1 | // Copyright 2013 The Servo Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | use super::UnknownUnit; |
11 | use crate::approxeq::ApproxEq; |
12 | use crate::approxord::{max, min}; |
13 | use crate::length::Length; |
14 | use crate::num::*; |
15 | use crate::point::{point2, point3, Point2D, Point3D}; |
16 | use crate::scale::Scale; |
17 | use crate::size::{size2, size3, Size2D, Size3D}; |
18 | use crate::transform2d::Transform2D; |
19 | use crate::transform3d::Transform3D; |
20 | use crate::trig::Trig; |
21 | use crate::Angle; |
22 | use core::cmp::{Eq, PartialEq}; |
23 | use core::fmt; |
24 | use core::hash::Hash; |
25 | use core::iter::Sum; |
26 | use core::marker::PhantomData; |
27 | use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; |
28 | #[cfg (feature = "mint" )] |
29 | use mint; |
30 | use num_traits::real::Real; |
31 | use num_traits::{Float, NumCast, Signed}; |
32 | #[cfg (feature = "serde" )] |
33 | use serde; |
34 | |
35 | #[cfg (feature = "bytemuck" )] |
36 | use bytemuck::{Pod, Zeroable}; |
37 | |
38 | /// A 2d Vector tagged with a unit. |
39 | #[repr (C)] |
40 | pub struct Vector2D<T, U> { |
41 | /// The `x` (traditionally, horizontal) coordinate. |
42 | pub x: T, |
43 | /// The `y` (traditionally, vertical) coordinate. |
44 | pub y: T, |
45 | #[doc (hidden)] |
46 | pub _unit: PhantomData<U>, |
47 | } |
48 | |
49 | mint_vec!(Vector2D[x, y] = Vector2); |
50 | |
51 | impl<T: Copy, U> Copy for Vector2D<T, U> {} |
52 | |
53 | impl<T: Clone, U> Clone for Vector2D<T, U> { |
54 | fn clone(&self) -> Self { |
55 | Vector2D { |
56 | x: self.x.clone(), |
57 | y: self.y.clone(), |
58 | _unit: PhantomData, |
59 | } |
60 | } |
61 | } |
62 | |
63 | #[cfg (feature = "serde" )] |
64 | impl<'de, T, U> serde::Deserialize<'de> for Vector2D<T, U> |
65 | where |
66 | T: serde::Deserialize<'de>, |
67 | { |
68 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
69 | where |
70 | D: serde::Deserializer<'de>, |
71 | { |
72 | let (x, y) = serde::Deserialize::deserialize(deserializer)?; |
73 | Ok(Vector2D { |
74 | x, |
75 | y, |
76 | _unit: PhantomData, |
77 | }) |
78 | } |
79 | } |
80 | |
81 | #[cfg (feature = "serde" )] |
82 | impl<T, U> serde::Serialize for Vector2D<T, U> |
83 | where |
84 | T: serde::Serialize, |
85 | { |
86 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
87 | where |
88 | S: serde::Serializer, |
89 | { |
90 | (&self.x, &self.y).serialize(serializer) |
91 | } |
92 | } |
93 | |
94 | #[cfg (feature = "arbitrary" )] |
95 | impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector2D<T, U> |
96 | where |
97 | T: arbitrary::Arbitrary<'a>, |
98 | { |
99 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
100 | let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; |
101 | Ok(Vector2D { |
102 | x, |
103 | y, |
104 | _unit: PhantomData, |
105 | }) |
106 | } |
107 | } |
108 | |
109 | #[cfg (feature = "bytemuck" )] |
110 | unsafe impl<T: Zeroable, U> Zeroable for Vector2D<T, U> {} |
111 | |
112 | #[cfg (feature = "bytemuck" )] |
113 | unsafe impl<T: Pod, U: 'static> Pod for Vector2D<T, U> {} |
114 | |
115 | impl<T: Eq, U> Eq for Vector2D<T, U> {} |
116 | |
117 | impl<T: PartialEq, U> PartialEq for Vector2D<T, U> { |
118 | fn eq(&self, other: &Self) -> bool { |
119 | self.x == other.x && self.y == other.y |
120 | } |
121 | } |
122 | |
123 | impl<T: Hash, U> Hash for Vector2D<T, U> { |
124 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
125 | self.x.hash(state:h); |
126 | self.y.hash(state:h); |
127 | } |
128 | } |
129 | |
130 | impl<T: Zero, U> Zero for Vector2D<T, U> { |
131 | /// Constructor, setting all components to zero. |
132 | #[inline ] |
133 | fn zero() -> Self { |
134 | Vector2D::new(x:Zero::zero(), y:Zero::zero()) |
135 | } |
136 | } |
137 | |
138 | impl<T: fmt::Debug, U> fmt::Debug for Vector2D<T, U> { |
139 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
140 | f.debug_tuple(name:"" ).field(&self.x).field(&self.y).finish() |
141 | } |
142 | } |
143 | |
144 | impl<T: Default, U> Default for Vector2D<T, U> { |
145 | fn default() -> Self { |
146 | Vector2D::new(x:Default::default(), y:Default::default()) |
147 | } |
148 | } |
149 | |
150 | impl<T, U> Vector2D<T, U> { |
151 | /// Constructor, setting all components to zero. |
152 | #[inline ] |
153 | pub fn zero() -> Self |
154 | where |
155 | T: Zero, |
156 | { |
157 | Vector2D::new(Zero::zero(), Zero::zero()) |
158 | } |
159 | |
160 | /// Constructor, setting all components to one. |
161 | #[inline ] |
162 | pub fn one() -> Self |
163 | where |
164 | T: One, |
165 | { |
166 | Vector2D::new(One::one(), One::one()) |
167 | } |
168 | |
169 | /// Constructor taking scalar values directly. |
170 | #[inline ] |
171 | pub const fn new(x: T, y: T) -> Self { |
172 | Vector2D { |
173 | x, |
174 | y, |
175 | _unit: PhantomData, |
176 | } |
177 | } |
178 | |
179 | /// Constructor setting all components to the same value. |
180 | #[inline ] |
181 | pub fn splat(v: T) -> Self |
182 | where |
183 | T: Clone, |
184 | { |
185 | Vector2D { |
186 | x: v.clone(), |
187 | y: v, |
188 | _unit: PhantomData, |
189 | } |
190 | } |
191 | |
192 | /// Constructor taking angle and length |
193 | pub fn from_angle_and_length(angle: Angle<T>, length: T) -> Self |
194 | where |
195 | T: Trig + Mul<Output = T> + Copy, |
196 | { |
197 | vec2(length * angle.radians.cos(), length * angle.radians.sin()) |
198 | } |
199 | |
200 | /// Constructor taking properly Lengths instead of scalar values. |
201 | #[inline ] |
202 | pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self { |
203 | vec2(x.0, y.0) |
204 | } |
205 | |
206 | /// Tag a unit-less value with units. |
207 | #[inline ] |
208 | pub fn from_untyped(p: Vector2D<T, UnknownUnit>) -> Self { |
209 | vec2(p.x, p.y) |
210 | } |
211 | |
212 | /// Apply the function `f` to each component of this vector. |
213 | /// |
214 | /// # Example |
215 | /// |
216 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
217 | /// |
218 | /// ``` |
219 | /// use euclid::default::Vector2D; |
220 | /// |
221 | /// let p = Vector2D::<u32>::new(5, 11); |
222 | /// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector2D::new(0, 1)); |
223 | /// ``` |
224 | #[inline ] |
225 | pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Vector2D<V, U> { |
226 | vec2(f(self.x), f(self.y)) |
227 | } |
228 | |
229 | /// Apply the function `f` to each pair of components of this point and `rhs`. |
230 | /// |
231 | /// # Example |
232 | /// |
233 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
234 | /// |
235 | /// ``` |
236 | /// use euclid::default::Vector2D; |
237 | /// |
238 | /// let a: Vector2D<u8> = Vector2D::new(50, 200); |
239 | /// let b: Vector2D<u8> = Vector2D::new(100, 100); |
240 | /// assert_eq!(a.zip(b, u8::saturating_add), Vector2D::new(150, 255)); |
241 | /// ``` |
242 | #[inline ] |
243 | pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector2D<V, U> { |
244 | vec2(f(self.x, rhs.x), f(self.y, rhs.y)) |
245 | } |
246 | |
247 | /// Computes the vector with absolute values of each component. |
248 | /// |
249 | /// # Example |
250 | /// |
251 | /// ```rust |
252 | /// # use std::{i32, f32}; |
253 | /// # use euclid::vec2; |
254 | /// enum U {} |
255 | /// |
256 | /// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2)); |
257 | /// |
258 | /// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs(); |
259 | /// assert!(vec.x.is_nan()); |
260 | /// assert_eq!(vec.y, f32::MAX); |
261 | /// ``` |
262 | /// |
263 | /// # Panics |
264 | /// |
265 | /// The behavior for each component follows the scalar type's implementation of |
266 | /// `num_traits::Signed::abs`. |
267 | pub fn abs(self) -> Self |
268 | where |
269 | T: Signed, |
270 | { |
271 | vec2(self.x.abs(), self.y.abs()) |
272 | } |
273 | |
274 | /// Dot product. |
275 | #[inline ] |
276 | pub fn dot(self, other: Self) -> T |
277 | where |
278 | T: Add<Output = T> + Mul<Output = T>, |
279 | { |
280 | self.x * other.x + self.y * other.y |
281 | } |
282 | |
283 | /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0]. |
284 | #[inline ] |
285 | pub fn cross(self, other: Self) -> T |
286 | where |
287 | T: Sub<Output = T> + Mul<Output = T>, |
288 | { |
289 | self.x * other.y - self.y * other.x |
290 | } |
291 | |
292 | /// Returns the component-wise multiplication of the two vectors. |
293 | #[inline ] |
294 | pub fn component_mul(self, other: Self) -> Self |
295 | where |
296 | T: Mul<Output = T>, |
297 | { |
298 | vec2(self.x * other.x, self.y * other.y) |
299 | } |
300 | |
301 | /// Returns the component-wise division of the two vectors. |
302 | #[inline ] |
303 | pub fn component_div(self, other: Self) -> Self |
304 | where |
305 | T: Div<Output = T>, |
306 | { |
307 | vec2(self.x / other.x, self.y / other.y) |
308 | } |
309 | } |
310 | |
311 | impl<T: Copy, U> Vector2D<T, U> { |
312 | /// Create a 3d vector from this one, using the specified z value. |
313 | #[inline ] |
314 | pub fn extend(self, z: T) -> Vector3D<T, U> { |
315 | vec3(self.x, self.y, z) |
316 | } |
317 | |
318 | /// Cast this vector into a point. |
319 | /// |
320 | /// Equivalent to adding this vector to the origin. |
321 | #[inline ] |
322 | pub fn to_point(self) -> Point2D<T, U> { |
323 | Point2D { |
324 | x: self.x, |
325 | y: self.y, |
326 | _unit: PhantomData, |
327 | } |
328 | } |
329 | |
330 | /// Swap x and y. |
331 | #[inline ] |
332 | pub fn yx(self) -> Self { |
333 | vec2(self.y, self.x) |
334 | } |
335 | |
336 | /// Cast this vector into a size. |
337 | #[inline ] |
338 | pub fn to_size(self) -> Size2D<T, U> { |
339 | size2(self.x, self.y) |
340 | } |
341 | |
342 | /// Drop the units, preserving only the numeric value. |
343 | #[inline ] |
344 | pub fn to_untyped(self) -> Vector2D<T, UnknownUnit> { |
345 | vec2(self.x, self.y) |
346 | } |
347 | |
348 | /// Cast the unit. |
349 | #[inline ] |
350 | pub fn cast_unit<V>(self) -> Vector2D<T, V> { |
351 | vec2(self.x, self.y) |
352 | } |
353 | |
354 | /// Cast into an array with x and y. |
355 | #[inline ] |
356 | pub fn to_array(self) -> [T; 2] { |
357 | [self.x, self.y] |
358 | } |
359 | |
360 | /// Cast into a tuple with x and y. |
361 | #[inline ] |
362 | pub fn to_tuple(self) -> (T, T) { |
363 | (self.x, self.y) |
364 | } |
365 | |
366 | /// Convert into a 3d vector with `z` coordinate equals to `T::zero()`. |
367 | #[inline ] |
368 | pub fn to_3d(self) -> Vector3D<T, U> |
369 | where |
370 | T: Zero, |
371 | { |
372 | vec3(self.x, self.y, Zero::zero()) |
373 | } |
374 | |
375 | /// Rounds each component to the nearest integer value. |
376 | /// |
377 | /// This behavior is preserved for negative values (unlike the basic cast). |
378 | /// |
379 | /// ```rust |
380 | /// # use euclid::vec2; |
381 | /// enum Mm {} |
382 | /// |
383 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0)) |
384 | /// ``` |
385 | #[inline ] |
386 | #[must_use ] |
387 | pub fn round(self) -> Self |
388 | where |
389 | T: Round, |
390 | { |
391 | vec2(self.x.round(), self.y.round()) |
392 | } |
393 | |
394 | /// Rounds each component to the smallest integer equal or greater than the original value. |
395 | /// |
396 | /// This behavior is preserved for negative values (unlike the basic cast). |
397 | /// |
398 | /// ```rust |
399 | /// # use euclid::vec2; |
400 | /// enum Mm {} |
401 | /// |
402 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0)) |
403 | /// ``` |
404 | #[inline ] |
405 | #[must_use ] |
406 | pub fn ceil(self) -> Self |
407 | where |
408 | T: Ceil, |
409 | { |
410 | vec2(self.x.ceil(), self.y.ceil()) |
411 | } |
412 | |
413 | /// Rounds each component to the biggest integer equal or lower than the original value. |
414 | /// |
415 | /// This behavior is preserved for negative values (unlike the basic cast). |
416 | /// |
417 | /// ```rust |
418 | /// # use euclid::vec2; |
419 | /// enum Mm {} |
420 | /// |
421 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0)) |
422 | /// ``` |
423 | #[inline ] |
424 | #[must_use ] |
425 | pub fn floor(self) -> Self |
426 | where |
427 | T: Floor, |
428 | { |
429 | vec2(self.x.floor(), self.y.floor()) |
430 | } |
431 | |
432 | /// Returns the signed angle between this vector and the x axis. |
433 | /// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2` |
434 | /// is `+y` axis. |
435 | /// |
436 | /// The returned angle is between -PI and PI. |
437 | pub fn angle_from_x_axis(self) -> Angle<T> |
438 | where |
439 | T: Trig, |
440 | { |
441 | Angle::radians(Trig::fast_atan2(self.y, self.x)) |
442 | } |
443 | |
444 | /// Creates translation by this vector in vector units. |
445 | #[inline ] |
446 | pub fn to_transform(self) -> Transform2D<T, U, U> |
447 | where |
448 | T: Zero + One, |
449 | { |
450 | Transform2D::translation(self.x, self.y) |
451 | } |
452 | } |
453 | |
454 | impl<T, U> Vector2D<T, U> |
455 | where |
456 | T: Copy + Mul<T, Output = T> + Add<T, Output = T>, |
457 | { |
458 | /// Returns the vector's length squared. |
459 | #[inline ] |
460 | pub fn square_length(self) -> T { |
461 | self.x * self.x + self.y * self.y |
462 | } |
463 | |
464 | /// Returns this vector projected onto another one. |
465 | /// |
466 | /// Projecting onto a nil vector will cause a division by zero. |
467 | #[inline ] |
468 | pub fn project_onto_vector(self, onto: Self) -> Self |
469 | where |
470 | T: Sub<T, Output = T> + Div<T, Output = T>, |
471 | { |
472 | onto * (self.dot(onto) / onto.square_length()) |
473 | } |
474 | |
475 | /// Returns the signed angle between this vector and another vector. |
476 | /// |
477 | /// The returned angle is between -PI and PI. |
478 | pub fn angle_to(self, other: Self) -> Angle<T> |
479 | where |
480 | T: Sub<Output = T> + Trig, |
481 | { |
482 | Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other))) |
483 | } |
484 | } |
485 | |
486 | impl<T: Float, U> Vector2D<T, U> { |
487 | /// Return the normalized vector even if the length is larger than the max value of Float. |
488 | #[inline ] |
489 | #[must_use ] |
490 | pub fn robust_normalize(self) -> Self { |
491 | let length: T = self.length(); |
492 | if length.is_infinite() { |
493 | let scaled: Vector2D = self / T::max_value(); |
494 | scaled / scaled.length() |
495 | } else { |
496 | self / length |
497 | } |
498 | } |
499 | |
500 | /// Returns `true` if all members are finite. |
501 | #[inline ] |
502 | pub fn is_finite(self) -> bool { |
503 | self.x.is_finite() && self.y.is_finite() |
504 | } |
505 | } |
506 | |
507 | impl<T: Real, U> Vector2D<T, U> { |
508 | /// Returns the vector length. |
509 | #[inline ] |
510 | pub fn length(self) -> T { |
511 | self.square_length().sqrt() |
512 | } |
513 | |
514 | /// Returns the vector with length of one unit. |
515 | #[inline ] |
516 | #[must_use ] |
517 | pub fn normalize(self) -> Self { |
518 | self / self.length() |
519 | } |
520 | |
521 | /// Returns the vector with length of one unit. |
522 | /// |
523 | /// Unlike [`Vector2D::normalize`], this returns `None` in the case that the |
524 | /// length of the vector is zero. |
525 | #[inline ] |
526 | #[must_use ] |
527 | pub fn try_normalize(self) -> Option<Self> { |
528 | let len = self.length(); |
529 | if len == T::zero() { |
530 | None |
531 | } else { |
532 | Some(self / len) |
533 | } |
534 | } |
535 | |
536 | /// Return this vector scaled to fit the provided length. |
537 | #[inline ] |
538 | pub fn with_length(self, length: T) -> Self { |
539 | self.normalize() * length |
540 | } |
541 | |
542 | /// Return this vector capped to a maximum length. |
543 | #[inline ] |
544 | pub fn with_max_length(self, max_length: T) -> Self { |
545 | let square_length = self.square_length(); |
546 | if square_length > max_length * max_length { |
547 | return self * (max_length / square_length.sqrt()); |
548 | } |
549 | |
550 | self |
551 | } |
552 | |
553 | /// Return this vector with a minimum length applied. |
554 | #[inline ] |
555 | pub fn with_min_length(self, min_length: T) -> Self { |
556 | let square_length = self.square_length(); |
557 | if square_length < min_length * min_length { |
558 | return self * (min_length / square_length.sqrt()); |
559 | } |
560 | |
561 | self |
562 | } |
563 | |
564 | /// Return this vector with minimum and maximum lengths applied. |
565 | #[inline ] |
566 | pub fn clamp_length(self, min: T, max: T) -> Self { |
567 | debug_assert!(min <= max); |
568 | self.with_min_length(min).with_max_length(max) |
569 | } |
570 | } |
571 | |
572 | impl<T, U> Vector2D<T, U> |
573 | where |
574 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
575 | { |
576 | /// Linearly interpolate each component between this vector and another vector. |
577 | /// |
578 | /// # Example |
579 | /// |
580 | /// ```rust |
581 | /// use euclid::vec2; |
582 | /// use euclid::default::Vector2D; |
583 | /// |
584 | /// let from: Vector2D<_> = vec2(0.0, 10.0); |
585 | /// let to: Vector2D<_> = vec2(8.0, -4.0); |
586 | /// |
587 | /// assert_eq!(from.lerp(to, -1.0), vec2(-8.0, 24.0)); |
588 | /// assert_eq!(from.lerp(to, 0.0), vec2( 0.0, 10.0)); |
589 | /// assert_eq!(from.lerp(to, 0.5), vec2( 4.0, 3.0)); |
590 | /// assert_eq!(from.lerp(to, 1.0), vec2( 8.0, -4.0)); |
591 | /// assert_eq!(from.lerp(to, 2.0), vec2(16.0, -18.0)); |
592 | /// ``` |
593 | #[inline ] |
594 | pub fn lerp(self, other: Self, t: T) -> Self { |
595 | let one_t = T::one() - t; |
596 | self * one_t + other * t |
597 | } |
598 | |
599 | /// Returns a reflection vector using an incident ray and a surface normal. |
600 | #[inline ] |
601 | pub fn reflect(self, normal: Self) -> Self { |
602 | let two = T::one() + T::one(); |
603 | self - normal * two * self.dot(normal) |
604 | } |
605 | } |
606 | |
607 | impl<T: PartialOrd, U> Vector2D<T, U> { |
608 | /// Returns the vector each component of which are minimum of this vector and another. |
609 | #[inline ] |
610 | pub fn min(self, other: Self) -> Self { |
611 | vec2(min(self.x, other.x), min(self.y, other.y)) |
612 | } |
613 | |
614 | /// Returns the vector each component of which are maximum of this vector and another. |
615 | #[inline ] |
616 | pub fn max(self, other: Self) -> Self { |
617 | vec2(max(self.x, other.x), max(self.y, other.y)) |
618 | } |
619 | |
620 | /// Returns the vector each component of which is clamped by corresponding |
621 | /// components of `start` and `end`. |
622 | /// |
623 | /// Shortcut for `self.max(start).min(end)`. |
624 | #[inline ] |
625 | pub fn clamp(self, start: Self, end: Self) -> Self |
626 | where |
627 | T: Copy, |
628 | { |
629 | self.max(start).min(end) |
630 | } |
631 | |
632 | /// Returns vector with results of "greater than" operation on each component. |
633 | #[inline ] |
634 | pub fn greater_than(self, other: Self) -> BoolVector2D { |
635 | BoolVector2D { |
636 | x: self.x > other.x, |
637 | y: self.y > other.y, |
638 | } |
639 | } |
640 | |
641 | /// Returns vector with results of "lower than" operation on each component. |
642 | #[inline ] |
643 | pub fn lower_than(self, other: Self) -> BoolVector2D { |
644 | BoolVector2D { |
645 | x: self.x < other.x, |
646 | y: self.y < other.y, |
647 | } |
648 | } |
649 | } |
650 | |
651 | impl<T: PartialEq, U> Vector2D<T, U> { |
652 | /// Returns vector with results of "equal" operation on each component. |
653 | #[inline ] |
654 | pub fn equal(self, other: Self) -> BoolVector2D { |
655 | BoolVector2D { |
656 | x: self.x == other.x, |
657 | y: self.y == other.y, |
658 | } |
659 | } |
660 | |
661 | /// Returns vector with results of "not equal" operation on each component. |
662 | #[inline ] |
663 | pub fn not_equal(self, other: Self) -> BoolVector2D { |
664 | BoolVector2D { |
665 | x: self.x != other.x, |
666 | y: self.y != other.y, |
667 | } |
668 | } |
669 | } |
670 | |
671 | impl<T: NumCast + Copy, U> Vector2D<T, U> { |
672 | /// Cast from one numeric representation to another, preserving the units. |
673 | /// |
674 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
675 | /// as one would expect from a simple cast, but this behavior does not always make sense |
676 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
677 | #[inline ] |
678 | pub fn cast<NewT: NumCast>(self) -> Vector2D<NewT, U> { |
679 | self.try_cast().unwrap() |
680 | } |
681 | |
682 | /// Fallible cast from one numeric representation to another, preserving the units. |
683 | /// |
684 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
685 | /// as one would expect from a simple cast, but this behavior does not always make sense |
686 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
687 | pub fn try_cast<NewT: NumCast>(self) -> Option<Vector2D<NewT, U>> { |
688 | match (NumCast::from(self.x), NumCast::from(self.y)) { |
689 | (Some(x), Some(y)) => Some(Vector2D::new(x, y)), |
690 | _ => None, |
691 | } |
692 | } |
693 | |
694 | // Convenience functions for common casts. |
695 | |
696 | /// Cast into an `f32` vector. |
697 | #[inline ] |
698 | pub fn to_f32(self) -> Vector2D<f32, U> { |
699 | self.cast() |
700 | } |
701 | |
702 | /// Cast into an `f64` vector. |
703 | #[inline ] |
704 | pub fn to_f64(self) -> Vector2D<f64, U> { |
705 | self.cast() |
706 | } |
707 | |
708 | /// Cast into an `usize` vector, truncating decimals if any. |
709 | /// |
710 | /// When casting from floating vector vectors, it is worth considering whether |
711 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
712 | /// the desired conversion behavior. |
713 | #[inline ] |
714 | pub fn to_usize(self) -> Vector2D<usize, U> { |
715 | self.cast() |
716 | } |
717 | |
718 | /// Cast into an `u32` vector, truncating decimals if any. |
719 | /// |
720 | /// When casting from floating vector vectors, it is worth considering whether |
721 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
722 | /// the desired conversion behavior. |
723 | #[inline ] |
724 | pub fn to_u32(self) -> Vector2D<u32, U> { |
725 | self.cast() |
726 | } |
727 | |
728 | /// Cast into an i32 vector, truncating decimals if any. |
729 | /// |
730 | /// When casting from floating vector vectors, it is worth considering whether |
731 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
732 | /// the desired conversion behavior. |
733 | #[inline ] |
734 | pub fn to_i32(self) -> Vector2D<i32, U> { |
735 | self.cast() |
736 | } |
737 | |
738 | /// Cast into an i64 vector, truncating decimals if any. |
739 | /// |
740 | /// When casting from floating vector vectors, it is worth considering whether |
741 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
742 | /// the desired conversion behavior. |
743 | #[inline ] |
744 | pub fn to_i64(self) -> Vector2D<i64, U> { |
745 | self.cast() |
746 | } |
747 | } |
748 | |
749 | impl<T: Neg, U> Neg for Vector2D<T, U> { |
750 | type Output = Vector2D<T::Output, U>; |
751 | |
752 | #[inline ] |
753 | fn neg(self) -> Self::Output { |
754 | vec2(-self.x, -self.y) |
755 | } |
756 | } |
757 | |
758 | impl<T: Add, U> Add for Vector2D<T, U> { |
759 | type Output = Vector2D<T::Output, U>; |
760 | |
761 | #[inline ] |
762 | fn add(self, other: Self) -> Self::Output { |
763 | Vector2D::new(self.x + other.x, self.y + other.y) |
764 | } |
765 | } |
766 | |
767 | impl<T: Add + Copy, U> Add<&Self> for Vector2D<T, U> { |
768 | type Output = Vector2D<T::Output, U>; |
769 | |
770 | #[inline ] |
771 | fn add(self, other: &Self) -> Self::Output { |
772 | Vector2D::new(self.x + other.x, self.y + other.y) |
773 | } |
774 | } |
775 | |
776 | impl<T: Add<Output = T> + Zero, U> Sum for Vector2D<T, U> { |
777 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
778 | iter.fold(Self::zero(), f:Add::add) |
779 | } |
780 | } |
781 | |
782 | impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector2D<T, U> { |
783 | fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { |
784 | iter.fold(Self::zero(), f:Add::add) |
785 | } |
786 | } |
787 | |
788 | impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector2D<T, U> { |
789 | #[inline ] |
790 | fn add_assign(&mut self, other: Self) { |
791 | *self = *self + other |
792 | } |
793 | } |
794 | |
795 | impl<T: Sub, U> Sub for Vector2D<T, U> { |
796 | type Output = Vector2D<T::Output, U>; |
797 | |
798 | #[inline ] |
799 | fn sub(self, other: Self) -> Self::Output { |
800 | vec2(self.x - other.x, self.y - other.y) |
801 | } |
802 | } |
803 | |
804 | impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Vector2D<T, U> { |
805 | #[inline ] |
806 | fn sub_assign(&mut self, other: Self) { |
807 | *self = *self - other |
808 | } |
809 | } |
810 | |
811 | impl<T: Copy + Mul, U> Mul<T> for Vector2D<T, U> { |
812 | type Output = Vector2D<T::Output, U>; |
813 | |
814 | #[inline ] |
815 | fn mul(self, scale: T) -> Self::Output { |
816 | vec2(self.x * scale, self.y * scale) |
817 | } |
818 | } |
819 | |
820 | impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector2D<T, U> { |
821 | #[inline ] |
822 | fn mul_assign(&mut self, scale: T) { |
823 | *self = *self * scale |
824 | } |
825 | } |
826 | |
827 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector2D<T, U1> { |
828 | type Output = Vector2D<T::Output, U2>; |
829 | |
830 | #[inline ] |
831 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
832 | vec2(self.x * scale.0, self.y * scale.0) |
833 | } |
834 | } |
835 | |
836 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector2D<T, U> { |
837 | #[inline ] |
838 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
839 | self.x *= scale.0; |
840 | self.y *= scale.0; |
841 | } |
842 | } |
843 | |
844 | impl<T: Copy + Div, U> Div<T> for Vector2D<T, U> { |
845 | type Output = Vector2D<T::Output, U>; |
846 | |
847 | #[inline ] |
848 | fn div(self, scale: T) -> Self::Output { |
849 | vec2(self.x / scale, self.y / scale) |
850 | } |
851 | } |
852 | |
853 | impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector2D<T, U> { |
854 | #[inline ] |
855 | fn div_assign(&mut self, scale: T) { |
856 | *self = *self / scale |
857 | } |
858 | } |
859 | |
860 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector2D<T, U2> { |
861 | type Output = Vector2D<T::Output, U1>; |
862 | |
863 | #[inline ] |
864 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
865 | vec2(self.x / scale.0, self.y / scale.0) |
866 | } |
867 | } |
868 | |
869 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector2D<T, U> { |
870 | #[inline ] |
871 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
872 | self.x /= scale.0; |
873 | self.y /= scale.0; |
874 | } |
875 | } |
876 | |
877 | impl<T: Round, U> Round for Vector2D<T, U> { |
878 | /// See [`Vector2D::round`]. |
879 | #[inline ] |
880 | fn round(self) -> Self { |
881 | self.round() |
882 | } |
883 | } |
884 | |
885 | impl<T: Ceil, U> Ceil for Vector2D<T, U> { |
886 | /// See [`Vector2D::ceil`]. |
887 | #[inline ] |
888 | fn ceil(self) -> Self { |
889 | self.ceil() |
890 | } |
891 | } |
892 | |
893 | impl<T: Floor, U> Floor for Vector2D<T, U> { |
894 | /// See [`Vector2D::floor`]. |
895 | #[inline ] |
896 | fn floor(self) -> Self { |
897 | self.floor() |
898 | } |
899 | } |
900 | |
901 | impl<T: ApproxEq<T>, U> ApproxEq<Vector2D<T, U>> for Vector2D<T, U> { |
902 | #[inline ] |
903 | fn approx_epsilon() -> Self { |
904 | vec2(T::approx_epsilon(), T::approx_epsilon()) |
905 | } |
906 | |
907 | #[inline ] |
908 | fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { |
909 | self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) |
910 | } |
911 | } |
912 | |
913 | impl<T, U> From<Vector2D<T, U>> for [T; 2] { |
914 | fn from(v: Vector2D<T, U>) -> Self { |
915 | [v.x, v.y] |
916 | } |
917 | } |
918 | |
919 | impl<T, U> From<[T; 2]> for Vector2D<T, U> { |
920 | fn from([x: T, y: T]: [T; 2]) -> Self { |
921 | vec2(x, y) |
922 | } |
923 | } |
924 | |
925 | impl<T, U> From<Vector2D<T, U>> for (T, T) { |
926 | fn from(v: Vector2D<T, U>) -> Self { |
927 | (v.x, v.y) |
928 | } |
929 | } |
930 | |
931 | impl<T, U> From<(T, T)> for Vector2D<T, U> { |
932 | fn from(tuple: (T, T)) -> Self { |
933 | vec2(x:tuple.0, y:tuple.1) |
934 | } |
935 | } |
936 | |
937 | impl<T, U> From<Size2D<T, U>> for Vector2D<T, U> { |
938 | fn from(s: Size2D<T, U>) -> Self { |
939 | vec2(x:s.width, y:s.height) |
940 | } |
941 | } |
942 | |
943 | /// A 3d Vector tagged with a unit. |
944 | #[repr (C)] |
945 | pub struct Vector3D<T, U> { |
946 | /// The `x` (traditionally, horizontal) coordinate. |
947 | pub x: T, |
948 | /// The `y` (traditionally, vertical) coordinate. |
949 | pub y: T, |
950 | /// The `z` (traditionally, depth) coordinate. |
951 | pub z: T, |
952 | #[doc (hidden)] |
953 | pub _unit: PhantomData<U>, |
954 | } |
955 | |
956 | mint_vec!(Vector3D[x, y, z] = Vector3); |
957 | |
958 | impl<T: Copy, U> Copy for Vector3D<T, U> {} |
959 | |
960 | impl<T: Clone, U> Clone for Vector3D<T, U> { |
961 | fn clone(&self) -> Self { |
962 | Vector3D { |
963 | x: self.x.clone(), |
964 | y: self.y.clone(), |
965 | z: self.z.clone(), |
966 | _unit: PhantomData, |
967 | } |
968 | } |
969 | } |
970 | |
971 | #[cfg (feature = "serde" )] |
972 | impl<'de, T, U> serde::Deserialize<'de> for Vector3D<T, U> |
973 | where |
974 | T: serde::Deserialize<'de>, |
975 | { |
976 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
977 | where |
978 | D: serde::Deserializer<'de>, |
979 | { |
980 | let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; |
981 | Ok(Vector3D { |
982 | x, |
983 | y, |
984 | z, |
985 | _unit: PhantomData, |
986 | }) |
987 | } |
988 | } |
989 | |
990 | #[cfg (feature = "serde" )] |
991 | impl<T, U> serde::Serialize for Vector3D<T, U> |
992 | where |
993 | T: serde::Serialize, |
994 | { |
995 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
996 | where |
997 | S: serde::Serializer, |
998 | { |
999 | (&self.x, &self.y, &self.z).serialize(serializer) |
1000 | } |
1001 | } |
1002 | |
1003 | #[cfg (feature = "arbitrary" )] |
1004 | impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector3D<T, U> |
1005 | where |
1006 | T: arbitrary::Arbitrary<'a>, |
1007 | { |
1008 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
1009 | let (x, y, z) = arbitrary::Arbitrary::arbitrary(u)?; |
1010 | Ok(Vector3D { |
1011 | x, |
1012 | y, |
1013 | z, |
1014 | _unit: PhantomData, |
1015 | }) |
1016 | } |
1017 | } |
1018 | |
1019 | #[cfg (feature = "bytemuck" )] |
1020 | unsafe impl<T: Zeroable, U> Zeroable for Vector3D<T, U> {} |
1021 | |
1022 | #[cfg (feature = "bytemuck" )] |
1023 | unsafe impl<T: Pod, U: 'static> Pod for Vector3D<T, U> {} |
1024 | |
1025 | impl<T: Eq, U> Eq for Vector3D<T, U> {} |
1026 | |
1027 | impl<T: PartialEq, U> PartialEq for Vector3D<T, U> { |
1028 | fn eq(&self, other: &Self) -> bool { |
1029 | self.x == other.x && self.y == other.y && self.z == other.z |
1030 | } |
1031 | } |
1032 | |
1033 | impl<T: Hash, U> Hash for Vector3D<T, U> { |
1034 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
1035 | self.x.hash(state:h); |
1036 | self.y.hash(state:h); |
1037 | self.z.hash(state:h); |
1038 | } |
1039 | } |
1040 | |
1041 | impl<T: Zero, U> Zero for Vector3D<T, U> { |
1042 | /// Constructor, setting all components to zero. |
1043 | #[inline ] |
1044 | fn zero() -> Self { |
1045 | vec3(x:Zero::zero(), y:Zero::zero(), z:Zero::zero()) |
1046 | } |
1047 | } |
1048 | |
1049 | impl<T: fmt::Debug, U> fmt::Debug for Vector3D<T, U> { |
1050 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1051 | f&mut DebugTuple<'_, '_>.debug_tuple(name:"" ) |
1052 | .field(&self.x) |
1053 | .field(&self.y) |
1054 | .field(&self.z) |
1055 | .finish() |
1056 | } |
1057 | } |
1058 | |
1059 | impl<T: Default, U> Default for Vector3D<T, U> { |
1060 | fn default() -> Self { |
1061 | Vector3D::new(x:Default::default(), y:Default::default(), z:Default::default()) |
1062 | } |
1063 | } |
1064 | |
1065 | impl<T, U> Vector3D<T, U> { |
1066 | /// Constructor, setting all components to zero. |
1067 | #[inline ] |
1068 | pub fn zero() -> Self |
1069 | where |
1070 | T: Zero, |
1071 | { |
1072 | vec3(Zero::zero(), Zero::zero(), Zero::zero()) |
1073 | } |
1074 | |
1075 | /// Constructor, setting all components to one. |
1076 | #[inline ] |
1077 | pub fn one() -> Self |
1078 | where |
1079 | T: One, |
1080 | { |
1081 | vec3(One::one(), One::one(), One::one()) |
1082 | } |
1083 | |
1084 | /// Constructor taking scalar values directly. |
1085 | #[inline ] |
1086 | pub const fn new(x: T, y: T, z: T) -> Self { |
1087 | Vector3D { |
1088 | x, |
1089 | y, |
1090 | z, |
1091 | _unit: PhantomData, |
1092 | } |
1093 | } |
1094 | /// Constructor setting all components to the same value. |
1095 | #[inline ] |
1096 | pub fn splat(v: T) -> Self |
1097 | where |
1098 | T: Clone, |
1099 | { |
1100 | Vector3D { |
1101 | x: v.clone(), |
1102 | y: v.clone(), |
1103 | z: v, |
1104 | _unit: PhantomData, |
1105 | } |
1106 | } |
1107 | |
1108 | /// Constructor taking properly Lengths instead of scalar values. |
1109 | #[inline ] |
1110 | pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Vector3D<T, U> { |
1111 | vec3(x.0, y.0, z.0) |
1112 | } |
1113 | |
1114 | /// Tag a unitless value with units. |
1115 | #[inline ] |
1116 | pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Self { |
1117 | vec3(p.x, p.y, p.z) |
1118 | } |
1119 | |
1120 | /// Apply the function `f` to each component of this vector. |
1121 | /// |
1122 | /// # Example |
1123 | /// |
1124 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
1125 | /// |
1126 | /// ``` |
1127 | /// use euclid::default::Vector3D; |
1128 | /// |
1129 | /// let p = Vector3D::<u32>::new(5, 11, 15); |
1130 | /// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector3D::new(0, 1, 5)); |
1131 | /// ``` |
1132 | #[inline ] |
1133 | pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Vector3D<V, U> { |
1134 | vec3(f(self.x), f(self.y), f(self.z)) |
1135 | } |
1136 | |
1137 | /// Apply the function `f` to each pair of components of this point and `rhs`. |
1138 | /// |
1139 | /// # Example |
1140 | /// |
1141 | /// This may be used to perform unusual arithmetic which is not already offered as methods. |
1142 | /// |
1143 | /// ``` |
1144 | /// use euclid::default::Vector3D; |
1145 | /// |
1146 | /// let a: Vector3D<u8> = Vector3D::new(50, 200, 10); |
1147 | /// let b: Vector3D<u8> = Vector3D::new(100, 100, 0); |
1148 | /// assert_eq!(a.zip(b, u8::saturating_add), Vector3D::new(150, 255, 10)); |
1149 | /// ``` |
1150 | #[inline ] |
1151 | pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector3D<V, U> { |
1152 | vec3(f(self.x, rhs.x), f(self.y, rhs.y), f(self.z, rhs.z)) |
1153 | } |
1154 | |
1155 | /// Computes the vector with absolute values of each component. |
1156 | /// |
1157 | /// # Example |
1158 | /// |
1159 | /// ```rust |
1160 | /// # use std::{i32, f32}; |
1161 | /// # use euclid::vec3; |
1162 | /// enum U {} |
1163 | /// |
1164 | /// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2)); |
1165 | /// |
1166 | /// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs(); |
1167 | /// assert!(vec.x.is_nan()); |
1168 | /// assert_eq!(vec.y, 0.0); |
1169 | /// assert_eq!(vec.z, f32::MAX); |
1170 | /// ``` |
1171 | /// |
1172 | /// # Panics |
1173 | /// |
1174 | /// The behavior for each component follows the scalar type's implementation of |
1175 | /// `num_traits::Signed::abs`. |
1176 | pub fn abs(self) -> Self |
1177 | where |
1178 | T: Signed, |
1179 | { |
1180 | vec3(self.x.abs(), self.y.abs(), self.z.abs()) |
1181 | } |
1182 | |
1183 | /// Dot product. |
1184 | #[inline ] |
1185 | pub fn dot(self, other: Self) -> T |
1186 | where |
1187 | T: Add<Output = T> + Mul<Output = T>, |
1188 | { |
1189 | self.x * other.x + self.y * other.y + self.z * other.z |
1190 | } |
1191 | } |
1192 | |
1193 | impl<T: Copy, U> Vector3D<T, U> { |
1194 | /// Cross product. |
1195 | #[inline ] |
1196 | pub fn cross(self, other: Self) -> Self |
1197 | where |
1198 | T: Sub<Output = T> + Mul<Output = T>, |
1199 | { |
1200 | vec3( |
1201 | self.y * other.z - self.z * other.y, |
1202 | self.z * other.x - self.x * other.z, |
1203 | self.x * other.y - self.y * other.x, |
1204 | ) |
1205 | } |
1206 | |
1207 | /// Returns the component-wise multiplication of the two vectors. |
1208 | #[inline ] |
1209 | pub fn component_mul(self, other: Self) -> Self |
1210 | where |
1211 | T: Mul<Output = T>, |
1212 | { |
1213 | vec3(self.x * other.x, self.y * other.y, self.z * other.z) |
1214 | } |
1215 | |
1216 | /// Returns the component-wise division of the two vectors. |
1217 | #[inline ] |
1218 | pub fn component_div(self, other: Self) -> Self |
1219 | where |
1220 | T: Div<Output = T>, |
1221 | { |
1222 | vec3(self.x / other.x, self.y / other.y, self.z / other.z) |
1223 | } |
1224 | |
1225 | /// Cast this vector into a point. |
1226 | /// |
1227 | /// Equivalent to adding this vector to the origin. |
1228 | #[inline ] |
1229 | pub fn to_point(self) -> Point3D<T, U> { |
1230 | point3(self.x, self.y, self.z) |
1231 | } |
1232 | |
1233 | /// Returns a 2d vector using this vector's x and y coordinates |
1234 | #[inline ] |
1235 | pub fn xy(self) -> Vector2D<T, U> { |
1236 | vec2(self.x, self.y) |
1237 | } |
1238 | |
1239 | /// Returns a 2d vector using this vector's x and z coordinates |
1240 | #[inline ] |
1241 | pub fn xz(self) -> Vector2D<T, U> { |
1242 | vec2(self.x, self.z) |
1243 | } |
1244 | |
1245 | /// Returns a 2d vector using this vector's x and z coordinates |
1246 | #[inline ] |
1247 | pub fn yz(self) -> Vector2D<T, U> { |
1248 | vec2(self.y, self.z) |
1249 | } |
1250 | |
1251 | /// Cast into an array with x, y and z. |
1252 | #[inline ] |
1253 | pub fn to_array(self) -> [T; 3] { |
1254 | [self.x, self.y, self.z] |
1255 | } |
1256 | |
1257 | /// Cast into an array with x, y, z and 0. |
1258 | #[inline ] |
1259 | pub fn to_array_4d(self) -> [T; 4] |
1260 | where |
1261 | T: Zero, |
1262 | { |
1263 | [self.x, self.y, self.z, Zero::zero()] |
1264 | } |
1265 | |
1266 | /// Cast into a tuple with x, y and z. |
1267 | #[inline ] |
1268 | pub fn to_tuple(self) -> (T, T, T) { |
1269 | (self.x, self.y, self.z) |
1270 | } |
1271 | |
1272 | /// Cast into a tuple with x, y, z and 0. |
1273 | #[inline ] |
1274 | pub fn to_tuple_4d(self) -> (T, T, T, T) |
1275 | where |
1276 | T: Zero, |
1277 | { |
1278 | (self.x, self.y, self.z, Zero::zero()) |
1279 | } |
1280 | |
1281 | /// Drop the units, preserving only the numeric value. |
1282 | #[inline ] |
1283 | pub fn to_untyped(self) -> Vector3D<T, UnknownUnit> { |
1284 | vec3(self.x, self.y, self.z) |
1285 | } |
1286 | |
1287 | /// Cast the unit. |
1288 | #[inline ] |
1289 | pub fn cast_unit<V>(self) -> Vector3D<T, V> { |
1290 | vec3(self.x, self.y, self.z) |
1291 | } |
1292 | |
1293 | /// Convert into a 2d vector. |
1294 | #[inline ] |
1295 | pub fn to_2d(self) -> Vector2D<T, U> { |
1296 | self.xy() |
1297 | } |
1298 | |
1299 | /// Rounds each component to the nearest integer value. |
1300 | /// |
1301 | /// This behavior is preserved for negative values (unlike the basic cast). |
1302 | /// |
1303 | /// ```rust |
1304 | /// # use euclid::vec3; |
1305 | /// enum Mm {} |
1306 | /// |
1307 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0)) |
1308 | /// ``` |
1309 | #[inline ] |
1310 | #[must_use ] |
1311 | pub fn round(self) -> Self |
1312 | where |
1313 | T: Round, |
1314 | { |
1315 | vec3(self.x.round(), self.y.round(), self.z.round()) |
1316 | } |
1317 | |
1318 | /// Rounds each component to the smallest integer equal or greater than the original value. |
1319 | /// |
1320 | /// This behavior is preserved for negative values (unlike the basic cast). |
1321 | /// |
1322 | /// ```rust |
1323 | /// # use euclid::vec3; |
1324 | /// enum Mm {} |
1325 | /// |
1326 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0)) |
1327 | /// ``` |
1328 | #[inline ] |
1329 | #[must_use ] |
1330 | pub fn ceil(self) -> Self |
1331 | where |
1332 | T: Ceil, |
1333 | { |
1334 | vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) |
1335 | } |
1336 | |
1337 | /// Rounds each component to the biggest integer equal or lower than the original value. |
1338 | /// |
1339 | /// This behavior is preserved for negative values (unlike the basic cast). |
1340 | /// |
1341 | /// ```rust |
1342 | /// # use euclid::vec3; |
1343 | /// enum Mm {} |
1344 | /// |
1345 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0)) |
1346 | /// ``` |
1347 | #[inline ] |
1348 | #[must_use ] |
1349 | pub fn floor(self) -> Self |
1350 | where |
1351 | T: Floor, |
1352 | { |
1353 | vec3(self.x.floor(), self.y.floor(), self.z.floor()) |
1354 | } |
1355 | |
1356 | /// Creates translation by this vector in vector units |
1357 | #[inline ] |
1358 | pub fn to_transform(self) -> Transform3D<T, U, U> |
1359 | where |
1360 | T: Zero + One, |
1361 | { |
1362 | Transform3D::translation(self.x, self.y, self.z) |
1363 | } |
1364 | } |
1365 | |
1366 | impl<T, U> Vector3D<T, U> |
1367 | where |
1368 | T: Copy + Mul<T, Output = T> + Add<T, Output = T>, |
1369 | { |
1370 | /// Returns the vector's length squared. |
1371 | #[inline ] |
1372 | pub fn square_length(self) -> T { |
1373 | self.x * self.x + self.y * self.y + self.z * self.z |
1374 | } |
1375 | |
1376 | /// Returns this vector projected onto another one. |
1377 | /// |
1378 | /// Projecting onto a nil vector will cause a division by zero. |
1379 | #[inline ] |
1380 | pub fn project_onto_vector(self, onto: Self) -> Self |
1381 | where |
1382 | T: Sub<T, Output = T> + Div<T, Output = T>, |
1383 | { |
1384 | onto * (self.dot(onto) / onto.square_length()) |
1385 | } |
1386 | } |
1387 | |
1388 | impl<T: Float, U> Vector3D<T, U> { |
1389 | /// Return the normalized vector even if the length is larger than the max value of Float. |
1390 | #[inline ] |
1391 | #[must_use ] |
1392 | pub fn robust_normalize(self) -> Self { |
1393 | let length: T = self.length(); |
1394 | if length.is_infinite() { |
1395 | let scaled: Vector3D = self / T::max_value(); |
1396 | scaled / scaled.length() |
1397 | } else { |
1398 | self / length |
1399 | } |
1400 | } |
1401 | |
1402 | /// Returns `true` if all members are finite. |
1403 | #[inline ] |
1404 | pub fn is_finite(self) -> bool { |
1405 | self.x.is_finite() && self.y.is_finite() && self.z.is_finite() |
1406 | } |
1407 | } |
1408 | |
1409 | impl<T: Real, U> Vector3D<T, U> { |
1410 | /// Returns the positive angle between this vector and another vector. |
1411 | /// |
1412 | /// The returned angle is between 0 and PI. |
1413 | pub fn angle_to(self, other: Self) -> Angle<T> |
1414 | where |
1415 | T: Trig, |
1416 | { |
1417 | Angle::radians(Trig::fast_atan2( |
1418 | self.cross(other).length(), |
1419 | self.dot(other), |
1420 | )) |
1421 | } |
1422 | |
1423 | /// Returns the vector length. |
1424 | #[inline ] |
1425 | pub fn length(self) -> T { |
1426 | self.square_length().sqrt() |
1427 | } |
1428 | |
1429 | /// Returns the vector with length of one unit |
1430 | #[inline ] |
1431 | #[must_use ] |
1432 | pub fn normalize(self) -> Self { |
1433 | self / self.length() |
1434 | } |
1435 | |
1436 | /// Returns the vector with length of one unit. |
1437 | /// |
1438 | /// Unlike [`Vector2D::normalize`], this returns `None` in the case that the |
1439 | /// length of the vector is zero. |
1440 | #[inline ] |
1441 | #[must_use ] |
1442 | pub fn try_normalize(self) -> Option<Self> { |
1443 | let len = self.length(); |
1444 | if len == T::zero() { |
1445 | None |
1446 | } else { |
1447 | Some(self / len) |
1448 | } |
1449 | } |
1450 | |
1451 | /// Return this vector capped to a maximum length. |
1452 | #[inline ] |
1453 | pub fn with_max_length(self, max_length: T) -> Self { |
1454 | let square_length = self.square_length(); |
1455 | if square_length > max_length * max_length { |
1456 | return self * (max_length / square_length.sqrt()); |
1457 | } |
1458 | |
1459 | self |
1460 | } |
1461 | |
1462 | /// Return this vector with a minimum length applied. |
1463 | #[inline ] |
1464 | pub fn with_min_length(self, min_length: T) -> Self { |
1465 | let square_length = self.square_length(); |
1466 | if square_length < min_length * min_length { |
1467 | return self * (min_length / square_length.sqrt()); |
1468 | } |
1469 | |
1470 | self |
1471 | } |
1472 | |
1473 | /// Return this vector with minimum and maximum lengths applied. |
1474 | #[inline ] |
1475 | pub fn clamp_length(self, min: T, max: T) -> Self { |
1476 | debug_assert!(min <= max); |
1477 | self.with_min_length(min).with_max_length(max) |
1478 | } |
1479 | } |
1480 | |
1481 | impl<T, U> Vector3D<T, U> |
1482 | where |
1483 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
1484 | { |
1485 | /// Linearly interpolate each component between this vector and another vector. |
1486 | /// |
1487 | /// # Example |
1488 | /// |
1489 | /// ```rust |
1490 | /// use euclid::vec3; |
1491 | /// use euclid::default::Vector3D; |
1492 | /// |
1493 | /// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0); |
1494 | /// let to: Vector3D<_> = vec3(8.0, -4.0, 0.0); |
1495 | /// |
1496 | /// assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0)); |
1497 | /// assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0)); |
1498 | /// assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5)); |
1499 | /// assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0)); |
1500 | /// assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0)); |
1501 | /// ``` |
1502 | #[inline ] |
1503 | pub fn lerp(self, other: Self, t: T) -> Self { |
1504 | let one_t = T::one() - t; |
1505 | self * one_t + other * t |
1506 | } |
1507 | |
1508 | /// Returns a reflection vector using an incident ray and a surface normal. |
1509 | #[inline ] |
1510 | pub fn reflect(self, normal: Self) -> Self { |
1511 | let two = T::one() + T::one(); |
1512 | self - normal * two * self.dot(normal) |
1513 | } |
1514 | } |
1515 | |
1516 | impl<T: PartialOrd, U> Vector3D<T, U> { |
1517 | /// Returns the vector each component of which are minimum of this vector and another. |
1518 | #[inline ] |
1519 | pub fn min(self, other: Self) -> Self { |
1520 | vec3( |
1521 | min(self.x, other.x), |
1522 | min(self.y, other.y), |
1523 | min(self.z, other.z), |
1524 | ) |
1525 | } |
1526 | |
1527 | /// Returns the vector each component of which are maximum of this vector and another. |
1528 | #[inline ] |
1529 | pub fn max(self, other: Self) -> Self { |
1530 | vec3( |
1531 | max(self.x, other.x), |
1532 | max(self.y, other.y), |
1533 | max(self.z, other.z), |
1534 | ) |
1535 | } |
1536 | |
1537 | /// Returns the vector each component of which is clamped by corresponding |
1538 | /// components of `start` and `end`. |
1539 | /// |
1540 | /// Shortcut for `self.max(start).min(end)`. |
1541 | #[inline ] |
1542 | pub fn clamp(self, start: Self, end: Self) -> Self |
1543 | where |
1544 | T: Copy, |
1545 | { |
1546 | self.max(start).min(end) |
1547 | } |
1548 | |
1549 | /// Returns vector with results of "greater than" operation on each component. |
1550 | #[inline ] |
1551 | pub fn greater_than(self, other: Self) -> BoolVector3D { |
1552 | BoolVector3D { |
1553 | x: self.x > other.x, |
1554 | y: self.y > other.y, |
1555 | z: self.z > other.z, |
1556 | } |
1557 | } |
1558 | |
1559 | /// Returns vector with results of "lower than" operation on each component. |
1560 | #[inline ] |
1561 | pub fn lower_than(self, other: Self) -> BoolVector3D { |
1562 | BoolVector3D { |
1563 | x: self.x < other.x, |
1564 | y: self.y < other.y, |
1565 | z: self.z < other.z, |
1566 | } |
1567 | } |
1568 | } |
1569 | |
1570 | impl<T: PartialEq, U> Vector3D<T, U> { |
1571 | /// Returns vector with results of "equal" operation on each component. |
1572 | #[inline ] |
1573 | pub fn equal(self, other: Self) -> BoolVector3D { |
1574 | BoolVector3D { |
1575 | x: self.x == other.x, |
1576 | y: self.y == other.y, |
1577 | z: self.z == other.z, |
1578 | } |
1579 | } |
1580 | |
1581 | /// Returns vector with results of "not equal" operation on each component. |
1582 | #[inline ] |
1583 | pub fn not_equal(self, other: Self) -> BoolVector3D { |
1584 | BoolVector3D { |
1585 | x: self.x != other.x, |
1586 | y: self.y != other.y, |
1587 | z: self.z != other.z, |
1588 | } |
1589 | } |
1590 | } |
1591 | |
1592 | impl<T: NumCast + Copy, U> Vector3D<T, U> { |
1593 | /// Cast from one numeric representation to another, preserving the units. |
1594 | /// |
1595 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
1596 | /// as one would expect from a simple cast, but this behavior does not always make sense |
1597 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
1598 | #[inline ] |
1599 | pub fn cast<NewT: NumCast>(self) -> Vector3D<NewT, U> { |
1600 | self.try_cast().unwrap() |
1601 | } |
1602 | |
1603 | /// Fallible cast from one numeric representation to another, preserving the units. |
1604 | /// |
1605 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
1606 | /// as one would expect from a simple cast, but this behavior does not always make sense |
1607 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
1608 | pub fn try_cast<NewT: NumCast>(self) -> Option<Vector3D<NewT, U>> { |
1609 | match ( |
1610 | NumCast::from(self.x), |
1611 | NumCast::from(self.y), |
1612 | NumCast::from(self.z), |
1613 | ) { |
1614 | (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), |
1615 | _ => None, |
1616 | } |
1617 | } |
1618 | |
1619 | // Convenience functions for common casts. |
1620 | |
1621 | /// Cast into an `f32` vector. |
1622 | #[inline ] |
1623 | pub fn to_f32(self) -> Vector3D<f32, U> { |
1624 | self.cast() |
1625 | } |
1626 | |
1627 | /// Cast into an `f64` vector. |
1628 | #[inline ] |
1629 | pub fn to_f64(self) -> Vector3D<f64, U> { |
1630 | self.cast() |
1631 | } |
1632 | |
1633 | /// Cast into an `usize` vector, truncating decimals if any. |
1634 | /// |
1635 | /// When casting from floating vector vectors, it is worth considering whether |
1636 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1637 | /// the desired conversion behavior. |
1638 | #[inline ] |
1639 | pub fn to_usize(self) -> Vector3D<usize, U> { |
1640 | self.cast() |
1641 | } |
1642 | |
1643 | /// Cast into an `u32` vector, truncating decimals if any. |
1644 | /// |
1645 | /// When casting from floating vector vectors, it is worth considering whether |
1646 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1647 | /// the desired conversion behavior. |
1648 | #[inline ] |
1649 | pub fn to_u32(self) -> Vector3D<u32, U> { |
1650 | self.cast() |
1651 | } |
1652 | |
1653 | /// Cast into an `i32` vector, truncating decimals if any. |
1654 | /// |
1655 | /// When casting from floating vector vectors, it is worth considering whether |
1656 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1657 | /// the desired conversion behavior. |
1658 | #[inline ] |
1659 | pub fn to_i32(self) -> Vector3D<i32, U> { |
1660 | self.cast() |
1661 | } |
1662 | |
1663 | /// Cast into an `i64` vector, truncating decimals if any. |
1664 | /// |
1665 | /// When casting from floating vector vectors, it is worth considering whether |
1666 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1667 | /// the desired conversion behavior. |
1668 | #[inline ] |
1669 | pub fn to_i64(self) -> Vector3D<i64, U> { |
1670 | self.cast() |
1671 | } |
1672 | } |
1673 | |
1674 | impl<T: Neg, U> Neg for Vector3D<T, U> { |
1675 | type Output = Vector3D<T::Output, U>; |
1676 | |
1677 | #[inline ] |
1678 | fn neg(self) -> Self::Output { |
1679 | vec3(-self.x, -self.y, -self.z) |
1680 | } |
1681 | } |
1682 | |
1683 | impl<T: Add, U> Add for Vector3D<T, U> { |
1684 | type Output = Vector3D<T::Output, U>; |
1685 | |
1686 | #[inline ] |
1687 | fn add(self, other: Self) -> Self::Output { |
1688 | vec3(self.x + other.x, self.y + other.y, self.z + other.z) |
1689 | } |
1690 | } |
1691 | |
1692 | impl<'a, T: 'a + Add + Copy, U: 'a> Add<&Self> for Vector3D<T, U> { |
1693 | type Output = Vector3D<T::Output, U>; |
1694 | |
1695 | #[inline ] |
1696 | fn add(self, other: &Self) -> Self::Output { |
1697 | vec3(self.x + other.x, self.y + other.y, self.z + other.z) |
1698 | } |
1699 | } |
1700 | |
1701 | impl<T: Add<Output = T> + Zero, U> Sum for Vector3D<T, U> { |
1702 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
1703 | iter.fold(Self::zero(), f:Add::add) |
1704 | } |
1705 | } |
1706 | |
1707 | impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector3D<T, U> { |
1708 | fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { |
1709 | iter.fold(Self::zero(), f:Add::add) |
1710 | } |
1711 | } |
1712 | |
1713 | impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector3D<T, U> { |
1714 | #[inline ] |
1715 | fn add_assign(&mut self, other: Self) { |
1716 | *self = *self + other |
1717 | } |
1718 | } |
1719 | |
1720 | impl<T: Sub, U> Sub for Vector3D<T, U> { |
1721 | type Output = Vector3D<T::Output, U>; |
1722 | |
1723 | #[inline ] |
1724 | fn sub(self, other: Self) -> Self::Output { |
1725 | vec3(self.x - other.x, self.y - other.y, self.z - other.z) |
1726 | } |
1727 | } |
1728 | |
1729 | impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Vector3D<T, U> { |
1730 | #[inline ] |
1731 | fn sub_assign(&mut self, other: Self) { |
1732 | *self = *self - other |
1733 | } |
1734 | } |
1735 | |
1736 | impl<T: Copy + Mul, U> Mul<T> for Vector3D<T, U> { |
1737 | type Output = Vector3D<T::Output, U>; |
1738 | |
1739 | #[inline ] |
1740 | fn mul(self, scale: T) -> Self::Output { |
1741 | vec3(self.x * scale, self.y * scale, self.z * scale) |
1742 | } |
1743 | } |
1744 | |
1745 | impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector3D<T, U> { |
1746 | #[inline ] |
1747 | fn mul_assign(&mut self, scale: T) { |
1748 | *self = *self * scale |
1749 | } |
1750 | } |
1751 | |
1752 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector3D<T, U1> { |
1753 | type Output = Vector3D<T::Output, U2>; |
1754 | |
1755 | #[inline ] |
1756 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
1757 | vec3(self.x * scale.0, self.y * scale.0, self.z * scale.0) |
1758 | } |
1759 | } |
1760 | |
1761 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U> { |
1762 | #[inline ] |
1763 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
1764 | self.x *= scale.0; |
1765 | self.y *= scale.0; |
1766 | self.z *= scale.0; |
1767 | } |
1768 | } |
1769 | |
1770 | impl<T: Copy + Div, U> Div<T> for Vector3D<T, U> { |
1771 | type Output = Vector3D<T::Output, U>; |
1772 | |
1773 | #[inline ] |
1774 | fn div(self, scale: T) -> Self::Output { |
1775 | vec3(self.x / scale, self.y / scale, self.z / scale) |
1776 | } |
1777 | } |
1778 | |
1779 | impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector3D<T, U> { |
1780 | #[inline ] |
1781 | fn div_assign(&mut self, scale: T) { |
1782 | *self = *self / scale |
1783 | } |
1784 | } |
1785 | |
1786 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector3D<T, U2> { |
1787 | type Output = Vector3D<T::Output, U1>; |
1788 | |
1789 | #[inline ] |
1790 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
1791 | vec3(self.x / scale.0, self.y / scale.0, self.z / scale.0) |
1792 | } |
1793 | } |
1794 | |
1795 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U> { |
1796 | #[inline ] |
1797 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
1798 | self.x /= scale.0; |
1799 | self.y /= scale.0; |
1800 | self.z /= scale.0; |
1801 | } |
1802 | } |
1803 | |
1804 | impl<T: Round, U> Round for Vector3D<T, U> { |
1805 | /// See [`Vector3D::round`]. |
1806 | #[inline ] |
1807 | fn round(self) -> Self { |
1808 | self.round() |
1809 | } |
1810 | } |
1811 | |
1812 | impl<T: Ceil, U> Ceil for Vector3D<T, U> { |
1813 | /// See [`Vector3D::ceil`]. |
1814 | #[inline ] |
1815 | fn ceil(self) -> Self { |
1816 | self.ceil() |
1817 | } |
1818 | } |
1819 | |
1820 | impl<T: Floor, U> Floor for Vector3D<T, U> { |
1821 | /// See [`Vector3D::floor`]. |
1822 | #[inline ] |
1823 | fn floor(self) -> Self { |
1824 | self.floor() |
1825 | } |
1826 | } |
1827 | |
1828 | impl<T: ApproxEq<T>, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U> { |
1829 | #[inline ] |
1830 | fn approx_epsilon() -> Self { |
1831 | vec3( |
1832 | T::approx_epsilon(), |
1833 | T::approx_epsilon(), |
1834 | T::approx_epsilon(), |
1835 | ) |
1836 | } |
1837 | |
1838 | #[inline ] |
1839 | fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { |
1840 | self.x.approx_eq_eps(&other.x, &eps.x) |
1841 | && self.y.approx_eq_eps(&other.y, &eps.y) |
1842 | && self.z.approx_eq_eps(&other.z, &eps.z) |
1843 | } |
1844 | } |
1845 | |
1846 | impl<T, U> From<Vector3D<T, U>> for [T; 3] { |
1847 | fn from(v: Vector3D<T, U>) -> Self { |
1848 | [v.x, v.y, v.z] |
1849 | } |
1850 | } |
1851 | |
1852 | impl<T, U> From<[T; 3]> for Vector3D<T, U> { |
1853 | fn from([x: T, y: T, z: T]: [T; 3]) -> Self { |
1854 | vec3(x, y, z) |
1855 | } |
1856 | } |
1857 | |
1858 | impl<T, U> From<Vector3D<T, U>> for (T, T, T) { |
1859 | fn from(v: Vector3D<T, U>) -> Self { |
1860 | (v.x, v.y, v.z) |
1861 | } |
1862 | } |
1863 | |
1864 | impl<T, U> From<(T, T, T)> for Vector3D<T, U> { |
1865 | fn from(tuple: (T, T, T)) -> Self { |
1866 | vec3(x:tuple.0, y:tuple.1, z:tuple.2) |
1867 | } |
1868 | } |
1869 | |
1870 | /// A 2d vector of booleans, useful for component-wise logic operations. |
1871 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
1872 | pub struct BoolVector2D { |
1873 | pub x: bool, |
1874 | pub y: bool, |
1875 | } |
1876 | |
1877 | /// A 3d vector of booleans, useful for component-wise logic operations. |
1878 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
1879 | pub struct BoolVector3D { |
1880 | pub x: bool, |
1881 | pub y: bool, |
1882 | pub z: bool, |
1883 | } |
1884 | |
1885 | impl BoolVector2D { |
1886 | /// Returns `true` if all components are `true` and `false` otherwise. |
1887 | #[inline ] |
1888 | pub fn all(self) -> bool { |
1889 | self.x && self.y |
1890 | } |
1891 | |
1892 | /// Returns `true` if any component are `true` and `false` otherwise. |
1893 | #[inline ] |
1894 | pub fn any(self) -> bool { |
1895 | self.x || self.y |
1896 | } |
1897 | |
1898 | /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. |
1899 | #[inline ] |
1900 | pub fn none(self) -> bool { |
1901 | !self.any() |
1902 | } |
1903 | |
1904 | /// Returns new vector with by-component AND operation applied. |
1905 | #[inline ] |
1906 | pub fn and(self, other: Self) -> Self { |
1907 | BoolVector2D { |
1908 | x: self.x && other.x, |
1909 | y: self.y && other.y, |
1910 | } |
1911 | } |
1912 | |
1913 | /// Returns new vector with by-component OR operation applied. |
1914 | #[inline ] |
1915 | pub fn or(self, other: Self) -> Self { |
1916 | BoolVector2D { |
1917 | x: self.x || other.x, |
1918 | y: self.y || other.y, |
1919 | } |
1920 | } |
1921 | |
1922 | /// Returns new vector with results of negation operation on each component. |
1923 | #[inline ] |
1924 | pub fn not(self) -> Self { |
1925 | BoolVector2D { |
1926 | x: !self.x, |
1927 | y: !self.y, |
1928 | } |
1929 | } |
1930 | |
1931 | /// Returns point, each component of which or from `a`, or from `b` depending on truly value |
1932 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1933 | #[inline ] |
1934 | pub fn select_point<T, U>(self, a: Point2D<T, U>, b: Point2D<T, U>) -> Point2D<T, U> { |
1935 | point2( |
1936 | if self.x { a.x } else { b.x }, |
1937 | if self.y { a.y } else { b.y }, |
1938 | ) |
1939 | } |
1940 | |
1941 | /// Returns vector, each component of which or from `a`, or from `b` depending on truly value |
1942 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1943 | #[inline ] |
1944 | pub fn select_vector<T, U>(self, a: Vector2D<T, U>, b: Vector2D<T, U>) -> Vector2D<T, U> { |
1945 | vec2( |
1946 | if self.x { a.x } else { b.x }, |
1947 | if self.y { a.y } else { b.y }, |
1948 | ) |
1949 | } |
1950 | |
1951 | /// Returns size, each component of which or from `a`, or from `b` depending on truly value |
1952 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1953 | #[inline ] |
1954 | pub fn select_size<T, U>(self, a: Size2D<T, U>, b: Size2D<T, U>) -> Size2D<T, U> { |
1955 | size2( |
1956 | if self.x { a.width } else { b.width }, |
1957 | if self.y { a.height } else { b.height }, |
1958 | ) |
1959 | } |
1960 | } |
1961 | |
1962 | impl BoolVector3D { |
1963 | /// Returns `true` if all components are `true` and `false` otherwise. |
1964 | #[inline ] |
1965 | pub fn all(self) -> bool { |
1966 | self.x && self.y && self.z |
1967 | } |
1968 | |
1969 | /// Returns `true` if any component are `true` and `false` otherwise. |
1970 | #[inline ] |
1971 | pub fn any(self) -> bool { |
1972 | self.x || self.y || self.z |
1973 | } |
1974 | |
1975 | /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. |
1976 | #[inline ] |
1977 | pub fn none(self) -> bool { |
1978 | !self.any() |
1979 | } |
1980 | |
1981 | /// Returns new vector with by-component AND operation applied. |
1982 | #[inline ] |
1983 | pub fn and(self, other: Self) -> Self { |
1984 | BoolVector3D { |
1985 | x: self.x && other.x, |
1986 | y: self.y && other.y, |
1987 | z: self.z && other.z, |
1988 | } |
1989 | } |
1990 | |
1991 | /// Returns new vector with by-component OR operation applied. |
1992 | #[inline ] |
1993 | pub fn or(self, other: Self) -> Self { |
1994 | BoolVector3D { |
1995 | x: self.x || other.x, |
1996 | y: self.y || other.y, |
1997 | z: self.z || other.z, |
1998 | } |
1999 | } |
2000 | |
2001 | /// Returns new vector with results of negation operation on each component. |
2002 | #[inline ] |
2003 | pub fn not(self) -> Self { |
2004 | BoolVector3D { |
2005 | x: !self.x, |
2006 | y: !self.y, |
2007 | z: !self.z, |
2008 | } |
2009 | } |
2010 | |
2011 | /// Returns point, each component of which or from `a`, or from `b` depending on truly value |
2012 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
2013 | #[inline ] |
2014 | pub fn select_point<T, U>(self, a: Point3D<T, U>, b: Point3D<T, U>) -> Point3D<T, U> { |
2015 | point3( |
2016 | if self.x { a.x } else { b.x }, |
2017 | if self.y { a.y } else { b.y }, |
2018 | if self.z { a.z } else { b.z }, |
2019 | ) |
2020 | } |
2021 | |
2022 | /// Returns vector, each component of which or from `a`, or from `b` depending on truly value |
2023 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
2024 | #[inline ] |
2025 | pub fn select_vector<T, U>(self, a: Vector3D<T, U>, b: Vector3D<T, U>) -> Vector3D<T, U> { |
2026 | vec3( |
2027 | if self.x { a.x } else { b.x }, |
2028 | if self.y { a.y } else { b.y }, |
2029 | if self.z { a.z } else { b.z }, |
2030 | ) |
2031 | } |
2032 | |
2033 | /// Returns size, each component of which or from `a`, or from `b` depending on truly value |
2034 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
2035 | #[inline ] |
2036 | #[must_use ] |
2037 | pub fn select_size<T, U>(self, a: Size3D<T, U>, b: Size3D<T, U>) -> Size3D<T, U> { |
2038 | size3( |
2039 | if self.x { a.width } else { b.width }, |
2040 | if self.y { a.height } else { b.height }, |
2041 | if self.z { a.depth } else { b.depth }, |
2042 | ) |
2043 | } |
2044 | |
2045 | /// Returns a 2d vector using this vector's x and y coordinates. |
2046 | #[inline ] |
2047 | pub fn xy(self) -> BoolVector2D { |
2048 | BoolVector2D { |
2049 | x: self.x, |
2050 | y: self.y, |
2051 | } |
2052 | } |
2053 | |
2054 | /// Returns a 2d vector using this vector's x and z coordinates. |
2055 | #[inline ] |
2056 | pub fn xz(self) -> BoolVector2D { |
2057 | BoolVector2D { |
2058 | x: self.x, |
2059 | y: self.z, |
2060 | } |
2061 | } |
2062 | |
2063 | /// Returns a 2d vector using this vector's y and z coordinates. |
2064 | #[inline ] |
2065 | pub fn yz(self) -> BoolVector2D { |
2066 | BoolVector2D { |
2067 | x: self.y, |
2068 | y: self.z, |
2069 | } |
2070 | } |
2071 | } |
2072 | |
2073 | #[cfg (feature = "arbitrary" )] |
2074 | impl<'a> arbitrary::Arbitrary<'a> for BoolVector2D { |
2075 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
2076 | Ok(BoolVector2D { |
2077 | x: arbitrary::Arbitrary::arbitrary(u)?, |
2078 | y: arbitrary::Arbitrary::arbitrary(u)?, |
2079 | }) |
2080 | } |
2081 | } |
2082 | |
2083 | #[cfg (feature = "arbitrary" )] |
2084 | impl<'a> arbitrary::Arbitrary<'a> for BoolVector3D { |
2085 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
2086 | Ok(BoolVector3D { |
2087 | x: arbitrary::Arbitrary::arbitrary(u)?, |
2088 | y: arbitrary::Arbitrary::arbitrary(u)?, |
2089 | z: arbitrary::Arbitrary::arbitrary(u)?, |
2090 | }) |
2091 | } |
2092 | } |
2093 | |
2094 | /// Convenience constructor. |
2095 | #[inline ] |
2096 | pub const fn vec2<T, U>(x: T, y: T) -> Vector2D<T, U> { |
2097 | Vector2D { |
2098 | x, |
2099 | y, |
2100 | _unit: PhantomData, |
2101 | } |
2102 | } |
2103 | |
2104 | /// Convenience constructor. |
2105 | #[inline ] |
2106 | pub const fn vec3<T, U>(x: T, y: T, z: T) -> Vector3D<T, U> { |
2107 | Vector3D { |
2108 | x, |
2109 | y, |
2110 | z, |
2111 | _unit: PhantomData, |
2112 | } |
2113 | } |
2114 | |
2115 | /// Shorthand for `BoolVector2D { x, y }`. |
2116 | #[inline ] |
2117 | pub const fn bvec2(x: bool, y: bool) -> BoolVector2D { |
2118 | BoolVector2D { x, y } |
2119 | } |
2120 | |
2121 | /// Shorthand for `BoolVector3D { x, y, z }`. |
2122 | #[inline ] |
2123 | pub const fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { |
2124 | BoolVector3D { x, y, z } |
2125 | } |
2126 | |
2127 | #[cfg (test)] |
2128 | mod vector2d { |
2129 | use crate::scale::Scale; |
2130 | use crate::{default, vec2}; |
2131 | |
2132 | #[cfg (feature = "mint" )] |
2133 | use mint; |
2134 | type Vec2 = default::Vector2D<f32>; |
2135 | |
2136 | #[test ] |
2137 | pub fn test_scalar_mul() { |
2138 | let p1: Vec2 = vec2(3.0, 5.0); |
2139 | |
2140 | let result = p1 * 5.0; |
2141 | |
2142 | assert_eq!(result, Vec2::new(15.0, 25.0)); |
2143 | } |
2144 | |
2145 | #[test ] |
2146 | pub fn test_dot() { |
2147 | let p1: Vec2 = vec2(2.0, 7.0); |
2148 | let p2: Vec2 = vec2(13.0, 11.0); |
2149 | assert_eq!(p1.dot(p2), 103.0); |
2150 | } |
2151 | |
2152 | #[test ] |
2153 | pub fn test_cross() { |
2154 | let p1: Vec2 = vec2(4.0, 7.0); |
2155 | let p2: Vec2 = vec2(13.0, 8.0); |
2156 | let r = p1.cross(p2); |
2157 | assert_eq!(r, -59.0); |
2158 | } |
2159 | |
2160 | #[test ] |
2161 | pub fn test_normalize() { |
2162 | use std::f32; |
2163 | |
2164 | let p0: Vec2 = Vec2::zero(); |
2165 | let p1: Vec2 = vec2(4.0, 0.0); |
2166 | let p2: Vec2 = vec2(3.0, -4.0); |
2167 | assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); |
2168 | assert_eq!(p1.normalize(), vec2(1.0, 0.0)); |
2169 | assert_eq!(p2.normalize(), vec2(0.6, -0.8)); |
2170 | |
2171 | let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); |
2172 | assert_ne!( |
2173 | p3.normalize(), |
2174 | vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) |
2175 | ); |
2176 | assert_eq!( |
2177 | p3.robust_normalize(), |
2178 | vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) |
2179 | ); |
2180 | |
2181 | let p4: Vec2 = Vec2::zero(); |
2182 | assert!(p4.try_normalize().is_none()); |
2183 | let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE); |
2184 | assert!(p5.try_normalize().is_none()); |
2185 | |
2186 | let p6: Vec2 = vec2(4.0, 0.0); |
2187 | let p7: Vec2 = vec2(3.0, -4.0); |
2188 | assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0)); |
2189 | assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8)); |
2190 | } |
2191 | |
2192 | #[test ] |
2193 | pub fn test_min() { |
2194 | let p1: Vec2 = vec2(1.0, 3.0); |
2195 | let p2: Vec2 = vec2(2.0, 2.0); |
2196 | |
2197 | let result = p1.min(p2); |
2198 | |
2199 | assert_eq!(result, vec2(1.0, 2.0)); |
2200 | } |
2201 | |
2202 | #[test ] |
2203 | pub fn test_max() { |
2204 | let p1: Vec2 = vec2(1.0, 3.0); |
2205 | let p2: Vec2 = vec2(2.0, 2.0); |
2206 | |
2207 | let result = p1.max(p2); |
2208 | |
2209 | assert_eq!(result, vec2(2.0, 3.0)); |
2210 | } |
2211 | |
2212 | #[test ] |
2213 | pub fn test_angle_from_x_axis() { |
2214 | use crate::approxeq::ApproxEq; |
2215 | use core::f32::consts::FRAC_PI_2; |
2216 | |
2217 | let right: Vec2 = vec2(10.0, 0.0); |
2218 | let down: Vec2 = vec2(0.0, 4.0); |
2219 | let up: Vec2 = vec2(0.0, -1.0); |
2220 | |
2221 | assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); |
2222 | assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); |
2223 | assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); |
2224 | } |
2225 | |
2226 | #[test ] |
2227 | pub fn test_angle_to() { |
2228 | use crate::approxeq::ApproxEq; |
2229 | use core::f32::consts::FRAC_PI_2; |
2230 | |
2231 | let right: Vec2 = vec2(10.0, 0.0); |
2232 | let right2: Vec2 = vec2(1.0, 0.0); |
2233 | let up: Vec2 = vec2(0.0, -1.0); |
2234 | let up_left: Vec2 = vec2(-1.0, -1.0); |
2235 | |
2236 | assert!(right.angle_to(right2).get().approx_eq(&0.0)); |
2237 | assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2)); |
2238 | assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); |
2239 | assert!(up_left |
2240 | .angle_to(up) |
2241 | .get() |
2242 | .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); |
2243 | } |
2244 | |
2245 | #[test ] |
2246 | pub fn test_with_max_length() { |
2247 | use crate::approxeq::ApproxEq; |
2248 | |
2249 | let v1: Vec2 = vec2(0.5, 0.5); |
2250 | let v2: Vec2 = vec2(1.0, 0.0); |
2251 | let v3: Vec2 = vec2(0.1, 0.2); |
2252 | let v4: Vec2 = vec2(2.0, -2.0); |
2253 | let v5: Vec2 = vec2(1.0, 2.0); |
2254 | let v6: Vec2 = vec2(-1.0, 3.0); |
2255 | |
2256 | assert_eq!(v1.with_max_length(1.0), v1); |
2257 | assert_eq!(v2.with_max_length(1.0), v2); |
2258 | assert_eq!(v3.with_max_length(1.0), v3); |
2259 | assert_eq!(v4.with_max_length(10.0), v4); |
2260 | assert_eq!(v5.with_max_length(10.0), v5); |
2261 | assert_eq!(v6.with_max_length(10.0), v6); |
2262 | |
2263 | let v4_clamped = v4.with_max_length(1.0); |
2264 | assert!(v4_clamped.length().approx_eq(&1.0)); |
2265 | assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); |
2266 | |
2267 | let v5_clamped = v5.with_max_length(1.5); |
2268 | assert!(v5_clamped.length().approx_eq(&1.5)); |
2269 | assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); |
2270 | |
2271 | let v6_clamped = v6.with_max_length(2.5); |
2272 | assert!(v6_clamped.length().approx_eq(&2.5)); |
2273 | assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); |
2274 | } |
2275 | |
2276 | #[test ] |
2277 | pub fn test_project_onto_vector() { |
2278 | use crate::approxeq::ApproxEq; |
2279 | |
2280 | let v1: Vec2 = vec2(1.0, 2.0); |
2281 | let x: Vec2 = vec2(1.0, 0.0); |
2282 | let y: Vec2 = vec2(0.0, 1.0); |
2283 | |
2284 | assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0))); |
2285 | assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0))); |
2286 | assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0))); |
2287 | assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0))); |
2288 | assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); |
2289 | assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); |
2290 | } |
2291 | |
2292 | #[cfg (feature = "mint" )] |
2293 | #[test ] |
2294 | pub fn test_mint() { |
2295 | let v1 = Vec2::new(1.0, 3.0); |
2296 | let vm: mint::Vector2<_> = v1.into(); |
2297 | let v2 = Vec2::from(vm); |
2298 | |
2299 | assert_eq!(v1, v2); |
2300 | } |
2301 | |
2302 | pub enum Mm {} |
2303 | pub enum Cm {} |
2304 | |
2305 | pub type Vector2DMm<T> = super::Vector2D<T, Mm>; |
2306 | pub type Vector2DCm<T> = super::Vector2D<T, Cm>; |
2307 | |
2308 | #[test ] |
2309 | pub fn test_add() { |
2310 | let p1 = Vector2DMm::new(1.0, 2.0); |
2311 | let p2 = Vector2DMm::new(3.0, 4.0); |
2312 | |
2313 | assert_eq!(p1 + p2, vec2(4.0, 6.0)); |
2314 | assert_eq!(p1 + &p2, vec2(4.0, 6.0)); |
2315 | } |
2316 | |
2317 | #[test ] |
2318 | pub fn test_sum() { |
2319 | let vecs = [ |
2320 | Vector2DMm::new(1.0, 2.0), |
2321 | Vector2DMm::new(3.0, 4.0), |
2322 | Vector2DMm::new(5.0, 6.0), |
2323 | ]; |
2324 | let sum = Vector2DMm::new(9.0, 12.0); |
2325 | assert_eq!(vecs.iter().sum::<Vector2DMm<_>>(), sum); |
2326 | } |
2327 | |
2328 | #[test ] |
2329 | pub fn test_add_assign() { |
2330 | let mut p1 = Vector2DMm::new(1.0, 2.0); |
2331 | p1 += vec2(3.0, 4.0); |
2332 | |
2333 | assert_eq!(p1, vec2(4.0, 6.0)); |
2334 | } |
2335 | |
2336 | #[test ] |
2337 | pub fn test_typed_scalar_mul() { |
2338 | let p1 = Vector2DMm::new(1.0, 2.0); |
2339 | let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1); |
2340 | |
2341 | let result: Vector2DCm<f32> = p1 * cm_per_mm; |
2342 | |
2343 | assert_eq!(result, vec2(0.1, 0.2)); |
2344 | } |
2345 | |
2346 | #[test ] |
2347 | pub fn test_swizzling() { |
2348 | let p: default::Vector2D<i32> = vec2(1, 2); |
2349 | assert_eq!(p.yx(), vec2(2, 1)); |
2350 | } |
2351 | |
2352 | #[test ] |
2353 | pub fn test_reflect() { |
2354 | use crate::approxeq::ApproxEq; |
2355 | let a: Vec2 = vec2(1.0, 3.0); |
2356 | let n1: Vec2 = vec2(0.0, -1.0); |
2357 | let n2: Vec2 = vec2(1.0, -1.0).normalize(); |
2358 | |
2359 | assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0))); |
2360 | assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0))); |
2361 | } |
2362 | } |
2363 | |
2364 | #[cfg (test)] |
2365 | mod vector3d { |
2366 | use crate::scale::Scale; |
2367 | use crate::{default, vec2, vec3}; |
2368 | #[cfg (feature = "mint" )] |
2369 | use mint; |
2370 | |
2371 | type Vec3 = default::Vector3D<f32>; |
2372 | |
2373 | #[test ] |
2374 | pub fn test_add() { |
2375 | let p1 = Vec3::new(1.0, 2.0, 3.0); |
2376 | let p2 = Vec3::new(4.0, 5.0, 6.0); |
2377 | |
2378 | assert_eq!(p1 + p2, vec3(5.0, 7.0, 9.0)); |
2379 | assert_eq!(p1 + &p2, vec3(5.0, 7.0, 9.0)); |
2380 | } |
2381 | |
2382 | #[test ] |
2383 | pub fn test_sum() { |
2384 | let vecs = [ |
2385 | Vec3::new(1.0, 2.0, 3.0), |
2386 | Vec3::new(4.0, 5.0, 6.0), |
2387 | Vec3::new(7.0, 8.0, 9.0), |
2388 | ]; |
2389 | let sum = Vec3::new(12.0, 15.0, 18.0); |
2390 | assert_eq!(vecs.iter().sum::<Vec3>(), sum); |
2391 | } |
2392 | |
2393 | #[test ] |
2394 | pub fn test_dot() { |
2395 | let p1: Vec3 = vec3(7.0, 21.0, 32.0); |
2396 | let p2: Vec3 = vec3(43.0, 5.0, 16.0); |
2397 | assert_eq!(p1.dot(p2), 918.0); |
2398 | } |
2399 | |
2400 | #[test ] |
2401 | pub fn test_cross() { |
2402 | let p1: Vec3 = vec3(4.0, 7.0, 9.0); |
2403 | let p2: Vec3 = vec3(13.0, 8.0, 3.0); |
2404 | let p3 = p1.cross(p2); |
2405 | assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); |
2406 | } |
2407 | |
2408 | #[test ] |
2409 | pub fn test_normalize() { |
2410 | use std::f32; |
2411 | |
2412 | let p0: Vec3 = Vec3::zero(); |
2413 | let p1: Vec3 = vec3(0.0, -6.0, 0.0); |
2414 | let p2: Vec3 = vec3(1.0, 2.0, -2.0); |
2415 | assert!( |
2416 | p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() |
2417 | ); |
2418 | assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); |
2419 | assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); |
2420 | |
2421 | let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); |
2422 | assert_ne!( |
2423 | p3.normalize(), |
2424 | vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) |
2425 | ); |
2426 | assert_eq!( |
2427 | p3.robust_normalize(), |
2428 | vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) |
2429 | ); |
2430 | |
2431 | let p4: Vec3 = Vec3::zero(); |
2432 | assert!(p4.try_normalize().is_none()); |
2433 | let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE); |
2434 | assert!(p5.try_normalize().is_none()); |
2435 | |
2436 | let p6: Vec3 = vec3(4.0, 0.0, 3.0); |
2437 | let p7: Vec3 = vec3(3.0, -4.0, 0.0); |
2438 | assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6)); |
2439 | assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0)); |
2440 | } |
2441 | |
2442 | #[test ] |
2443 | pub fn test_min() { |
2444 | let p1: Vec3 = vec3(1.0, 3.0, 5.0); |
2445 | let p2: Vec3 = vec3(2.0, 2.0, -1.0); |
2446 | |
2447 | let result = p1.min(p2); |
2448 | |
2449 | assert_eq!(result, vec3(1.0, 2.0, -1.0)); |
2450 | } |
2451 | |
2452 | #[test ] |
2453 | pub fn test_max() { |
2454 | let p1: Vec3 = vec3(1.0, 3.0, 5.0); |
2455 | let p2: Vec3 = vec3(2.0, 2.0, -1.0); |
2456 | |
2457 | let result = p1.max(p2); |
2458 | |
2459 | assert_eq!(result, vec3(2.0, 3.0, 5.0)); |
2460 | } |
2461 | |
2462 | #[test ] |
2463 | pub fn test_clamp() { |
2464 | let p1: Vec3 = vec3(1.0, -1.0, 5.0); |
2465 | let p2: Vec3 = vec3(2.0, 5.0, 10.0); |
2466 | let p3: Vec3 = vec3(-1.0, 2.0, 20.0); |
2467 | |
2468 | let result = p3.clamp(p1, p2); |
2469 | |
2470 | assert_eq!(result, vec3(1.0, 2.0, 10.0)); |
2471 | } |
2472 | |
2473 | #[test ] |
2474 | pub fn test_typed_scalar_mul() { |
2475 | enum Mm {} |
2476 | enum Cm {} |
2477 | |
2478 | let p1 = super::Vector3D::<f32, Mm>::new(1.0, 2.0, 3.0); |
2479 | let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1); |
2480 | |
2481 | let result: super::Vector3D<f32, Cm> = p1 * cm_per_mm; |
2482 | |
2483 | assert_eq!(result, vec3(0.1, 0.2, 0.3)); |
2484 | } |
2485 | |
2486 | #[test ] |
2487 | pub fn test_swizzling() { |
2488 | let p: Vec3 = vec3(1.0, 2.0, 3.0); |
2489 | assert_eq!(p.xy(), vec2(1.0, 2.0)); |
2490 | assert_eq!(p.xz(), vec2(1.0, 3.0)); |
2491 | assert_eq!(p.yz(), vec2(2.0, 3.0)); |
2492 | } |
2493 | |
2494 | #[cfg (feature = "mint" )] |
2495 | #[test ] |
2496 | pub fn test_mint() { |
2497 | let v1 = Vec3::new(1.0, 3.0, 5.0); |
2498 | let vm: mint::Vector3<_> = v1.into(); |
2499 | let v2 = Vec3::from(vm); |
2500 | |
2501 | assert_eq!(v1, v2); |
2502 | } |
2503 | |
2504 | #[test ] |
2505 | pub fn test_reflect() { |
2506 | use crate::approxeq::ApproxEq; |
2507 | let a: Vec3 = vec3(1.0, 3.0, 2.0); |
2508 | let n1: Vec3 = vec3(0.0, -1.0, 0.0); |
2509 | let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize(); |
2510 | |
2511 | assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0))); |
2512 | assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0))); |
2513 | } |
2514 | |
2515 | #[test ] |
2516 | pub fn test_angle_to() { |
2517 | use crate::approxeq::ApproxEq; |
2518 | use core::f32::consts::FRAC_PI_2; |
2519 | |
2520 | let right: Vec3 = vec3(10.0, 0.0, 0.0); |
2521 | let right2: Vec3 = vec3(1.0, 0.0, 0.0); |
2522 | let up: Vec3 = vec3(0.0, -1.0, 0.0); |
2523 | let up_left: Vec3 = vec3(-1.0, -1.0, 0.0); |
2524 | |
2525 | assert!(right.angle_to(right2).get().approx_eq(&0.0)); |
2526 | assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2)); |
2527 | assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); |
2528 | assert!(up_left |
2529 | .angle_to(up) |
2530 | .get() |
2531 | .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); |
2532 | } |
2533 | |
2534 | #[test ] |
2535 | pub fn test_with_max_length() { |
2536 | use crate::approxeq::ApproxEq; |
2537 | |
2538 | let v1: Vec3 = vec3(0.5, 0.5, 0.0); |
2539 | let v2: Vec3 = vec3(1.0, 0.0, 0.0); |
2540 | let v3: Vec3 = vec3(0.1, 0.2, 0.3); |
2541 | let v4: Vec3 = vec3(2.0, -2.0, 2.0); |
2542 | let v5: Vec3 = vec3(1.0, 2.0, -3.0); |
2543 | let v6: Vec3 = vec3(-1.0, 3.0, 2.0); |
2544 | |
2545 | assert_eq!(v1.with_max_length(1.0), v1); |
2546 | assert_eq!(v2.with_max_length(1.0), v2); |
2547 | assert_eq!(v3.with_max_length(1.0), v3); |
2548 | assert_eq!(v4.with_max_length(10.0), v4); |
2549 | assert_eq!(v5.with_max_length(10.0), v5); |
2550 | assert_eq!(v6.with_max_length(10.0), v6); |
2551 | |
2552 | let v4_clamped = v4.with_max_length(1.0); |
2553 | assert!(v4_clamped.length().approx_eq(&1.0)); |
2554 | assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); |
2555 | |
2556 | let v5_clamped = v5.with_max_length(1.5); |
2557 | assert!(v5_clamped.length().approx_eq(&1.5)); |
2558 | assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); |
2559 | |
2560 | let v6_clamped = v6.with_max_length(2.5); |
2561 | assert!(v6_clamped.length().approx_eq(&2.5)); |
2562 | assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); |
2563 | } |
2564 | |
2565 | #[test ] |
2566 | pub fn test_project_onto_vector() { |
2567 | use crate::approxeq::ApproxEq; |
2568 | |
2569 | let v1: Vec3 = vec3(1.0, 2.0, 3.0); |
2570 | let x: Vec3 = vec3(1.0, 0.0, 0.0); |
2571 | let y: Vec3 = vec3(0.0, 1.0, 0.0); |
2572 | let z: Vec3 = vec3(0.0, 0.0, 1.0); |
2573 | |
2574 | assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0))); |
2575 | assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0))); |
2576 | assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0))); |
2577 | assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0))); |
2578 | assert!(v1 |
2579 | .project_onto_vector(x * 10.0) |
2580 | .approx_eq(&vec3(1.0, 0.0, 0.0))); |
2581 | assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); |
2582 | assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); |
2583 | } |
2584 | } |
2585 | |
2586 | #[cfg (test)] |
2587 | mod bool_vector { |
2588 | use super::*; |
2589 | use crate::default; |
2590 | type Vec2 = default::Vector2D<f32>; |
2591 | type Vec3 = default::Vector3D<f32>; |
2592 | |
2593 | #[test ] |
2594 | fn test_bvec2() { |
2595 | assert_eq!( |
2596 | Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), |
2597 | bvec2(false, true), |
2598 | ); |
2599 | |
2600 | assert_eq!( |
2601 | Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), |
2602 | bvec2(true, false), |
2603 | ); |
2604 | |
2605 | assert_eq!( |
2606 | Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), |
2607 | bvec2(true, false), |
2608 | ); |
2609 | |
2610 | assert_eq!( |
2611 | Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), |
2612 | bvec2(false, true), |
2613 | ); |
2614 | |
2615 | assert!(bvec2(true, true).any()); |
2616 | assert!(bvec2(false, true).any()); |
2617 | assert!(bvec2(true, false).any()); |
2618 | assert!(!bvec2(false, false).any()); |
2619 | assert!(bvec2(false, false).none()); |
2620 | assert!(bvec2(true, true).all()); |
2621 | assert!(!bvec2(false, true).all()); |
2622 | assert!(!bvec2(true, false).all()); |
2623 | assert!(!bvec2(false, false).all()); |
2624 | |
2625 | assert_eq!(bvec2(true, false).not(), bvec2(false, true)); |
2626 | assert_eq!( |
2627 | bvec2(true, false).and(bvec2(true, true)), |
2628 | bvec2(true, false) |
2629 | ); |
2630 | assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); |
2631 | |
2632 | assert_eq!( |
2633 | bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), |
2634 | Vec2::new(1.0, 4.0), |
2635 | ); |
2636 | } |
2637 | |
2638 | #[test ] |
2639 | fn test_bvec3() { |
2640 | assert_eq!( |
2641 | Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), |
2642 | bvec3(false, false, true), |
2643 | ); |
2644 | |
2645 | assert_eq!( |
2646 | Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), |
2647 | bvec3(true, false, false), |
2648 | ); |
2649 | |
2650 | assert_eq!( |
2651 | Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), |
2652 | bvec3(false, true, false), |
2653 | ); |
2654 | |
2655 | assert_eq!( |
2656 | Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), |
2657 | bvec3(true, false, true), |
2658 | ); |
2659 | |
2660 | assert!(bvec3(true, true, false).any()); |
2661 | assert!(bvec3(false, true, false).any()); |
2662 | assert!(bvec3(true, false, false).any()); |
2663 | assert!(!bvec3(false, false, false).any()); |
2664 | assert!(bvec3(false, false, false).none()); |
2665 | assert!(bvec3(true, true, true).all()); |
2666 | assert!(!bvec3(false, true, false).all()); |
2667 | assert!(!bvec3(true, false, false).all()); |
2668 | assert!(!bvec3(false, false, false).all()); |
2669 | |
2670 | assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); |
2671 | assert_eq!( |
2672 | bvec3(true, false, true).and(bvec3(true, true, false)), |
2673 | bvec3(true, false, false) |
2674 | ); |
2675 | assert_eq!( |
2676 | bvec3(true, false, false).or(bvec3(true, true, false)), |
2677 | bvec3(true, true, false) |
2678 | ); |
2679 | |
2680 | assert_eq!( |
2681 | bvec3(true, false, true) |
2682 | .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), |
2683 | Vec3::new(1.0, 5.0, 3.0), |
2684 | ); |
2685 | } |
2686 | } |
2687 | |