
| 55 | Vector2D { |
| 56 | x: self.x.clone(), |
| 57 | y: self.y.clone(), |
| 58 | _unit: PhantomData, |
| 59 | } |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | #[cfg (feature = "serde" )] |
| 64 | impl<'de, T, U> serde::Deserialize<'de> for Vector2D<T, U> |
| 65 | where |
| 66 | T: serde::Deserialize<'de>, |
| 67 | { |
| 68 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| 69 | where |
| 70 | D: serde::Deserializer<'de>, |
| 71 | { |
| 72 | let (x, y) = serde::Deserialize::deserialize(deserializer)?; |
| 73 | Ok(Vector2D { |
| 74 | x, |
| 75 | y, |
| 76 | _unit: PhantomData, |
| 77 | }) |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | #[cfg (feature = "serde" )] |
| 82 | impl<T, U> serde::Serialize for Vector2D<T, U> |
| 83 | where |
| 84 | T: serde::Serialize, |
| 85 | { |
| 86 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| 87 | where |
| 88 | S: serde::Serializer, |
| 89 | { |
| 90 | (&self.x, &self.y).serialize(serializer) |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | #[cfg (feature = "arbitrary" )] |
| 95 | impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector2D<T, U> |
| 96 | where |
| 97 | T: arbitrary::Arbitrary<'a>, |
| 98 | { |
| 99 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
| 100 | let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; |
| 101 | Ok(Vector2D { |
| 102 | x, |
| 103 | y, |
| 104 | _unit: PhantomData, |
| 105 | }) |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | #[cfg (feature = "bytemuck" )] |
| 110 | unsafe impl<T: Zeroable, U> Zeroable for Vector2D<T, U> {} |
| 111 | |
| 112 | #[cfg (feature = "bytemuck" )] |
| 113 | unsafe impl<T: Pod, U: 'static> Pod for Vector2D<T, U> {} |
| 114 | |
| 115 | impl<T: Eq, U> Eq for Vector2D<T, U> {} |
| 116 | |
| 117 | impl<T: PartialEq, U> PartialEq for Vector2D<T, U> { |
| 118 | fn eq(&self, other: &Self) -> bool { |
| 119 | self.x == other.x && self.y == other.y |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | impl<T: Hash, U> Hash for Vector2D<T, U> { |
| 124 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
| 125 | self.x.hash(state:h); |
| 126 | self.y.hash(state:h); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | impl<T: Zero, U> Zero for Vector2D<T, U> { |
| 131 | /// Constructor, setting all components to zero. |
| 132 | #[inline ] |
| 133 | fn zero() -> Self { |
| 134 | Vector2D::new(x:Zero::zero(), y:Zero::zero()) |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | impl<T: fmt::Debug, U> fmt::Debug for Vector2D<T, U> { |
| 139 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 140 | f.debug_tuple(name:"" ).field(&self.x).field(&self.y).finish() |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | impl<T: Default, U> Default for Vector2D<T, U> { |
| 145 | fn default() -> Self { |
| 146 | Vector2D::new(x:Default::default(), y:Default::default()) |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | impl<T, U> Vector2D<T, U> { |
| 151 | /// Constructor, setting all components to zero. |
| 152 | #[inline ] |
| 153 | pub fn zero() -> Self |
| 154 | where |
| 155 | T: Zero, |
| 156 | { |
| 157 | Vector2D::new(Zero::zero(), Zero::zero()) |
| 158 | } |
| 159 | |
| 160 | /// Constructor, setting all components to one. |
| 161 | #[inline ] |
| 162 | pub fn one() -> Self |
| 163 | where |
| 164 | T: One, |
| 165 | { |
| 166 | Vector2D::new(One::one(), One::one()) |
| 167 | } |
| 168 | |
| 169 | /// Constructor taking scalar values directly. |
| 170 | #[inline ] |
| 171 | pub const fn new(x: T, y: T) -> Self { |
| 172 | Vector2D { |
| 173 | x, |
| 174 | y, |
| 175 | _unit: PhantomData, |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | /// Constructor setting all components to the same value. |
| 180 | #[inline ] |
| 181 | pub fn splat(v: T) -> Self |
| 182 | where |
| 183 | T: Clone, |
| 184 | { |
| 185 | Vector2D { |
| 186 | x: v.clone(), |
| 187 | y: v, |
| 188 | _unit: PhantomData, |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /// Constructor taking angle and length |
| 193 | pub fn from_angle_and_length(angle: Angle<T>, length: T) -> Self |
| 194 | where |
| 195 | T: Trig + Mul<Output = T> + Copy, |
| 196 | { |
| 197 | vec2(length * angle.radians.cos(), length * angle.radians.sin()) |
| 198 | } |
| 199 | |
| 200 | /// Constructor taking properly Lengths instead of scalar values. |
| 201 | #[inline ] |
| 202 | pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self { |
| 203 | vec2(x.0, y.0) |
| 204 | } |
| 205 | |
| 206 | /// Tag a unit-less value with units. |
| 207 | #[inline ] |
| 208 | pub fn from_untyped(p: Vector2D<T, UnknownUnit>) -> Self { |
| 209 | vec2(p.x, p.y) |
| 210 | } |
| 211 | |
| 212 | /// Apply the function `f` to each component of this vector. |
| 213 | /// |
| 214 | /// # Example |
| 215 | /// |
| 216 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
| 217 | /// |
| 218 | /// ``` |
| 219 | /// use euclid::default::Vector2D; |
| 220 | /// |
| 221 | /// let p = Vector2D::<u32>::new(5, 11); |
| 222 | /// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector2D::new(0, 1)); |
| 223 | /// ``` |
| 224 | #[inline ] |
| 225 | pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Vector2D<V, U> { |
| 226 | vec2(f(self.x), f(self.y)) |
| 227 | } |
| 228 | |
| 229 | /// Apply the function `f` to each pair of components of this point and `rhs`. |
| 230 | /// |
| 231 | /// # Example |
| 232 | /// |
| 233 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
| 234 | /// |
| 235 | /// ``` |
| 236 | /// use euclid::default::Vector2D; |
| 237 | /// |
| 238 | /// let a: Vector2D<u8> = Vector2D::new(50, 200); |
| 239 | /// let b: Vector2D<u8> = Vector2D::new(100, 100); |
| 240 | /// assert_eq!(a.zip(b, u8::saturating_add), Vector2D::new(150, 255)); |
| 241 | /// ``` |
| 242 | #[inline ] |
| 243 | pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector2D<V, U> { |
| 244 | vec2(f(self.x, rhs.x), f(self.y, rhs.y)) |
| 245 | } |
| 246 | |
| 247 | /// Computes the vector with absolute values of each component. |
| 248 | /// |
| 249 | /// # Example |
| 250 | /// |
| 251 | /// ```rust |
| 252 | /// # use std::{i32, f32}; |
| 253 | /// # use euclid::vec2; |
| 254 | /// enum U {} |
| 255 | /// |
| 256 | /// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2)); |
| 257 | /// |
| 258 | /// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs(); |
| 259 | /// assert!(vec.x.is_nan()); |
| 260 | /// assert_eq!(vec.y, f32::MAX); |
| 261 | /// ``` |
| 262 | /// |
| 263 | /// # Panics |
| 264 | /// |
| 265 | /// The behavior for each component follows the scalar type's implementation of |
| 266 | /// `num_traits::Signed::abs`. |
| 267 | pub fn abs(self) -> Self |
| 268 | where |
| 269 | T: Signed, |
| 270 | { |
| 271 | vec2(self.x.abs(), self.y.abs()) |
| 272 | } |
| 273 | |
| 274 | /// Dot product. |
| 275 | #[inline ] |
| 276 | pub fn dot(self, other: Self) -> T |
| 277 | where |
| 278 | T: Add<Output = T> + Mul<Output = T>, |
| 279 | { |
| 280 | self.x * other.x + self.y * other.y |
| 281 | } |
| 282 | |
| 283 | /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0]. |
| 284 | #[inline ] |
| 285 | pub fn cross(self, other: Self) -> T |
| 286 | where |
| 287 | T: Sub<Output = T> + Mul<Output = T>, |
| 288 | { |
| 289 | self.x * other.y - self.y * other.x |
| 290 | } |
| 291 | |
| 292 | /// Returns the component-wise multiplication of the two vectors. |
| 293 | #[inline ] |
| 294 | pub fn component_mul(self, other: Self) -> Self |
| 295 | where |
| 296 | T: Mul<Output = T>, |
| 297 | { |
| 298 | vec2(self.x * other.x, self.y * other.y) |
| 299 | } |
| 300 | |
| 301 | /// Returns the component-wise division of the two vectors. |
| 302 | #[inline ] |
| 303 | pub fn component_div(self, other: Self) -> Self |
| 304 | where |
| 305 | T: Div<Output = T>, |
| 306 | { |
| 307 | vec2(self.x / other.x, self.y / other.y) |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | impl<T: Copy, U> Vector2D<T, U> { |
| 312 | /// Create a 3d vector from this one, using the specified z value. |
| 313 | #[inline ] |
| 314 | pub fn extend(self, z: T) -> Vector3D<T, U> { |
| 315 | vec3(self.x, self.y, z) |
| 316 | } |
| 317 | |
| 318 | /// Cast this vector into a point. |
| 319 | /// |
| 320 | /// Equivalent to adding this vector to the origin. |
| 321 | #[inline ] |
| 322 | pub fn to_point(self) -> Point2D<T, U> { |
| 323 | Point2D { |
| 324 | x: self.x, |
| 325 | y: self.y, |
| 326 | _unit: PhantomData, |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | /// Swap x and y. |
| 331 | #[inline ] |
| 332 | pub fn yx(self) -> Self { |
| 333 | vec2(self.y, self.x) |
| 334 | } |
| 335 | |
| 336 | /// Cast this vector into a size. |
| 337 | #[inline ] |
| 338 | pub fn to_size(self) -> Size2D<T, U> { |
| 339 | size2(self.x, self.y) |
| 340 | } |
| 341 | |
| 342 | /// Drop the units, preserving only the numeric value. |
| 343 | #[inline ] |
| 344 | pub fn to_untyped(self) -> Vector2D<T, UnknownUnit> { |
| 345 | vec2(self.x, self.y) |
| 346 | } |
| 347 | |
| 348 | /// Cast the unit. |
| 349 | #[inline ] |
| 350 | pub fn cast_unit<V>(self) -> Vector2D<T, V> { |
| 351 | vec2(self.x, self.y) |
| 352 | } |
| 353 | |
| 354 | /// Cast into an array with x and y. |
| 355 | #[inline ] |
| 356 | pub fn to_array(self) -> [T; 2] { |
| 357 | [self.x, self.y] |
| 358 | } |
| 359 | |
| 360 | /// Cast into a tuple with x and y. |
| 361 | #[inline ] |
| 362 | pub fn to_tuple(self) -> (T, T) { |
| 363 | (self.x, self.y) |
| 364 | } |
| 365 | |
| 366 | /// Convert into a 3d vector with `z` coordinate equals to `T::zero()`. |
| 367 | #[inline ] |
| 368 | pub fn to_3d(self) -> Vector3D<T, U> |
| 369 | where |
| 370 | T: Zero, |
| 371 | { |
| 372 | vec3(self.x, self.y, Zero::zero()) |
| 373 | } |
| 374 | |
| 375 | /// Rounds each component to the nearest integer value. |
| 376 | /// |
| 377 | /// This behavior is preserved for negative values (unlike the basic cast). |
| 378 | /// |
| 379 | /// ```rust |
| 380 | /// # use euclid::vec2; |
| 381 | /// enum Mm {} |
| 382 | /// |
| 383 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0)) |
| 384 | /// ``` |
| 385 | #[inline ] |
| 386 | #[must_use ] |
| 387 | pub fn round(self) -> Self |
| 388 | where |
| 389 | T: Round, |
| 390 | { |
| 391 | vec2(self.x.round(), self.y.round()) |
| 392 | } |
| 393 | |
| 394 | /// Rounds each component to the smallest integer equal or greater than the original value. |
| 395 | /// |
| 396 | /// This behavior is preserved for negative values (unlike the basic cast). |
| 397 | /// |
| 398 | /// ```rust |
| 399 | /// # use euclid::vec2; |
| 400 | /// enum Mm {} |
| 401 | /// |
| 402 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0)) |
| 403 | /// ``` |
| 404 | #[inline ] |
| 405 | #[must_use ] |
| 406 | pub fn ceil(self) -> Self |
| 407 | where |
| 408 | T: Ceil, |
| 409 | { |
| 410 | vec2(self.x.ceil(), self.y.ceil()) |
| 411 | } |
| 412 | |
| 413 | /// Rounds each component to the biggest integer equal or lower than the original value. |
| 414 | /// |
| 415 | /// This behavior is preserved for negative values (unlike the basic cast). |
| 416 | /// |
| 417 | /// ```rust |
| 418 | /// # use euclid::vec2; |
| 419 | /// enum Mm {} |
| 420 | /// |
| 421 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0)) |
| 422 | /// ``` |
| 423 | #[inline ] |
| 424 | #[must_use ] |
| 425 | pub fn floor(self) -> Self |
| 426 | where |
| 427 | T: Floor, |
| 428 | { |
| 429 | vec2(self.x.floor(), self.y.floor()) |
| 430 | } |
| 431 | |
| 432 | /// Returns the signed angle between this vector and the x axis. |
| 433 | /// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2` |
| 434 | /// is `+y` axis. |
| 435 | /// |
| 436 | /// The returned angle is between -PI and PI. |
| 437 | pub fn angle_from_x_axis(self) -> Angle<T> |
| 438 | where |
| 439 | T: Trig, |
| 440 | { |
| 441 | Angle::radians(Trig::fast_atan2(self.y, self.x)) |
| 442 | } |
| 443 | |
| 444 | /// Creates translation by this vector in vector units. |
| 445 | #[inline ] |
| 446 | pub fn to_transform(self) -> Transform2D<T, U, U> |
| 447 | where |
| 448 | T: Zero + One, |
| 449 | { |
| 450 | Transform2D::translation(self.x, self.y) |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | impl<T, U> Vector2D<T, U> |
| 455 | where |
| 456 | T: Copy + Mul<T, Output = T> + Add<T, Output = T>, |
| 457 | { |
| 458 | /// Returns the vector's length squared. |
| 459 | #[inline ] |
| 460 | pub fn square_length(self) -> T { |
| 461 | self.x * self.x + self.y * self.y |
| 462 | } |
| 463 | |
| 464 | /// Returns this vector projected onto another one. |
| 465 | /// |
| 466 | /// Projecting onto a nil vector will cause a division by zero. |
| 467 | #[inline ] |
| 468 | pub fn project_onto_vector(self, onto: Self) -> Self |
| 469 | where |
| 470 | T: Sub<T, Output = T> + Div<T, Output = T>, |
| 471 | { |
| 472 | onto * (self.dot(onto) / onto.square_length()) |
| 473 | } |
| 474 | |
| 475 | /// Returns the signed angle between this vector and another vector. |
| 476 | /// |
| 477 | /// The returned angle is between -PI and PI. |
| 478 | pub fn angle_to(self, other: Self) -> Angle<T> |
| 479 | where |
| 480 | T: Sub<Output = T> + Trig, |
| 481 | { |
| 482 | Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other))) |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | impl<T: Float, U> Vector2D<T, U> { |
| 487 | /// Return the normalized vector even if the length is larger than the max value of Float. |
| 488 | #[inline ] |
| 489 | #[must_use ] |
| 490 | pub fn robust_normalize(self) -> Self { |
| 491 | let length: T = self.length(); |
| 492 | if length.is_infinite() { |
| 493 | let scaled: Vector2D = self / T::max_value(); |
| 494 | scaled / scaled.length() |
| 495 | } else { |
| 496 | self / length |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | /// Returns `true` if all members are finite. |
| 501 | #[inline ] |
| 502 | pub fn is_finite(self) -> bool { |
| 503 | self.x.is_finite() && self.y.is_finite() |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | impl<T: Real, U> Vector2D<T, U> { |
| 508 | /// Returns the vector length. |
| 509 | #[inline ] |
| 510 | pub fn length(self) -> T { |
| 511 | self.square_length().sqrt() |
| 512 | } |
| 513 | |
| 514 | /// Returns the vector with length of one unit. |
| 515 | #[inline ] |
| 516 | #[must_use ] |
| 517 | pub fn normalize(self) -> Self { |
| 518 | self / self.length() |
| 519 | } |
| 520 | |
| 521 | /// Returns the vector with length of one unit. |
| 522 | /// |
| 523 | /// Unlike [`Vector2D::normalize`], this returns `None` in the case that the |
| 524 | /// length of the vector is zero. |
| 525 | #[inline ] |
| 526 | #[must_use ] |
| 527 | pub fn try_normalize(self) -> Option<Self> { |
| 528 | let len = self.length(); |
| 529 | if len == T::zero() { |
| 530 | None |
| 531 | } else { |
| 532 | Some(self / len) |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | /// Return this vector scaled to fit the provided length. |
| 537 | #[inline ] |
| 538 | pub fn with_length(self, length: T) -> Self { |
| 539 | self.normalize() * length |
| 540 | } |
| 541 | |
| 542 | /// Return this vector capped to a maximum length. |
| 543 | #[inline ] |
| 544 | pub fn with_max_length(self, max_length: T) -> Self { |
| 545 | let square_length = self.square_length(); |
| 546 | if square_length > max_length * max_length { |
| 547 | return self * (max_length / square_length.sqrt()); |
| 548 | } |
| 549 | |
| 550 | self |
| 551 | } |
| 552 | |
| 553 | /// Return this vector with a minimum length applied. |
| 554 | #[inline ] |
| 555 | pub fn with_min_length(self, min_length: T) -> Self { |
| 556 | let square_length = self.square_length(); |
| 557 | if square_length < min_length * min_length { |
| 558 | return self * (min_length / square_length.sqrt()); |
| 559 | } |
| 560 | |
| 561 | self |
| 562 | } |
| 563 | |
| 564 | /// Return this vector with minimum and maximum lengths applied. |
| 565 | #[inline ] |
| 566 | pub fn clamp_length(self, min: T, max: T) -> Self { |
| 567 | debug_assert!(min <= max); |
| 568 | self.with_min_length(min).with_max_length(max) |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | impl<T, U> Vector2D<T, U> |
| 573 | where |
| 574 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
| 575 | { |
| 576 | /// Linearly interpolate each component between this vector and another vector. |
| 577 | /// |
| 578 | /// # Example |
| 579 | /// |
| 580 | /// ```rust |
| 581 | /// use euclid::vec2; |
| 582 | /// use euclid::default::Vector2D; |
| 583 | /// |
| 584 | /// let from: Vector2D<_> = vec2(0.0, 10.0); |
| 585 | /// let to: Vector2D<_> = vec2(8.0, -4.0); |
| 586 | /// |
| 587 | /// assert_eq!(from.lerp(to, -1.0), vec2(-8.0, 24.0)); |
| 588 | /// assert_eq!(from.lerp(to, 0.0), vec2( 0.0, 10.0)); |
| 589 | /// assert_eq!(from.lerp(to, 0.5), vec2( 4.0, 3.0)); |
| 590 | /// assert_eq!(from.lerp(to, 1.0), vec2( 8.0, -4.0)); |
| 591 | /// assert_eq!(from.lerp(to, 2.0), vec2(16.0, -18.0)); |
| 592 | /// ``` |
| 593 | #[inline ] |
| 594 | pub fn lerp(self, other: Self, t: T) -> Self { |
| 595 | let one_t = T::one() - t; |
| 596 | self * one_t + other * t |
| 597 | } |
| 598 | |
| 599 | /// Returns a reflection vector using an incident ray and a surface normal. |
| 600 | #[inline ] |
| 601 | pub fn reflect(self, normal: Self) -> Self { |
| 602 | let two = T::one() + T::one(); |
| 603 | self - normal * two * self.dot(normal) |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | impl<T: PartialOrd, U> Vector2D<T, U> { |
| 608 | /// Returns the vector each component of which are minimum of this vector and another. |
| 609 | #[inline ] |
| 610 | pub fn min(self, other: Self) -> Self { |
| 611 | vec2(min(self.x, other.x), min(self.y, other.y)) |
| 612 | } |
| 613 | |
| 614 | /// Returns the vector each component of which are maximum of this vector and another. |
| 615 | #[inline ] |
| 616 | pub fn max(self, other: Self) -> Self { |
| 617 | vec2(max(self.x, other.x), max(self.y, other.y)) |
| 618 | } |
| 619 | |
| 620 | /// Returns the vector each component of which is clamped by corresponding |
| 621 | /// components of `start` and `end`. |
| 622 | /// |
| 623 | /// Shortcut for `self.max(start).min(end)`. |
| 624 | #[inline ] |
| 625 | pub fn clamp(self, start: Self, end: Self) -> Self |
| 626 | where |
| 627 | T: Copy, |
| 628 | { |
| 629 | self.max(start).min(end) |
| 630 | } |
| 631 | |
| 632 | /// Returns vector with results of "greater than" operation on each component. |
| 633 | #[inline ] |
| 634 | pub fn greater_than(self, other: Self) -> BoolVector2D { |
| 635 | BoolVector2D { |
| 636 | x: self.x > other.x, |
| 637 | y: self.y > other.y, |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | /// Returns vector with results of "lower than" operation on each component. |
| 642 | #[inline ] |
| 643 | pub fn lower_than(self, other: Self) -> BoolVector2D { |
| 644 | BoolVector2D { |
| 645 | x: self.x < other.x, |
| 646 | y: self.y < other.y, |
| 647 | } |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | impl<T: PartialEq, U> Vector2D<T, U> { |
| 652 | /// Returns vector with results of "equal" operation on each component. |
| 653 | #[inline ] |
| 654 | pub fn equal(self, other: Self) -> BoolVector2D { |
| 655 | BoolVector2D { |
| 656 | x: self.x == other.x, |
| 657 | y: self.y == other.y, |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | /// Returns vector with results of "not equal" operation on each component. |
| 662 | #[inline ] |
| 663 | pub fn not_equal(self, other: Self) -> BoolVector2D { |
| 664 | BoolVector2D { |
| 665 | x: self.x != other.x, |
| 666 | y: self.y != other.y, |
| 667 | } |
| 668 | } |
| 669 | } |
| 670 | |
| 671 | impl<T: NumCast + Copy, U> Vector2D<T, U> { |
| 672 | /// Cast from one numeric representation to another, preserving the units. |
| 673 | /// |
| 674 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
| 675 | /// as one would expect from a simple cast, but this behavior does not always make sense |
| 676 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
| 677 | #[inline ] |
| 678 | pub fn cast<NewT: NumCast>(self) -> Vector2D<NewT, U> { |
| 679 | self.try_cast().unwrap() |
| 680 | } |
| 681 | |
| 682 | /// Fallible cast from one numeric representation to another, preserving the units. |
| 683 | /// |
| 684 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
| 685 | /// as one would expect from a simple cast, but this behavior does not always make sense |
| 686 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
| 687 | pub fn try_cast<NewT: NumCast>(self) -> Option<Vector2D<NewT, U>> { |
| 688 | match (NumCast::from(self.x), NumCast::from(self.y)) { |
| 689 | (Some(x), Some(y)) => Some(Vector2D::new(x, y)), |
| 690 | _ => None, |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | // Convenience functions for common casts. |
| 695 | |
| 696 | /// Cast into an `f32` vector. |
| 697 | #[inline ] |
| 698 | pub fn to_f32(self) -> Vector2D<f32, U> { |
| 699 | self.cast() |
| 700 | } |
| 701 | |
| 702 | /// Cast into an `f64` vector. |
| 703 | #[inline ] |
| 704 | pub fn to_f64(self) -> Vector2D<f64, U> { |
| 705 | self.cast() |
| 706 | } |
| 707 | |
| 708 | /// Cast into an `usize` vector, truncating decimals if any. |
| 709 | /// |
| 710 | /// When casting from floating vector vectors, it is worth considering whether |
| 711 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 712 | /// the desired conversion behavior. |
| 713 | #[inline ] |
| 714 | pub fn to_usize(self) -> Vector2D<usize, U> { |
| 715 | self.cast() |
| 716 | } |
| 717 | |
| 718 | /// Cast into an `u32` vector, truncating decimals if any. |
| 719 | /// |
| 720 | /// When casting from floating vector vectors, it is worth considering whether |
| 721 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 722 | /// the desired conversion behavior. |
| 723 | #[inline ] |
| 724 | pub fn to_u32(self) -> Vector2D<u32, U> { |
| 725 | self.cast() |
| 726 | } |
| 727 | |
| 728 | /// Cast into an i32 vector, truncating decimals if any. |
| 729 | /// |
| 730 | /// When casting from floating vector vectors, it is worth considering whether |
| 731 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 732 | /// the desired conversion behavior. |
| 733 | #[inline ] |
| 734 | pub fn to_i32(self) -> Vector2D<i32, U> { |
| 735 | self.cast() |
| 736 | } |
| 737 | |
| 738 | /// Cast into an i64 vector, truncating decimals if any. |
| 739 | /// |
| 740 | /// When casting from floating vector vectors, it is worth considering whether |
| 741 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 742 | /// the desired conversion behavior. |
| 743 | #[inline ] |
| 744 | pub fn to_i64(self) -> Vector2D<i64, U> { |
| 745 | self.cast() |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | impl<T: Neg, U> Neg for Vector2D<T, U> { |
| 750 | type Output = Vector2D<T::Output, U>; |
| 751 | |
| 752 | #[inline ] |
| 753 | fn neg(self) -> Self::Output { |
| 754 | vec2(-self.x, -self.y) |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | impl<T: Add, U> Add for Vector2D<T, U> { |
| 759 | type Output = Vector2D<T::Output, U>; |
| 760 | |
| 761 | #[inline ] |
| 762 | fn add(self, other: Self) -> Self::Output { |
| 763 | Vector2D::new(self.x + other.x, self.y + other.y) |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | impl<T: Add + Copy, U> Add<&Self> for Vector2D<T, U> { |
| 768 | type Output = Vector2D<T::Output, U>; |
| 769 | |
| 770 | #[inline ] |
| 771 | fn add(self, other: &Self) -> Self::Output { |
| 772 | Vector2D::new(self.x + other.x, self.y + other.y) |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | impl<T: Add<Output = T> + Zero, U> Sum for Vector2D<T, U> { |
| 777 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
| 778 | iter.fold(Self::zero(), f:Add::add) |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector2D<T, U> { |
| 783 | fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { |
| 784 | iter.fold(Self::zero(), f:Add::add) |
| 785 | } |
| 786 | } |
| 787 | |
| 788 | impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector2D<T, U> { |
| 789 | #[inline ] |
| 790 | fn add_assign(&mut self, other: Self) { |
| 791 | *self = *self + other |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | impl<T: Sub, U> Sub for Vector2D<T, U> { |
| 796 | type Output = Vector2D<T::Output, U>; |
| 797 | |
| 798 | #[inline ] |
| 799 | fn sub(self, other: Self) -> Self::Output { |
| 800 | vec2(self.x - other.x, self.y - other.y) |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Vector2D<T, U> { |
| 805 | #[inline ] |
| 806 | fn sub_assign(&mut self, other: Self) { |
| 807 | *self = *self - other |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | impl<T: Copy + Mul, U> Mul<T> for Vector2D<T, U> { |
| 812 | type Output = Vector2D<T::Output, U>; |
| 813 | |
| 814 | #[inline ] |
| 815 | fn mul(self, scale: T) -> Self::Output { |
| 816 | vec2(self.x * scale, self.y * scale) |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector2D<T, U> { |
| 821 | #[inline ] |
| 822 | fn mul_assign(&mut self, scale: T) { |
| 823 | *self = *self * scale |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector2D<T, U1> { |
| 828 | type Output = Vector2D<T::Output, U2>; |
| 829 | |
| 830 | #[inline ] |
| 831 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
| 832 | vec2(self.x * scale.0, self.y * scale.0) |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector2D<T, U> { |
| 837 | #[inline ] |
| 838 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
| 839 | self.x *= scale.0; |
| 840 | self.y *= scale.0; |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | impl<T: Copy + Div, U> Div<T> for Vector2D<T, U> { |
| 845 | type Output = Vector2D<T::Output, U>; |
| 846 | |
| 847 | #[inline ] |
| 848 | fn div(self, scale: T) -> Self::Output { |
| 849 | vec2(self.x / scale, self.y / scale) |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector2D<T, U> { |
| 854 | #[inline ] |
| 855 | fn div_assign(&mut self, scale: T) { |
| 856 | *self = *self / scale |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector2D<T, U2> { |
| 861 | type Output = Vector2D<T::Output, U1>; |
| 862 | |
| 863 | #[inline ] |
| 864 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
| 865 | vec2(self.x / scale.0, self.y / scale.0) |
| 866 | } |
| 867 | } |
| 868 | |
| 869 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector2D<T, U> { |
| 870 | #[inline ] |
| 871 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
| 872 | self.x /= scale.0; |
| 873 | self.y /= scale.0; |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | impl<T: Round, U> Round for Vector2D<T, U> { |
| 878 | /// See [`Vector2D::round`]. |
| 879 | #[inline ] |
| 880 | fn round(self) -> Self { |
| 881 | self.round() |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | impl<T: Ceil, U> Ceil for Vector2D<T, U> { |
| 886 | /// See [`Vector2D::ceil`]. |
| 887 | #[inline ] |
| 888 | fn ceil(self) -> Self { |
| 889 | self.ceil() |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | impl<T: Floor, U> Floor for Vector2D<T, U> { |
| 894 | /// See [`Vector2D::floor`]. |
| 895 | #[inline ] |
| 896 | fn floor(self) -> Self { |
| 897 | self.floor() |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | impl<T: ApproxEq<T>, U> ApproxEq<Vector2D<T, U>> for Vector2D<T, U> { |
| 902 | #[inline ] |
| 903 | fn approx_epsilon() -> Self { |
| 904 | vec2(T::approx_epsilon(), T::approx_epsilon()) |
| 905 | } |
| 906 | |
| 907 | #[inline ] |
| 908 | fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { |
| 909 | self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | impl<T, U> From<Vector2D<T, U>> for [T; 2] { |
| 914 | fn from(v: Vector2D<T, U>) -> Self { |
| 915 | [v.x, v.y] |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | impl<T, U> From<[T; 2]> for Vector2D<T, U> { |
| 920 | fn from([x: T, y: T]: [T; 2]) -> Self { |
| 921 | vec2(x, y) |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | impl<T, U> From<Vector2D<T, U>> for (T, T) { |
| 926 | fn from(v: Vector2D<T, U>) -> Self { |
| 927 | (v.x, v.y) |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | impl<T, U> From<(T, T)> for Vector2D<T, U> { |
| 932 | fn from(tuple: (T, T)) -> Self { |
| 933 | vec2(x:tuple.0, y:tuple.1) |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | impl<T, U> From<Size2D<T, U>> for Vector2D<T, U> { |
| 938 | fn from(s: Size2D<T, U>) -> Self { |
| 939 | vec2(x:s.width, y:s.height) |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | /// A 3d Vector tagged with a unit. |
| 944 | #[repr (C)] |
| 945 | pub struct Vector3D<T, U> { |
| 946 | /// The `x` (traditionally, horizontal) coordinate. |
| 947 | pub x: T, |
| 948 | /// The `y` (traditionally, vertical) coordinate. |
| 949 | pub y: T, |
| 950 | /// The `z` (traditionally, depth) coordinate. |
| 951 | pub z: T, |
| 952 | #[doc (hidden)] |
| 953 | pub _unit: PhantomData<U>, |
| 954 | } |
| 955 | |
| 956 | mint_vec!(Vector3D[x, y, z] = Vector3); |
| 957 | |
| 958 | impl<T: Copy, U> Copy for Vector3D<T, U> {} |
| 959 | |
| 960 | impl<T: Clone, U> Clone for Vector3D<T, U> { |
| 961 | fn clone(&self) -> Self { |
| 962 | Vector3D { |
| 963 | x: self.x.clone(), |
| 964 | y: self.y.clone(), |
| 965 | z: self.z.clone(), |
| 966 | _unit: PhantomData, |
| 967 | } |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | #[cfg (feature = "serde" )] |
| 972 | impl<'de, T, U> serde::Deserialize<'de> for Vector3D<T, U> |
| 973 | where |
| 974 | T: serde::Deserialize<'de>, |
| 975 | { |
| 976 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| 977 | where |
| 978 | D: serde::Deserializer<'de>, |
| 979 | { |
| 980 | let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; |
| 981 | Ok(Vector3D { |
| 982 | x, |
| 983 | y, |
| 984 | z, |
| 985 | _unit: PhantomData, |
| 986 | }) |
| 987 | } |
| 988 | } |
| 989 | |
| 990 | #[cfg (feature = "serde" )] |
| 991 | impl<T, U> serde::Serialize for Vector3D<T, U> |
| 992 | where |
| 993 | T: serde::Serialize, |
| 994 | { |
| 995 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| 996 | where |
| 997 | S: serde::Serializer, |
| 998 | { |
| 999 | (&self.x, &self.y, &self.z).serialize(serializer) |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | #[cfg (feature = "arbitrary" )] |
| 1004 | impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector3D<T, U> |
| 1005 | where |
| 1006 | T: arbitrary::Arbitrary<'a>, |
| 1007 | { |
| 1008 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
| 1009 | let (x, y, z) = arbitrary::Arbitrary::arbitrary(u)?; |
| 1010 | Ok(Vector3D { |
| 1011 | x, |
| 1012 | y, |
| 1013 | z, |
| 1014 | _unit: PhantomData, |
| 1015 | }) |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | #[cfg (feature = "bytemuck" )] |
| 1020 | unsafe impl<T: Zeroable, U> Zeroable for Vector3D<T, U> {} |
| 1021 | |
| 1022 | #[cfg (feature = "bytemuck" )] |
| 1023 | unsafe impl<T: Pod, U: 'static> Pod for Vector3D<T, U> {} |
| 1024 | |
| 1025 | impl<T: Eq, U> Eq for Vector3D<T, U> {} |
| 1026 | |
| 1027 | impl<T: PartialEq, U> PartialEq for Vector3D<T, U> { |
| 1028 | fn eq(&self, other: &Self) -> bool { |
| 1029 | self.x == other.x && self.y == other.y && self.z == other.z |
| 1030 | } |
| 1031 | } |
| 1032 | |
| 1033 | impl<T: Hash, U> Hash for Vector3D<T, U> { |
| 1034 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
| 1035 | self.x.hash(state:h); |
| 1036 | self.y.hash(state:h); |
| 1037 | self.z.hash(state:h); |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | impl<T: Zero, U> Zero for Vector3D<T, U> { |
| 1042 | /// Constructor, setting all components to zero. |
| 1043 | #[inline ] |
| 1044 | fn zero() -> Self { |
| 1045 | vec3(x:Zero::zero(), y:Zero::zero(), z:Zero::zero()) |
| 1046 | } |
| 1047 | } |
| 1048 | |
| 1049 | impl<T: fmt::Debug, U> fmt::Debug for Vector3D<T, U> { |
| 1050 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1051 | f&mut DebugTuple<'_, '_>.debug_tuple(name:"" ) |
| 1052 | .field(&self.x) |
| 1053 | .field(&self.y) |
| 1054 | .field(&self.z) |
| 1055 | .finish() |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | impl<T: Default, U> Default for Vector3D<T, U> { |
| 1060 | fn default() -> Self { |
| 1061 | Vector3D::new(x:Default::default(), y:Default::default(), z:Default::default()) |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | impl<T, U> Vector3D<T, U> { |
| 1066 | /// Constructor, setting all components to zero. |
| 1067 | #[inline ] |
| 1068 | pub fn zero() -> Self |
| 1069 | where |
| 1070 | T: Zero, |
| 1071 | { |
| 1072 | vec3(Zero::zero(), Zero::zero(), Zero::zero()) |
| 1073 | } |
| 1074 | |
| 1075 | /// Constructor, setting all components to one. |
| 1076 | #[inline ] |
| 1077 | pub fn one() -> Self |
| 1078 | where |
| 1079 | T: One, |
| 1080 | { |
| 1081 | vec3(One::one(), One::one(), One::one()) |
| 1082 | } |
| 1083 | |
| 1084 | /// Constructor taking scalar values directly. |
| 1085 | #[inline ] |
| 1086 | pub const fn new(x: T, y: T, z: T) -> Self { |
| 1087 | Vector3D { |
| 1088 | x, |
| 1089 | y, |
| 1090 | z, |
| 1091 | _unit: PhantomData, |
| 1092 | } |
| 1093 | } |
| 1094 | /// Constructor setting all components to the same value. |
| 1095 | #[inline ] |
| 1096 | pub fn splat(v: T) -> Self |
| 1097 | where |
| 1098 | T: Clone, |
| 1099 | { |
| 1100 | Vector3D { |
| 1101 | x: v.clone(), |
| 1102 | y: v.clone(), |
| 1103 | z: v, |
| 1104 | _unit: PhantomData, |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | /// Constructor taking properly Lengths instead of scalar values. |
| 1109 | #[inline ] |
| 1110 | pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Vector3D<T, U> { |
| 1111 | vec3(x.0, y.0, z.0) |
| 1112 | } |
| 1113 | |
| 1114 | /// Tag a unitless value with units. |
| 1115 | #[inline ] |
| 1116 | pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Self { |
| 1117 | vec3(p.x, p.y, p.z) |
| 1118 | } |
| 1119 | |
| 1120 | /// Apply the function `f` to each component of this vector. |
| 1121 | /// |
| 1122 | /// # Example |
| 1123 | /// |
| 1124 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
| 1125 | /// |
| 1126 | /// ``` |
| 1127 | /// use euclid::default::Vector3D; |
| 1128 | /// |
| 1129 | /// let p = Vector3D::<u32>::new(5, 11, 15); |
| 1130 | /// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector3D::new(0, 1, 5)); |
| 1131 | /// ``` |
| 1132 | #[inline ] |
| 1133 | pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Vector3D<V, U> { |
| 1134 | vec3(f(self.x), f(self.y), f(self.z)) |
| 1135 | } |
| 1136 | |
| 1137 | /// Apply the function `f` to each pair of components of this point and `rhs`. |
| 1138 | /// |
| 1139 | /// # Example |
| 1140 | /// |
| 1141 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
| 1142 | /// |
| 1143 | /// ``` |
| 1144 | /// use euclid::default::Vector3D; |
| 1145 | /// |
| 1146 | /// let a: Vector3D<u8> = Vector3D::new(50, 200, 10); |
| 1147 | /// let b: Vector3D<u8> = Vector3D::new(100, 100, 0); |
| 1148 | /// assert_eq!(a.zip(b, u8::saturating_add), Vector3D::new(150, 255, 10)); |
| 1149 | /// ``` |
| 1150 | #[inline ] |
| 1151 | pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector3D<V, U> { |
| 1152 | vec3(f(self.x, rhs.x), f(self.y, rhs.y), f(self.z, rhs.z)) |
| 1153 | } |
| 1154 | |
| 1155 | /// Computes the vector with absolute values of each component. |
| 1156 | /// |
| 1157 | /// # Example |
| 1158 | /// |
| 1159 | /// ```rust |
| 1160 | /// # use std::{i32, f32}; |
| 1161 | /// # use euclid::vec3; |
| 1162 | /// enum U {} |
| 1163 | /// |
| 1164 | /// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2)); |
| 1165 | /// |
| 1166 | /// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs(); |
| 1167 | /// assert!(vec.x.is_nan()); |
| 1168 | /// assert_eq!(vec.y, 0.0); |
| 1169 | /// assert_eq!(vec.z, f32::MAX); |
| 1170 | /// ``` |
| 1171 | /// |
| 1172 | /// # Panics |
| 1173 | /// |
| 1174 | /// The behavior for each component follows the scalar type's implementation of |
| 1175 | /// `num_traits::Signed::abs`. |
| 1176 | pub fn abs(self) -> Self |
| 1177 | where |
| 1178 | T: Signed, |
| 1179 | { |
| 1180 | vec3(self.x.abs(), self.y.abs(), self.z.abs()) |
| 1181 | } |
| 1182 | |
| 1183 | /// Dot product. |
| 1184 | #[inline ] |
| 1185 | pub fn dot(self, other: Self) -> T |
| 1186 | where |
| 1187 | T: Add<Output = T> + Mul<Output = T>, |
| 1188 | { |
| 1189 | self.x * other.x + self.y * other.y + self.z * other.z |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | impl<T: Copy, U> Vector3D<T, U> { |
| 1194 | /// Cross product. |
| 1195 | #[inline ] |
| 1196 | pub fn cross(self, other: Self) -> Self |
| 1197 | where |
| 1198 | T: Sub<Output = T> + Mul<Output = T>, |
| 1199 | { |
| 1200 | vec3( |
| 1201 | self.y * other.z - self.z * other.y, |
| 1202 | self.z * other.x - self.x * other.z, |
| 1203 | self.x * other.y - self.y * other.x, |
| 1204 | ) |
| 1205 | } |
| 1206 | |
| 1207 | /// Returns the component-wise multiplication of the two vectors. |
| 1208 | #[inline ] |
| 1209 | pub fn component_mul(self, other: Self) -> Self |
| 1210 | where |
| 1211 | T: Mul<Output = T>, |
| 1212 | { |
| 1213 | vec3(self.x * other.x, self.y * other.y, self.z * other.z) |
| 1214 | } |
| 1215 | |
| 1216 | /// Returns the component-wise division of the two vectors. |
| 1217 | #[inline ] |
| 1218 | pub fn component_div(self, other: Self) -> Self |
| 1219 | where |
| 1220 | T: Div<Output = T>, |
| 1221 | { |
| 1222 | vec3(self.x / other.x, self.y / other.y, self.z / other.z) |
| 1223 | } |
| 1224 | |
| 1225 | /// Cast this vector into a point. |
| 1226 | /// |
| 1227 | /// Equivalent to adding this vector to the origin. |
| 1228 | #[inline ] |
| 1229 | pub fn to_point(self) -> Point3D<T, U> { |
| 1230 | point3(self.x, self.y, self.z) |
| 1231 | } |
| 1232 | |
| 1233 | /// Returns a 2d vector using this vector's x and y coordinates |
| 1234 | #[inline ] |
| 1235 | pub fn xy(self) -> Vector2D<T, U> { |
| 1236 | vec2(self.x, self.y) |
| 1237 | } |
| 1238 | |
| 1239 | /// Returns a 2d vector using this vector's x and z coordinates |
| 1240 | #[inline ] |
| 1241 | pub fn xz(self) -> Vector2D<T, U> { |
| 1242 | vec2(self.x, self.z) |
| 1243 | } |
| 1244 | |
| 1245 | /// Returns a 2d vector using this vector's x and z coordinates |
| 1246 | #[inline ] |
| 1247 | pub fn yz(self) -> Vector2D<T, U> { |
| 1248 | vec2(self.y, self.z) |
| 1249 | } |
| 1250 | |
| 1251 | /// Cast into an array with x, y and z. |
| 1252 | #[inline ] |
| 1253 | pub fn to_array(self) -> [T; 3] { |
| 1254 | [self.x, self.y, self.z] |
| 1255 | } |
| 1256 | |
| 1257 | /// Cast into an array with x, y, z and 0. |
| 1258 | #[inline ] |
| 1259 | pub fn to_array_4d(self) -> [T; 4] |
| 1260 | where |
| 1261 | T: Zero, |
| 1262 | { |
| 1263 | [self.x, self.y, self.z, Zero::zero()] |
| 1264 | } |
| 1265 | |
| 1266 | /// Cast into a tuple with x, y and z. |
| 1267 | #[inline ] |
| 1268 | pub fn to_tuple(self) -> (T, T, T) { |
| 1269 | (self.x, self.y, self.z) |
| 1270 | } |
| 1271 | |
| 1272 | /// Cast into a tuple with x, y, z and 0. |
| 1273 | #[inline ] |
| 1274 | pub fn to_tuple_4d(self) -> (T, T, T, T) |
| 1275 | where |
| 1276 | T: Zero, |
| 1277 | { |
| 1278 | (self.x, self.y, self.z, Zero::zero()) |
| 1279 | } |
| 1280 | |
| 1281 | /// Drop the units, preserving only the numeric value. |
| 1282 | #[inline ] |
| 1283 | pub fn to_untyped(self) -> Vector3D<T, UnknownUnit> { |
| 1284 | vec3(self.x, self.y, self.z) |
| 1285 | } |
| 1286 | |
| 1287 | /// Cast the unit. |
| 1288 | #[inline ] |
| 1289 | pub fn cast_unit<V>(self) -> Vector3D<T, V> { |
| 1290 | vec3(self.x, self.y, self.z) |
| 1291 | } |
| 1292 | |
| 1293 | /// Convert into a 2d vector. |
| 1294 | #[inline ] |
| 1295 | pub fn to_2d(self) -> Vector2D<T, U> { |
| 1296 | self.xy() |
| 1297 | } |
| 1298 | |
| 1299 | /// Rounds each component to the nearest integer value. |
| 1300 | /// |
| 1301 | /// This behavior is preserved for negative values (unlike the basic cast). |
| 1302 | /// |
| 1303 | /// ```rust |
| 1304 | /// # use euclid::vec3; |
| 1305 | /// enum Mm {} |
| 1306 | /// |
| 1307 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0)) |
| 1308 | /// ``` |
| 1309 | #[inline ] |
| 1310 | #[must_use ] |
| 1311 | pub fn round(self) -> Self |
| 1312 | where |
| 1313 | T: Round, |
| 1314 | { |
| 1315 | vec3(self.x.round(), self.y.round(), self.z.round()) |
| 1316 | } |
| 1317 | |
| 1318 | /// Rounds each component to the smallest integer equal or greater than the original value. |
| 1319 | /// |
| 1320 | /// This behavior is preserved for negative values (unlike the basic cast). |
| 1321 | /// |
| 1322 | /// ```rust |
| 1323 | /// # use euclid::vec3; |
| 1324 | /// enum Mm {} |
| 1325 | /// |
| 1326 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0)) |
| 1327 | /// ``` |
| 1328 | #[inline ] |
| 1329 | #[must_use ] |
| 1330 | pub fn ceil(self) -> Self |
| 1331 | where |
| 1332 | T: Ceil, |
| 1333 | { |
| 1334 | vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) |
| 1335 | } |
| 1336 | |
| 1337 | /// Rounds each component to the biggest integer equal or lower than the original value. |
| 1338 | /// |
| 1339 | /// This behavior is preserved for negative values (unlike the basic cast). |
| 1340 | /// |
| 1341 | /// ```rust |
| 1342 | /// # use euclid::vec3; |
| 1343 | /// enum Mm {} |
| 1344 | /// |
| 1345 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0)) |
| 1346 | /// ``` |
| 1347 | #[inline ] |
| 1348 | #[must_use ] |
| 1349 | pub fn floor(self) -> Self |
| 1350 | where |
| 1351 | T: Floor, |
| 1352 | { |
| 1353 | vec3(self.x.floor(), self.y.floor(), self.z.floor()) |
| 1354 | } |
| 1355 | |
| 1356 | /// Creates translation by this vector in vector units |
| 1357 | #[inline ] |
| 1358 | pub fn to_transform(self) -> Transform3D<T, U, U> |
| 1359 | where |
| 1360 | T: Zero + One, |
| 1361 | { |
| 1362 | Transform3D::translation(self.x, self.y, self.z) |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | impl<T, U> Vector3D<T, U> |
| 1367 | where |
| 1368 | T: Copy + Mul<T, Output = T> + Add<T, Output = T>, |
| 1369 | { |
| 1370 | /// Returns the vector's length squared. |
| 1371 | #[inline ] |
| 1372 | pub fn square_length(self) -> T { |
| 1373 | self.x * self.x + self.y * self.y + self.z * self.z |
| 1374 | } |
| 1375 | |
| 1376 | /// Returns this vector projected onto another one. |
| 1377 | /// |
| 1378 | /// Projecting onto a nil vector will cause a division by zero. |
| 1379 | #[inline ] |
| 1380 | pub fn project_onto_vector(self, onto: Self) -> Self |
| 1381 | where |
| 1382 | T: Sub<T, Output = T> + Div<T, Output = T>, |
| 1383 | { |
| 1384 | onto * (self.dot(onto) / onto.square_length()) |
| 1385 | } |
| 1386 | } |
| 1387 | |
| 1388 | impl<T: Float, U> Vector3D<T, U> { |
| 1389 | /// Return the normalized vector even if the length is larger than the max value of Float. |
| 1390 | #[inline ] |
| 1391 | #[must_use ] |
| 1392 | pub fn robust_normalize(self) -> Self { |
| 1393 | let length: T = self.length(); |
| 1394 | if length.is_infinite() { |
| 1395 | let scaled: Vector3D = self / T::max_value(); |
| 1396 | scaled / scaled.length() |
| 1397 | } else { |
| 1398 | self / length |
| 1399 | } |
| 1400 | } |
| 1401 | |
| 1402 | /// Returns `true` if all members are finite. |
| 1403 | #[inline ] |
| 1404 | pub fn is_finite(self) -> bool { |
| 1405 | self.x.is_finite() && self.y.is_finite() && self.z.is_finite() |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | impl<T: Real, U> Vector3D<T, U> { |
| 1410 | /// Returns the positive angle between this vector and another vector. |
| 1411 | /// |
| 1412 | /// The returned angle is between 0 and PI. |
| 1413 | pub fn angle_to(self, other: Self) -> Angle<T> |
| 1414 | where |
| 1415 | T: Trig, |
| 1416 | { |
| 1417 | Angle::radians(Trig::fast_atan2( |
| 1418 | self.cross(other).length(), |
| 1419 | self.dot(other), |
| 1420 | )) |
| 1421 | } |
| 1422 | |
| 1423 | /// Returns the vector length. |
| 1424 | #[inline ] |
| 1425 | pub fn length(self) -> T { |
| 1426 | self.square_length().sqrt() |
| 1427 | } |
| 1428 | |
| 1429 | /// Returns the vector with length of one unit |
| 1430 | #[inline ] |
| 1431 | #[must_use ] |
| 1432 | pub fn normalize(self) -> Self { |
| 1433 | self / self.length() |
| 1434 | } |
| 1435 | |
| 1436 | /// Returns the vector with length of one unit. |
| 1437 | /// |
| 1438 | /// Unlike [`Vector2D::normalize`], this returns `None` in the case that the |
| 1439 | /// length of the vector is zero. |
| 1440 | #[inline ] |
| 1441 | #[must_use ] |
| 1442 | pub fn try_normalize(self) -> Option<Self> { |
| 1443 | let len = self.length(); |
| 1444 | if len == T::zero() { |
| 1445 | None |
| 1446 | } else { |
| 1447 | Some(self / len) |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | /// Return this vector capped to a maximum length. |
| 1452 | #[inline ] |
| 1453 | pub fn with_max_length(self, max_length: T) -> Self { |
| 1454 | let square_length = self.square_length(); |
| 1455 | if square_length > max_length * max_length { |
| 1456 | return self * (max_length / square_length.sqrt()); |
| 1457 | } |
| 1458 | |
| 1459 | self |
| 1460 | } |
| 1461 | |
| 1462 | /// Return this vector with a minimum length applied. |
| 1463 | #[inline ] |
| 1464 | pub fn with_min_length(self, min_length: T) -> Self { |
| 1465 | let square_length = self.square_length(); |
| 1466 | if square_length < min_length * min_length { |
| 1467 | return self * (min_length / square_length.sqrt()); |
| 1468 | } |
| 1469 | |
| 1470 | self |
| 1471 | } |
| 1472 | |
| 1473 | /// Return this vector with minimum and maximum lengths applied. |
| 1474 | #[inline ] |
| 1475 | pub fn clamp_length(self, min: T, max: T) -> Self { |
| 1476 | debug_assert!(min <= max); |
| 1477 | self.with_min_length(min).with_max_length(max) |
| 1478 | } |
| 1479 | } |
| 1480 | |
| 1481 | impl<T, U> Vector3D<T, U> |
| 1482 | where |
| 1483 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
| 1484 | { |
| 1485 | /// Linearly interpolate each component between this vector and another vector. |
| 1486 | /// |
| 1487 | /// # Example |
| 1488 | /// |
| 1489 | /// ```rust |
| 1490 | /// use euclid::vec3; |
| 1491 | /// use euclid::default::Vector3D; |
| 1492 | /// |
| 1493 | /// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0); |
| 1494 | /// let to: Vector3D<_> = vec3(8.0, -4.0, 0.0); |
| 1495 | /// |
| 1496 | /// assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0)); |
| 1497 | /// assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0)); |
| 1498 | /// assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5)); |
| 1499 | /// assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0)); |
| 1500 | /// assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0)); |
| 1501 | /// ``` |
| 1502 | #[inline ] |
| 1503 | pub fn lerp(self, other: Self, t: T) -> Self { |
| 1504 | let one_t = T::one() - t; |
| 1505 | self * one_t + other * t |
| 1506 | } |
| 1507 | |
| 1508 | /// Returns a reflection vector using an incident ray and a surface normal. |
| 1509 | #[inline ] |
| 1510 | pub fn reflect(self, normal: Self) -> Self { |
| 1511 | let two = T::one() + T::one(); |
| 1512 | self - normal * two * self.dot(normal) |
| 1513 | } |
| 1514 | } |
| 1515 | |
| 1516 | impl<T: PartialOrd, U> Vector3D<T, U> { |
| 1517 | /// Returns the vector each component of which are minimum of this vector and another. |
| 1518 | #[inline ] |
| 1519 | pub fn min(self, other: Self) -> Self { |
| 1520 | vec3( |
| 1521 | min(self.x, other.x), |
| 1522 | min(self.y, other.y), |
| 1523 | min(self.z, other.z), |
| 1524 | ) |
| 1525 | } |
| 1526 | |
| 1527 | /// Returns the vector each component of which are maximum of this vector and another. |
| 1528 | #[inline ] |
| 1529 | pub fn max(self, other: Self) -> Self { |
| 1530 | vec3( |
| 1531 | max(self.x, other.x), |
| 1532 | max(self.y, other.y), |
| 1533 | max(self.z, other.z), |
| 1534 | ) |
| 1535 | } |
| 1536 | |
| 1537 | /// Returns the vector each component of which is clamped by corresponding |
| 1538 | /// components of `start` and `end`. |
| 1539 | /// |
| 1540 | /// Shortcut for `self.max(start).min(end)`. |
| 1541 | #[inline ] |
| 1542 | pub fn clamp(self, start: Self, end: Self) -> Self |
| 1543 | where |
| 1544 | T: Copy, |
| 1545 | { |
| 1546 | self.max(start).min(end) |
| 1547 | } |
| 1548 | |
| 1549 | /// Returns vector with results of "greater than" operation on each component. |
| 1550 | #[inline ] |
| 1551 | pub fn greater_than(self, other: Self) -> BoolVector3D { |
| 1552 | BoolVector3D { |
| 1553 | x: self.x > other.x, |
| 1554 | y: self.y > other.y, |
| 1555 | z: self.z > other.z, |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | /// Returns vector with results of "lower than" operation on each component. |
| 1560 | #[inline ] |
| 1561 | pub fn lower_than(self, other: Self) -> BoolVector3D { |
| 1562 | BoolVector3D { |
| 1563 | x: self.x < other.x, |
| 1564 | y: self.y < other.y, |
| 1565 | z: self.z < other.z, |
| 1566 | } |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | impl<T: PartialEq, U> Vector3D<T, U> { |
| 1571 | /// Returns vector with results of "equal" operation on each component. |
| 1572 | #[inline ] |
| 1573 | pub fn equal(self, other: Self) -> BoolVector3D { |
| 1574 | BoolVector3D { |
| 1575 | x: self.x == other.x, |
| 1576 | y: self.y == other.y, |
| 1577 | z: self.z == other.z, |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | /// Returns vector with results of "not equal" operation on each component. |
| 1582 | #[inline ] |
| 1583 | pub fn not_equal(self, other: Self) -> BoolVector3D { |
| 1584 | BoolVector3D { |
| 1585 | x: self.x != other.x, |
| 1586 | y: self.y != other.y, |
| 1587 | z: self.z != other.z, |
| 1588 | } |
| 1589 | } |
| 1590 | } |
| 1591 | |
| 1592 | impl<T: NumCast + Copy, U> Vector3D<T, U> { |
| 1593 | /// Cast from one numeric representation to another, preserving the units. |
| 1594 | /// |
| 1595 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
| 1596 | /// as one would expect from a simple cast, but this behavior does not always make sense |
| 1597 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
| 1598 | #[inline ] |
| 1599 | pub fn cast<NewT: NumCast>(self) -> Vector3D<NewT, U> { |
| 1600 | self.try_cast().unwrap() |
| 1601 | } |
| 1602 | |
| 1603 | /// Fallible cast from one numeric representation to another, preserving the units. |
| 1604 | /// |
| 1605 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
| 1606 | /// as one would expect from a simple cast, but this behavior does not always make sense |
| 1607 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
| 1608 | pub fn try_cast<NewT: NumCast>(self) -> Option<Vector3D<NewT, U>> { |
| 1609 | match ( |
| 1610 | NumCast::from(self.x), |
| 1611 | NumCast::from(self.y), |
| 1612 | NumCast::from(self.z), |
| 1613 | ) { |
| 1614 | (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), |
| 1615 | _ => None, |
| 1616 | } |
| 1617 | } |
| 1618 | |
| 1619 | // Convenience functions for common casts. |
| 1620 | |
| 1621 | /// Cast into an `f32` vector. |
| 1622 | #[inline ] |
| 1623 | pub fn to_f32(self) -> Vector3D<f32, U> { |
| 1624 | self.cast() |
| 1625 | } |
| 1626 | |
| 1627 | /// Cast into an `f64` vector. |
| 1628 | #[inline ] |
| 1629 | pub fn to_f64(self) -> Vector3D<f64, U> { |
| 1630 | self.cast() |
| 1631 | } |
| 1632 | |
| 1633 | /// Cast into an `usize` vector, truncating decimals if any. |
| 1634 | /// |
| 1635 | /// When casting from floating vector vectors, it is worth considering whether |
| 1636 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 1637 | /// the desired conversion behavior. |
| 1638 | #[inline ] |
| 1639 | pub fn to_usize(self) -> Vector3D<usize, U> { |
| 1640 | self.cast() |
| 1641 | } |
| 1642 | |
| 1643 | /// Cast into an `u32` vector, truncating decimals if any. |
| 1644 | /// |
| 1645 | /// When casting from floating vector vectors, it is worth considering whether |
| 1646 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 1647 | /// the desired conversion behavior. |
| 1648 | #[inline ] |
| 1649 | pub fn to_u32(self) -> Vector3D<u32, U> { |
| 1650 | self.cast() |
| 1651 | } |
| 1652 | |
| 1653 | /// Cast into an `i32` vector, truncating decimals if any. |
| 1654 | /// |
| 1655 | /// When casting from floating vector vectors, it is worth considering whether |
| 1656 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 1657 | /// the desired conversion behavior. |
| 1658 | #[inline ] |
| 1659 | pub fn to_i32(self) -> Vector3D<i32, U> { |
| 1660 | self.cast() |
| 1661 | } |
| 1662 | |
| 1663 | /// Cast into an `i64` vector, truncating decimals if any. |
| 1664 | /// |
| 1665 | /// When casting from floating vector vectors, it is worth considering whether |
| 1666 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
| 1667 | /// the desired conversion behavior. |
| 1668 | #[inline ] |
| 1669 | pub fn to_i64(self) -> Vector3D<i64, U> { |
| 1670 | self.cast() |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | impl<T: Neg, U> Neg for Vector3D<T, U> { |
| 1675 | type Output = Vector3D<T::Output, U>; |
| 1676 | |
| 1677 | #[inline ] |
| 1678 | fn neg(self) -> Self::Output { |
| 1679 | vec3(-self.x, -self.y, -self.z) |
| 1680 | } |
| 1681 | } |
| 1682 | |
| 1683 | impl<T: Add, U> Add for Vector3D<T, U> { |
| 1684 | type Output = Vector3D<T::Output, U>; |
| 1685 | |
| 1686 | #[inline ] |
| 1687 | fn add(self, other: Self) -> Self::Output { |
| 1688 | vec3(self.x + other.x, self.y + other.y, self.z + other.z) |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | impl<'a, T: 'a + Add + Copy, U: 'a> Add<&Self> for Vector3D<T, U> { |
| 1693 | type Output = Vector3D<T::Output, U>; |
| 1694 | |
| 1695 | #[inline ] |
| 1696 | fn add(self, other: &Self) -> Self::Output { |
| 1697 | vec3(self.x + other.x, self.y + other.y, self.z + other.z) |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | impl<T: Add<Output = T> + Zero, U> Sum for Vector3D<T, U> { |
| 1702 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
| 1703 | iter.fold(Self::zero(), f:Add::add) |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector3D<T, U> { |
| 1708 | fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { |
| 1709 | iter.fold(Self::zero(), f:Add::add) |
| 1710 | } |
| 1711 | } |
| 1712 | |
| 1713 | impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector3D<T, U> { |
| 1714 | #[inline ] |
| 1715 | fn add_assign(&mut self, other: Self) { |
| 1716 | *self = *self + other |
| 1717 | } |
| 1718 | } |
| 1719 | |
| 1720 | impl<T: Sub, U> Sub for Vector3D<T, U> { |
| 1721 | type Output = Vector3D<T::Output, U>; |
| 1722 | |
| 1723 | #[inline ] |
| 1724 | fn sub(self, other: Self) -> Self::Output { |
| 1725 | vec3(self.x - other.x, self.y - other.y, self.z - other.z) |
| 1726 | } |
| 1727 | } |
| 1728 | |
| 1729 | impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Vector3D<T, U> { |
| 1730 | #[inline ] |
| 1731 | fn sub_assign(&mut self, other: Self) { |
| 1732 | *self = *self - other |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | impl<T: Copy + Mul, U> Mul<T> for Vector3D<T, U> { |
| 1737 | type Output = Vector3D<T::Output, U>; |
| 1738 | |
| 1739 | #[inline ] |
| 1740 | fn mul(self, scale: T) -> Self::Output { |
| 1741 | vec3(self.x * scale, self.y * scale, self.z * scale) |
| 1742 | } |
| 1743 | } |
| 1744 | |
| 1745 | impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector3D<T, U> { |
| 1746 | #[inline ] |
| 1747 | fn mul_assign(&mut self, scale: T) { |
| 1748 | *self = *self * scale |
| 1749 | } |
| 1750 | } |
| 1751 | |
| 1752 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector3D<T, U1> { |
| 1753 | type Output = Vector3D<T::Output, U2>; |
| 1754 | |
| 1755 | #[inline ] |
| 1756 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
| 1757 | vec3(self.x * scale.0, self.y * scale.0, self.z * scale.0) |
| 1758 | } |
| 1759 | } |
| 1760 | |
| 1761 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U> { |
| 1762 | #[inline ] |
| 1763 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
| 1764 | self.x *= scale.0; |
| 1765 | self.y *= scale.0; |
| 1766 | self.z *= scale.0; |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | impl<T: Copy + Div, U> Div<T> for Vector3D<T, U> { |
| 1771 | type Output = Vector3D<T::Output, U>; |
| 1772 | |
| 1773 | #[inline ] |
| 1774 | fn div(self, scale: T) -> Self::Output { |
| 1775 | vec3(self.x / scale, self.y / scale, self.z / scale) |
| 1776 | } |
| 1777 | } |
| 1778 | |
| 1779 | impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector3D<T, U> { |
| 1780 | #[inline ] |
| 1781 | fn div_assign(&mut self, scale: T) { |
| 1782 | *self = *self / scale |
| 1783 | } |
| 1784 | } |
| 1785 | |
| 1786 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector3D<T, U2> { |
| 1787 | type Output = Vector3D<T::Output, U1>; |
| 1788 | |
| 1789 | #[inline ] |
| 1790 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
| 1791 | vec3(self.x / scale.0, self.y / scale.0, self.z / scale.0) |
| 1792 | } |
| 1793 | } |
| 1794 | |
| 1795 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U> { |
| 1796 | #[inline ] |
| 1797 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
| 1798 | self.x /= scale.0; |
| 1799 | self.y /= scale.0; |
| 1800 | self.z /= scale.0; |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | impl<T: Round, U> Round for Vector3D<T, U> { |
| 1805 | /// See [`Vector3D::round`]. |
| 1806 | #[inline ] |
| 1807 | fn round(self) -> Self { |
| 1808 | self.round() |
| 1809 | } |
| 1810 | } |
| 1811 | |
| 1812 | impl<T: Ceil, U> Ceil for Vector3D<T, U> { |
| 1813 | /// See [`Vector3D::ceil`]. |
| 1814 | #[inline ] |
| 1815 | fn ceil(self) -> Self { |
| 1816 | self.ceil() |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | impl<T: Floor, U> Floor for Vector3D<T, U> { |
| 1821 | /// See [`Vector3D::floor`]. |
| 1822 | #[inline ] |
| 1823 | fn floor(self) -> Self { |
| 1824 | self.floor() |
| 1825 | } |
| 1826 | } |
| 1827 | |
| 1828 | impl<T: ApproxEq<T>, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U> { |
| 1829 | #[inline ] |
| 1830 | fn approx_epsilon() -> Self { |
| 1831 | vec3( |
| 1832 | T::approx_epsilon(), |
| 1833 | T::approx_epsilon(), |
| 1834 | T::approx_epsilon(), |
| 1835 | ) |
| 1836 | } |
| 1837 | |
| 1838 | #[inline ] |
| 1839 | fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { |
| 1840 | self.x.approx_eq_eps(&other.x, &eps.x) |
| 1841 | && self.y.approx_eq_eps(&other.y, &eps.y) |
| 1842 | && self.z.approx_eq_eps(&other.z, &eps.z) |
| 1843 | } |
| 1844 | } |
| 1845 | |
| 1846 | impl<T, U> From<Vector3D<T, U>> for [T; 3] { |
| 1847 | fn from(v: Vector3D<T, U>) -> Self { |
| 1848 | [v.x, v.y, v.z] |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | impl<T, U> From<[T; 3]> for Vector3D<T, U> { |
| 1853 | fn from([x: T, y: T, z: T]: [T; 3]) -> Self { |
| 1854 | vec3(x, y, z) |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | impl<T, U> From<Vector3D<T, U>> for (T, T, T) { |
| 1859 | fn from(v: Vector3D<T, U>) -> Self { |
| 1860 | (v.x, v.y, v.z) |
| 1861 | } |
| 1862 | } |
| 1863 | |
| 1864 | impl<T, U> From<(T, T, T)> for Vector3D<T, U> { |
| 1865 | fn from(tuple: (T, T, T)) -> Self { |
| 1866 | vec3(x:tuple.0, y:tuple.1, z:tuple.2) |
| 1867 | } |
| 1868 | } |
| 1869 | |
| 1870 | /// A 2d vector of booleans, useful for component-wise logic operations. |
| 1871 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
| 1872 | pub struct BoolVector2D { |
| 1873 | pub x: bool, |
| 1874 | pub y: bool, |
| 1875 | } |
| 1876 | |
| 1877 | /// A 3d vector of booleans, useful for component-wise logic operations. |
| 1878 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
| 1879 | pub struct BoolVector3D { |
| 1880 | pub x: bool, |
| 1881 | pub y: bool, |
| 1882 | pub z: bool, |
| 1883 | } |
| 1884 | |
| 1885 | impl BoolVector2D { |
| 1886 | /// Returns `true` if all components are `true` and `false` otherwise. |
| 1887 | #[inline ] |
| 1888 | pub fn all(self) -> bool { |
| 1889 | self.x && self.y |
| 1890 | } |
| 1891 | |
| 1892 | /// Returns `true` if any component are `true` and `false` otherwise. |
| 1893 | #[inline ] |
| 1894 | pub fn any(self) -> bool { |
| 1895 | self.x || self.y |
| 1896 | } |
| 1897 | |
| 1898 | /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. |
| 1899 | #[inline ] |
| 1900 | pub fn none(self) -> bool { |
| 1901 | !self.any() |
| 1902 | } |
| 1903 | |
| 1904 | /// Returns new vector with by-component AND operation applied. |
| 1905 | #[inline ] |
| 1906 | pub fn and(self, other: Self) -> Self { |
| 1907 | BoolVector2D { |
| 1908 | x: self.x && other.x, |
| 1909 | y: self.y && other.y, |
| 1910 | } |
| 1911 | } |
| 1912 | |
| 1913 | /// Returns new vector with by-component OR operation applied. |
| 1914 | #[inline ] |
| 1915 | pub fn or(self, other: Self) -> Self { |
| 1916 | BoolVector2D { |
| 1917 | x: self.x || other.x, |
| 1918 | y: self.y || other.y, |
| 1919 | } |
| 1920 | } |
| 1921 | |
| 1922 | /// Returns new vector with results of negation operation on each component. |
| 1923 | #[inline ] |
| 1924 | pub fn not(self) -> Self { |
| 1925 | BoolVector2D { |
| 1926 | x: !self.x, |
| 1927 | y: !self.y, |
| 1928 | } |
| 1929 | } |
| 1930 | |
| 1931 | /// Returns point, each component of which or from `a`, or from `b` depending on truly value |
| 1932 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
| 1933 | #[inline ] |
| 1934 | pub fn select_point<T, U>(self, a: Point2D<T, U>, b: Point2D<T, U>) -> Point2D<T, U> { |
| 1935 | point2( |
| 1936 | if self.x { a.x } else { b.x }, |
| 1937 | if self.y { a.y } else { b.y }, |
| 1938 | ) |
| 1939 | } |
| 1940 | |
| 1941 | /// Returns vector, each component of which or from `a`, or from `b` depending on truly value |
| 1942 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
| 1943 | #[inline ] |
| 1944 | pub fn select_vector<T, U>(self, a: Vector2D<T, U>, b: Vector2D<T, U>) -> Vector2D<T, U> { |
| 1945 | vec2( |
| 1946 | if self.x { a.x } else { b.x }, |
| 1947 | if self.y { a.y } else { b.y }, |
| 1948 | ) |
| 1949 | } |
| 1950 | |
| 1951 | /// Returns size, each component of which or from `a`, or from `b` depending on truly value |
| 1952 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
| 1953 | #[inline ] |
| 1954 | pub fn select_size<T, U>(self, a: Size2D<T, U>, b: Size2D<T, U>) -> Size2D<T, U> { |
| 1955 | size2( |
| 1956 | if self.x { a.width } else { b.width }, |
| 1957 | if self.y { a.height } else { b.height }, |
| 1958 | ) |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | impl BoolVector3D { |
| 1963 | /// Returns `true` if all components are `true` and `false` otherwise. |
| 1964 | #[inline ] |
| 1965 | pub fn all(self) -> bool { |
| 1966 | self.x && self.y && self.z |
| 1967 | } |
| 1968 | |
| 1969 | /// Returns `true` if any component are `true` and `false` otherwise. |
| 1970 | #[inline ] |
| 1971 | pub fn any(self) -> bool { |
| 1972 | self.x || self.y || self.z |
| 1973 | } |
| 1974 | |
| 1975 | /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. |
| 1976 | #[inline ] |
| 1977 | pub fn none(self) -> bool { |
| 1978 | !self.any() |
| 1979 | } |
| 1980 | |
| 1981 | /// Returns new vector with by-component AND operation applied. |
| 1982 | #[inline ] |
| 1983 | pub fn and(self, other: Self) -> Self { |
| 1984 | BoolVector3D { |
| 1985 | x: self.x && other.x, |
| 1986 | y: self.y && other.y, |
| 1987 | z: self.z && other.z, |
| 1988 | } |
| 1989 | } |
| 1990 | |
| 1991 | /// Returns new vector with by-component OR operation applied. |
| 1992 | #[inline ] |
| 1993 | pub fn or(self, other: Self) -> Self { |
| 1994 | BoolVector3D { |
| 1995 | x: self.x || other.x, |
| 1996 | y: self.y || other.y, |
| 1997 | z: self.z || other.z, |
| 1998 | } |
| 1999 | } |
| 2000 | |
| 2001 | /// Returns new vector with results of negation operation on each component. |
| 2002 | #[inline ] |
| 2003 | pub fn not(self) -> Self { |
| 2004 | BoolVector3D { |
| 2005 | x: !self.x, |
| 2006 | y: !self.y, |
| 2007 | z: !self.z, |
| 2008 | } |
| 2009 | } |
| 2010 | |
| 2011 | /// Returns point, each component of which or from `a`, or from `b` depending on truly value |
| 2012 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
| 2013 | #[inline ] |
| 2014 | pub fn select_point<T, U>(self, a: Point3D<T, U>, b: Point3D<T, U>) -> Point3D<T, U> { |
| 2015 | point3( |
| 2016 | if self.x { a.x } else { b.x }, |
| 2017 | if self.y { a.y } else { b.y }, |
| 2018 | if self.z { a.z } else { b.z }, |
| 2019 | ) |
| 2020 | } |
| 2021 | |
| 2022 | /// Returns vector, each component of which or from `a`, or from `b` depending on truly value |
| 2023 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
| 2024 | #[inline ] |
| 2025 | pub fn select_vector<T, U>(self, a: Vector3D<T, U>, b: Vector3D<T, U>) -> Vector3D<T, U> { |
| 2026 | vec3( |
| 2027 | if self.x { a.x } else { b.x }, |
| 2028 | if self.y { a.y } else { b.y }, |
| 2029 | if self.z { a.z } else { b.z }, |
| 2030 | ) |
| 2031 | } |
| 2032 | |
| 2033 | /// Returns size, each component of which or from `a`, or from `b` depending on truly value |
| 2034 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
| 2035 | #[inline ] |
| 2036 | #[must_use ] |
| 2037 | pub fn select_size<T, U>(self, a: Size3D<T, U>, b: Size3D<T, U>) -> Size3D<T, U> { |
| 2038 | size3( |
| 2039 | if self.x { a.width } else { b.width }, |
| 2040 | if self.y { a.height } else { b.height }, |
| 2041 | if self.z { a.depth } else { b.depth }, |
| 2042 | ) |
| 2043 | } |
| 2044 | |
| 2045 | /// Returns a 2d vector using this vector's x and y coordinates. |
| 2046 | #[inline ] |
| 2047 | pub fn xy(self) -> BoolVector2D { |
| 2048 | BoolVector2D { |
| 2049 | x: self.x, |
| 2050 | y: self.y, |
| 2051 | } |
| 2052 | } |
| 2053 | |
| 2054 | /// Returns a 2d vector using this vector's x and z coordinates. |
| 2055 | #[inline ] |
| 2056 | pub fn xz(self) -> BoolVector2D { |
| 2057 | BoolVector2D { |
| 2058 | x: self.x, |
| 2059 | y: self.z, |
| 2060 | } |
| 2061 | } |
| 2062 | |
| 2063 | /// Returns a 2d vector using this vector's y and z coordinates. |
| 2064 | #[inline ] |
| 2065 | pub fn yz(self) -> BoolVector2D { |
| 2066 | BoolVector2D { |
| 2067 | x: self.y, |
| 2068 | y: self.z, |
| 2069 | } |
| 2070 | } |
| 2071 | } |
| 2072 | |
| 2073 | #[cfg (feature = "arbitrary" )] |
| 2074 | impl<'a> arbitrary::Arbitrary<'a> for BoolVector2D { |
| 2075 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
| 2076 | Ok(BoolVector2D { |
| 2077 | x: arbitrary::Arbitrary::arbitrary(u)?, |
| 2078 | y: arbitrary::Arbitrary::arbitrary(u)?, |
| 2079 | }) |
| 2080 | } |
| 2081 | } |
| 2082 | |
| 2083 | #[cfg (feature = "arbitrary" )] |
| 2084 | impl<'a> arbitrary::Arbitrary<'a> for BoolVector3D { |
| 2085 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
| 2086 | Ok(BoolVector3D { |
| 2087 | x: arbitrary::Arbitrary::arbitrary(u)?, |
| 2088 | y: arbitrary::Arbitrary::arbitrary(u)?, |
| 2089 | z: arbitrary::Arbitrary::arbitrary(u)?, |
| 2090 | }) |
| 2091 | } |
| 2092 | } |
| 2093 | |
| 2094 | /// Convenience constructor. |
| 2095 | #[inline ] |
| 2096 | pub const fn vec2<T, U>(x: T, y: T) -> Vector2D<T, U> { |
| 2097 | Vector2D { |
| 2098 | x, |
| 2099 | y, |
| 2100 | _unit: PhantomData, |
| 2101 | } |
| 2102 | } |
| 2103 | |
| 2104 | /// Convenience constructor. |
| 2105 | #[inline ] |
| 2106 | pub const fn vec3<T, U>(x: T, y: T, z: T) -> Vector3D<T, U> { |
| 2107 | Vector3D { |
| 2108 | x, |
| 2109 | y, |
| 2110 | z, |
| 2111 | _unit: PhantomData, |
| 2112 | } |
| 2113 | } |
| 2114 | |
| 2115 | /// Shorthand for `BoolVector2D { x, y }`. |
| 2116 | #[inline ] |
| 2117 | pub const fn bvec2(x: bool, y: bool) -> BoolVector2D { |
| 2118 | BoolVector2D { x, y } |
| 2119 | } |
| 2120 | |
| 2121 | /// Shorthand for `BoolVector3D { x, y, z }`. |
| 2122 | #[inline ] |
| 2123 | pub const fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { |
| 2124 | BoolVector3D { x, y, z } |
| 2125 | } |
| 2126 | |
| 2127 | #[cfg (test)] |
| 2128 | mod vector2d { |
| 2129 | use crate::scale::Scale; |
| 2130 | use crate::{default, vec2}; |
| 2131 | |
| 2132 | #[cfg (feature = "mint" )] |
| 2133 | use mint; |
| 2134 | type Vec2 = default::Vector2D<f32>; |
| 2135 | |
| 2136 | #[test ] |
| 2137 | pub fn test_scalar_mul() { |
| 2138 | let p1: Vec2 = vec2(3.0, 5.0); |
| 2139 | |
| 2140 | let result = p1 * 5.0; |
| 2141 | |
| 2142 | assert_eq!(result, Vec2::new(15.0, 25.0)); |
| 2143 | } |
| 2144 | |
| 2145 | #[test ] |
| 2146 | pub fn test_dot() { |
| 2147 | let p1: Vec2 = vec2(2.0, 7.0); |
| 2148 | let p2: Vec2 = vec2(13.0, 11.0); |
| 2149 | assert_eq!(p1.dot(p2), 103.0); |
| 2150 | } |
| 2151 | |
| 2152 | #[test ] |
| 2153 | pub fn test_cross() { |
| 2154 | let p1: Vec2 = vec2(4.0, 7.0); |
| 2155 | let p2: Vec2 = vec2(13.0, 8.0); |
| 2156 | let r = p1.cross(p2); |
| 2157 | assert_eq!(r, -59.0); |
| 2158 | } |
| 2159 | |
| 2160 | #[test ] |
| 2161 | pub fn test_normalize() { |
| 2162 | use std::f32; |
| 2163 | |
| 2164 | let p0: Vec2 = Vec2::zero(); |
| 2165 | let p1: Vec2 = vec2(4.0, 0.0); |
| 2166 | let p2: Vec2 = vec2(3.0, -4.0); |
| 2167 | assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); |
| 2168 | assert_eq!(p1.normalize(), vec2(1.0, 0.0)); |
| 2169 | assert_eq!(p2.normalize(), vec2(0.6, -0.8)); |
| 2170 | |
| 2171 | let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); |
| 2172 | assert_ne!( |
| 2173 | p3.normalize(), |
| 2174 | vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) |
| 2175 | ); |
| 2176 | assert_eq!( |
| 2177 | p3.robust_normalize(), |
| 2178 | vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) |
| 2179 | ); |
| 2180 | |
| 2181 | let p4: Vec2 = Vec2::zero(); |
| 2182 | assert!(p4.try_normalize().is_none()); |
| 2183 | let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE); |
| 2184 | assert!(p5.try_normalize().is_none()); |
| 2185 | |
| 2186 | let p6: Vec2 = vec2(4.0, 0.0); |
| 2187 | let p7: Vec2 = vec2(3.0, -4.0); |
| 2188 | assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0)); |
| 2189 | assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8)); |
| 2190 | } |
| 2191 | |
| 2192 | #[test ] |
| 2193 | pub fn test_min() { |
| 2194 | let p1: Vec2 = vec2(1.0, 3.0); |
| 2195 | let p2: Vec2 = vec2(2.0, 2.0); |
| 2196 | |
| 2197 | let result = p1.min(p2); |
| 2198 | |
| 2199 | assert_eq!(result, vec2(1.0, 2.0)); |
| 2200 | } |
| 2201 | |
| 2202 | #[test ] |
| 2203 | pub fn test_max() { |
| 2204 | let p1: Vec2 = vec2(1.0, 3.0); |
| 2205 | let p2: Vec2 = vec2(2.0, 2.0); |
| 2206 | |
| 2207 | let result = p1.max(p2); |
| 2208 | |
| 2209 | assert_eq!(result, vec2(2.0, 3.0)); |
| 2210 | } |
| 2211 | |
| 2212 | #[test ] |
| 2213 | pub fn test_angle_from_x_axis() { |
| 2214 | use crate::approxeq::ApproxEq; |
| 2215 | use core::f32::consts::FRAC_PI_2; |
| 2216 | |
| 2217 | let right: Vec2 = vec2(10.0, 0.0); |
| 2218 | let down: Vec2 = vec2(0.0, 4.0); |
| 2219 | let up: Vec2 = vec2(0.0, -1.0); |
| 2220 | |
| 2221 | assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); |
| 2222 | assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); |
| 2223 | assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); |
| 2224 | } |
| 2225 | |
| 2226 | #[test ] |
| 2227 | pub fn test_angle_to() { |
| 2228 | use crate::approxeq::ApproxEq; |
| 2229 | use core::f32::consts::FRAC_PI_2; |
| 2230 | |
| 2231 | let right: Vec2 = vec2(10.0, 0.0); |
| 2232 | let right2: Vec2 = vec2(1.0, 0.0); |
| 2233 | let up: Vec2 = vec2(0.0, -1.0); |
| 2234 | let up_left: Vec2 = vec2(-1.0, -1.0); |
| 2235 | |
| 2236 | assert!(right.angle_to(right2).get().approx_eq(&0.0)); |
| 2237 | assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2)); |
| 2238 | assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); |
| 2239 | assert!(up_left |
| 2240 | .angle_to(up) |
| 2241 | .get() |
| 2242 | .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); |
| 2243 | } |
| 2244 | |
| 2245 | #[test ] |
| 2246 | pub fn test_with_max_length() { |
| 2247 | use crate::approxeq::ApproxEq; |
| 2248 | |
| 2249 | let v1: Vec2 = vec2(0.5, 0.5); |
| 2250 | let v2: Vec2 = vec2(1.0, 0.0); |
| 2251 | let v3: Vec2 = vec2(0.1, 0.2); |
| 2252 | let v4: Vec2 = vec2(2.0, -2.0); |
| 2253 | let v5: Vec2 = vec2(1.0, 2.0); |
| 2254 | let v6: Vec2 = vec2(-1.0, 3.0); |
| 2255 | |
| 2256 | assert_eq!(v1.with_max_length(1.0), v1); |
| 2257 | assert_eq!(v2.with_max_length(1.0), v2); |
| 2258 | assert_eq!(v3.with_max_length(1.0), v3); |
| 2259 | assert_eq!(v4.with_max_length(10.0), v4); |
| 2260 | assert_eq!(v5.with_max_length(10.0), v5); |
| 2261 | assert_eq!(v6.with_max_length(10.0), v6); |
| 2262 | |
| 2263 | let v4_clamped = v4.with_max_length(1.0); |
| 2264 | assert!(v4_clamped.length().approx_eq(&1.0)); |
| 2265 | assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); |
| 2266 | |
| 2267 | let v5_clamped = v5.with_max_length(1.5); |
| 2268 | assert!(v5_clamped.length().approx_eq(&1.5)); |
| 2269 | assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); |
| 2270 | |
| 2271 | let v6_clamped = v6.with_max_length(2.5); |
| 2272 | assert!(v6_clamped.length().approx_eq(&2.5)); |
| 2273 | assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); |
| 2274 | } |
| 2275 | |
| 2276 | #[test ] |
| 2277 | pub fn test_project_onto_vector() { |
| 2278 | use crate::approxeq::ApproxEq; |
| 2279 | |
| 2280 | let v1: Vec2 = vec2(1.0, 2.0); |
| 2281 | let x: Vec2 = vec2(1.0, 0.0); |
| 2282 | let y: Vec2 = vec2(0.0, 1.0); |
| 2283 | |
| 2284 | assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0))); |
| 2285 | assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0))); |
| 2286 | assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0))); |
| 2287 | assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0))); |
| 2288 | assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); |
| 2289 | assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); |
| 2290 | } |
| 2291 | |
| 2292 | #[cfg (feature = "mint" )] |
| 2293 | #[test ] |
| 2294 | pub fn test_mint() { |
| 2295 | let v1 = Vec2::new(1.0, 3.0); |
| 2296 | let vm: mint::Vector2<_> = v1.into(); |
| 2297 | let v2 = Vec2::from(vm); |
| 2298 | |
| 2299 | assert_eq!(v1, v2); |
| 2300 | } |
| 2301 | |
| 2302 | pub enum Mm {} |
| 2303 | pub enum Cm {} |
| 2304 | |
| 2305 | pub type Vector2DMm<T> = super::Vector2D<T, Mm>; |
| 2306 | pub type Vector2DCm<T> = super::Vector2D<T, Cm>; |
| 2307 | |
| 2308 | #[test ] |
| 2309 | pub fn test_add() { |
| 2310 | let p1 = Vector2DMm::new(1.0, 2.0); |
| 2311 | let p2 = Vector2DMm::new(3.0, 4.0); |
| 2312 | |
| 2313 | assert_eq!(p1 + p2, vec2(4.0, 6.0)); |
| 2314 | assert_eq!(p1 + &p2, vec2(4.0, 6.0)); |
| 2315 | } |
| 2316 | |
| 2317 | #[test ] |
| 2318 | pub fn test_sum() { |
| 2319 | let vecs = [ |
| 2320 | Vector2DMm::new(1.0, 2.0), |
| 2321 | Vector2DMm::new(3.0, 4.0), |
| 2322 | Vector2DMm::new(5.0, 6.0), |
| 2323 | ]; |
| 2324 | let sum = Vector2DMm::new(9.0, 12.0); |
| 2325 | assert_eq!(vecs.iter().sum::<Vector2DMm<_>>(), sum); |
| 2326 | } |
| 2327 | |
| 2328 | #[test ] |
| 2329 | pub fn test_add_assign() { |
| 2330 | let mut p1 = Vector2DMm::new(1.0, 2.0); |
| 2331 | p1 += vec2(3.0, 4.0); |
| 2332 | |
| 2333 | assert_eq!(p1, vec2(4.0, 6.0)); |
| 2334 | } |
| 2335 | |
| 2336 | #[test ] |
| 2337 | pub fn test_typed_scalar_mul() { |
| 2338 | let p1 = Vector2DMm::new(1.0, 2.0); |
| 2339 | let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1); |
| 2340 | |
| 2341 | let result: Vector2DCm<f32> = p1 * cm_per_mm; |
| 2342 | |
| 2343 | assert_eq!(result, vec2(0.1, 0.2)); |
| 2344 | } |
| 2345 | |
| 2346 | #[test ] |
| 2347 | pub fn test_swizzling() { |
| 2348 | let p: default::Vector2D<i32> = vec2(1, 2); |
| 2349 | assert_eq!(p.yx(), vec2(2, 1)); |
| 2350 | } |
| 2351 | |
| 2352 | #[test ] |
| 2353 | pub fn test_reflect() { |
| 2354 | use crate::approxeq::ApproxEq; |
| 2355 | let a: Vec2 = vec2(1.0, 3.0); |
| 2356 | let n1: Vec2 = vec2(0.0, -1.0); |
| 2357 | let n2: Vec2 = vec2(1.0, -1.0).normalize(); |
| 2358 | |
| 2359 | assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0))); |
| 2360 | assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0))); |
| 2361 | } |
| 2362 | } |
| 2363 | |
| 2364 | #[cfg (test)] |
| 2365 | mod vector3d { |
| 2366 | use crate::scale::Scale; |
| 2367 | use crate::{default, vec2, vec3}; |
| 2368 | #[cfg (feature = "mint" )] |
| 2369 | use mint; |
| 2370 | |
| 2371 | type Vec3 = default::Vector3D<f32>; |
| 2372 | |
| 2373 | #[test ] |
| 2374 | pub fn test_add() { |
| 2375 | let p1 = Vec3::new(1.0, 2.0, 3.0); |
| 2376 | let p2 = Vec3::new(4.0, 5.0, 6.0); |
| 2377 | |
| 2378 | assert_eq!(p1 + p2, vec3(5.0, 7.0, 9.0)); |
| 2379 | assert_eq!(p1 + &p2, vec3(5.0, 7.0, 9.0)); |
| 2380 | } |
| 2381 | |
| 2382 | #[test ] |
| 2383 | pub fn test_sum() { |
| 2384 | let vecs = [ |
| 2385 | Vec3::new(1.0, 2.0, 3.0), |
| 2386 | Vec3::new(4.0, 5.0, 6.0), |
| 2387 | Vec3::new(7.0, 8.0, 9.0), |
| 2388 | ]; |
| 2389 | let sum = Vec3::new(12.0, 15.0, 18.0); |
| 2390 | assert_eq!(vecs.iter().sum::<Vec3>(), sum); |
| 2391 | } |
| 2392 | |
| 2393 | #[test ] |
| 2394 | pub fn test_dot() { |
| 2395 | let p1: Vec3 = vec3(7.0, 21.0, 32.0); |
| 2396 | let p2: Vec3 = vec3(43.0, 5.0, 16.0); |
| 2397 | assert_eq!(p1.dot(p2), 918.0); |
| 2398 | } |
| 2399 | |
| 2400 | #[test ] |
| 2401 | pub fn test_cross() { |
| 2402 | let p1: Vec3 = vec3(4.0, 7.0, 9.0); |
| 2403 | let p2: Vec3 = vec3(13.0, 8.0, 3.0); |
| 2404 | let p3 = p1.cross(p2); |
| 2405 | assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); |
| 2406 | } |
| 2407 | |
| 2408 | #[test ] |
| 2409 | pub fn test_normalize() { |
| 2410 | use std::f32; |
| 2411 | |
| 2412 | let p0: Vec3 = Vec3::zero(); |
| 2413 | let p1: Vec3 = vec3(0.0, -6.0, 0.0); |
| 2414 | let p2: Vec3 = vec3(1.0, 2.0, -2.0); |
| 2415 | assert!( |
| 2416 | p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() |
| 2417 | ); |
| 2418 | assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); |
| 2419 | assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); |
| 2420 | |
| 2421 | let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); |
| 2422 | assert_ne!( |
| 2423 | p3.normalize(), |
| 2424 | vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) |
| 2425 | ); |
| 2426 | assert_eq!( |
| 2427 | p3.robust_normalize(), |
| 2428 | vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) |
| 2429 | ); |
| 2430 | |
| 2431 | let p4: Vec3 = Vec3::zero(); |
| 2432 | assert!(p4.try_normalize().is_none()); |
| 2433 | let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE); |
| 2434 | assert!(p5.try_normalize().is_none()); |
| 2435 | |
| 2436 | let p6: Vec3 = vec3(4.0, 0.0, 3.0); |
| 2437 | let p7: Vec3 = vec3(3.0, -4.0, 0.0); |
| 2438 | assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6)); |
| 2439 | assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0)); |
| 2440 | } |
| 2441 | |
| 2442 | #[test ] |
| 2443 | pub fn test_min() { |
| 2444 | let p1: Vec3 = vec3(1.0, 3.0, 5.0); |
| 2445 | let p2: Vec3 = vec3(2.0, 2.0, -1.0); |
| 2446 | |
| 2447 | let result = p1.min(p2); |
| 2448 | |
| 2449 | assert_eq!(result, vec3(1.0, 2.0, -1.0)); |
| 2450 | } |
| 2451 | |
| 2452 | #[test ] |
| 2453 | pub fn test_max() { |
| 2454 | let p1: Vec3 = vec3(1.0, 3.0, 5.0); |
| 2455 | let p2: Vec3 = vec3(2.0, 2.0, -1.0); |
| 2456 | |
| 2457 | let result = p1.max(p2); |
| 2458 | |
| 2459 | assert_eq!(result, vec3(2.0, 3.0, 5.0)); |
| 2460 | } |
| 2461 | |
| 2462 | #[test ] |
| 2463 | pub fn test_clamp() { |
| 2464 | let p1: Vec3 = vec3(1.0, -1.0, 5.0); |
| 2465 | let p2: Vec3 = vec3(2.0, 5.0, 10.0); |
| 2466 | let p3: Vec3 = vec3(-1.0, 2.0, 20.0); |
| 2467 | |
| 2468 | let result = p3.clamp(p1, p2); |
| 2469 | |
| 2470 | assert_eq!(result, vec3(1.0, 2.0, 10.0)); |
| 2471 | } |
| 2472 | |
| 2473 | #[test ] |
| 2474 | pub fn test_typed_scalar_mul() { |
| 2475 | enum Mm {} |
| 2476 | enum Cm {} |
| 2477 | |
| 2478 | let p1 = super::Vector3D::<f32, Mm>::new(1.0, 2.0, 3.0); |
| 2479 | let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1); |
| 2480 | |
| 2481 | let result: super::Vector3D<f32, Cm> = p1 * cm_per_mm; |
| 2482 | |
| 2483 | assert_eq!(result, vec3(0.1, 0.2, 0.3)); |
| 2484 | } |
| 2485 | |
| 2486 | #[test ] |
| 2487 | pub fn test_swizzling() { |
| 2488 | let p: Vec3 = vec3(1.0, 2.0, 3.0); |
| 2489 | assert_eq!(p.xy(), vec2(1.0, 2.0)); |
| 2490 | assert_eq!(p.xz(), vec2(1.0, 3.0)); |
| 2491 | assert_eq!(p.yz(), vec2(2.0, 3.0)); |
| 2492 | } |
| 2493 | |
| 2494 | #[cfg (feature = "mint" )] |
| 2495 | #[test ] |
| 2496 | pub fn test_mint() { |
| 2497 | let v1 = Vec3::new(1.0, 3.0, 5.0); |
| 2498 | let vm: mint::Vector3<_> = v1.into(); |
| 2499 | let v2 = Vec3::from(vm); |
| 2500 | |
| 2501 | assert_eq!(v1, v2); |
| 2502 | } |
| 2503 | |
| 2504 | #[test ] |
| 2505 | pub fn test_reflect() { |
| 2506 | use crate::approxeq::ApproxEq; |
| 2507 | let a: Vec3 = vec3(1.0, 3.0, 2.0); |
| 2508 | let n1: Vec3 = vec3(0.0, -1.0, 0.0); |
| 2509 | let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize(); |
| 2510 | |
| 2511 | assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0))); |
| 2512 | assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0))); |
| 2513 | } |
| 2514 | |
| 2515 | #[test ] |
| 2516 | pub fn test_angle_to() { |
| 2517 | use crate::approxeq::ApproxEq; |
| 2518 | use core::f32::consts::FRAC_PI_2; |
| 2519 | |
| 2520 | let right: Vec3 = vec3(10.0, 0.0, 0.0); |
| 2521 | let right2: Vec3 = vec3(1.0, 0.0, 0.0); |
| 2522 | let up: Vec3 = vec3(0.0, -1.0, 0.0); |
| 2523 | let up_left: Vec3 = vec3(-1.0, -1.0, 0.0); |
| 2524 | |
| 2525 | assert!(right.angle_to(right2).get().approx_eq(&0.0)); |
| 2526 | assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2)); |
| 2527 | assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); |
| 2528 | assert!(up_left |
| 2529 | .angle_to(up) |
| 2530 | .get() |
| 2531 | .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); |
| 2532 | } |
| 2533 | |
| 2534 | #[test ] |
| 2535 | pub fn test_with_max_length() { |
| 2536 | use crate::approxeq::ApproxEq; |
| 2537 | |
| 2538 | let v1: Vec3 = vec3(0.5, 0.5, 0.0); |
| 2539 | let v2: Vec3 = vec3(1.0, 0.0, 0.0); |
| 2540 | let v3: Vec3 = vec3(0.1, 0.2, 0.3); |
| 2541 | let v4: Vec3 = vec3(2.0, -2.0, 2.0); |
| 2542 | let v5: Vec3 = vec3(1.0, 2.0, -3.0); |
| 2543 | let v6: Vec3 = vec3(-1.0, 3.0, 2.0); |
| 2544 | |
| 2545 | assert_eq!(v1.with_max_length(1.0), v1); |
| 2546 | assert_eq!(v2.with_max_length(1.0), v2); |
| 2547 | assert_eq!(v3.with_max_length(1.0), v3); |
| 2548 | assert_eq!(v4.with_max_length(10.0), v4); |
| 2549 | assert_eq!(v5.with_max_length(10.0), v5); |
| 2550 | assert_eq!(v6.with_max_length(10.0), v6); |
| 2551 | |
| 2552 | let v4_clamped = v4.with_max_length(1.0); |
| 2553 | assert!(v4_clamped.length().approx_eq(&1.0)); |
| 2554 | assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); |
| 2555 | |
| 2556 | let v5_clamped = v5.with_max_length(1.5); |
| 2557 | assert!(v5_clamped.length().approx_eq(&1.5)); |
| 2558 | assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); |
| 2559 | |
| 2560 | let v6_clamped = v6.with_max_length(2.5); |
| 2561 | assert!(v6_clamped.length().approx_eq(&2.5)); |
| 2562 | assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); |
| 2563 | } |
| 2564 | |
| 2565 | #[test ] |
| 2566 | pub fn test_project_onto_vector() { |
| 2567 | use crate::approxeq::ApproxEq; |
| 2568 | |
| 2569 | let v1: Vec3 = vec3(1.0, 2.0, 3.0); |
| 2570 | let x: Vec3 = vec3(1.0, 0.0, 0.0); |
| 2571 | let y: Vec3 = vec3(0.0, 1.0, 0.0); |
| 2572 | let z: Vec3 = vec3(0.0, 0.0, 1.0); |
| 2573 | |
| 2574 | assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0))); |
| 2575 | assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0))); |
| 2576 | assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0))); |
| 2577 | assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0))); |
| 2578 | assert!(v1 |
| 2579 | .project_onto_vector(x * 10.0) |
| 2580 | .approx_eq(&vec3(1.0, 0.0, 0.0))); |
| 2581 | assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); |
| 2582 | assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); |
| 2583 | } |
| 2584 | } |
| 2585 | |
| 2586 | #[cfg (test)] |
| 2587 | mod bool_vector { |
| 2588 | use super::*; |
| 2589 | use crate::default; |
| 2590 | type Vec2 = default::Vector2D<f32>; |
| 2591 | type Vec3 = default::Vector3D<f32>; |
| 2592 | |
| 2593 | #[test ] |
| 2594 | fn test_bvec2() { |
| 2595 | assert_eq!( |
| 2596 | Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), |
| 2597 | bvec2(false, true), |
| 2598 | ); |
| 2599 | |
| 2600 | assert_eq!( |
| 2601 | Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), |
| 2602 | bvec2(true, false), |
| 2603 | ); |
| 2604 | |
| 2605 | assert_eq!( |
| 2606 | Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), |
| 2607 | bvec2(true, false), |
| 2608 | ); |
| 2609 | |
| 2610 | assert_eq!( |
| 2611 | Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), |
| 2612 | bvec2(false, true), |
| 2613 | ); |
| 2614 | |
| 2615 | assert!(bvec2(true, true).any()); |
| 2616 | assert!(bvec2(false, true).any()); |
| 2617 | assert!(bvec2(true, false).any()); |
| 2618 | assert!(!bvec2(false, false).any()); |
| 2619 | assert!(bvec2(false, false).none()); |
| 2620 | assert!(bvec2(true, true).all()); |
| 2621 | assert!(!bvec2(false, true).all()); |
| 2622 | assert!(!bvec2(true, false).all()); |
| 2623 | assert!(!bvec2(false, false).all()); |
| 2624 | |
| 2625 | assert_eq!(bvec2(true, false).not(), bvec2(false, true)); |
| 2626 | assert_eq!( |
| 2627 | bvec2(true, false).and(bvec2(true, true)), |
| 2628 | bvec2(true, false) |
| 2629 | ); |
| 2630 | assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); |
| 2631 | |
| 2632 | assert_eq!( |
| 2633 | bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), |
| 2634 | Vec2::new(1.0, 4.0), |
| 2635 | ); |
| 2636 | } |
| 2637 | |
| 2638 | #[test ] |
| 2639 | fn test_bvec3() { |
| 2640 | assert_eq!( |
| 2641 | Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), |
| 2642 | bvec3(false, false, true), |
| 2643 | ); |
| 2644 | |
| 2645 | assert_eq!( |
| 2646 | Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), |
| 2647 | bvec3(true, false, false), |
| 2648 | ); |
| 2649 | |
| 2650 | assert_eq!( |
| 2651 | Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), |
| 2652 | bvec3(false, true, false), |
| 2653 | ); |
| 2654 | |
| 2655 | assert_eq!( |
| 2656 | Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), |
| 2657 | bvec3(true, false, true), |
| 2658 | ); |
| 2659 | |
| 2660 | assert!(bvec3(true, true, false).any()); |
| 2661 | assert!(bvec3(false, true, false).any()); |
| 2662 | assert!(bvec3(true, false, false).any()); |
| 2663 | assert!(!bvec3(false, false, false).any()); |
| 2664 | assert!(bvec3(false, false, false).none()); |
| 2665 | assert!(bvec3(true, true, true).all()); |
| 2666 | assert!(!bvec3(false, true, false).all()); |
| 2667 | assert!(!bvec3(true, false, false).all()); |
| 2668 | assert!(!bvec3(false, false, false).all()); |
| 2669 | |
| 2670 | assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); |
| 2671 | assert_eq!( |
| 2672 | bvec3(true, false, true).and(bvec3(true, true, false)), |
| 2673 | bvec3(true, false, false) |
| 2674 | ); |
| 2675 | assert_eq!( |
| 2676 | bvec3(true, false, false).or(bvec3(true, true, false)), |
| 2677 | bvec3(true, true, false) |
| 2678 | ); |
| 2679 | |
| 2680 | assert_eq!( |
| 2681 | bvec3(true, false, true) |
| 2682 | .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), |
| 2683 | Vec3::new(1.0, 5.0, 3.0), |
| 2684 | ); |
| 2685 | } |
| 2686 | } |
| 2687 | |