| 1 | //! Tools to iterate over paths. |
| 2 | //! |
| 3 | //! # Lyon path iterators |
| 4 | //! |
| 5 | //! ## Overview |
| 6 | //! |
| 7 | //! This module provides a collection of traits to extend the `Iterator` trait when |
| 8 | //! iterating over paths. |
| 9 | //! |
| 10 | //! ## Examples |
| 11 | //! |
| 12 | //! ``` |
| 13 | //! use lyon_path::iterator::*; |
| 14 | //! use lyon_path::math::{point, vector}; |
| 15 | //! use lyon_path::{Path, PathEvent}; |
| 16 | //! |
| 17 | //! // Start with a path. |
| 18 | //! let mut builder = Path::builder(); |
| 19 | //! builder.begin(point(0.0, 0.0)); |
| 20 | //! builder.line_to(point(10.0, 0.0)); |
| 21 | //! builder.cubic_bezier_to(point(10.0, 10.0), point(0.0, 10.0), point(0.0, 5.0)); |
| 22 | //! builder.end(true); |
| 23 | //! let path = builder.build(); |
| 24 | //! |
| 25 | //! // A simple std::iter::Iterator<PathEvent>, |
| 26 | //! let simple_iter = path.iter(); |
| 27 | //! |
| 28 | //! // Make it an iterator over simpler primitives flattened events, |
| 29 | //! // which do not contain any curve. To do so we approximate each curve |
| 30 | //! // linear segments according to a tolerance threshold which controls |
| 31 | //! // the tradeoff between fidelity of the approximation and amount of |
| 32 | //! // generated events. Let's use a tolerance threshold of 0.01. |
| 33 | //! // The beauty of this approach is that the flattening happens lazily |
| 34 | //! // while iterating without allocating memory for the path. |
| 35 | //! let flattened_iter = path.iter().flattened(0.01); |
| 36 | //! |
| 37 | //! for evt in flattened_iter { |
| 38 | //! match evt { |
| 39 | //! PathEvent::Begin { at } => { println!(" - move to {:?}" , at); } |
| 40 | //! PathEvent::Line { from, to } => { println!(" - line {:?} -> {:?}" , from, to); } |
| 41 | //! PathEvent::End { last, first, close } => { |
| 42 | //! if close { |
| 43 | //! println!(" - close {:?} -> {:?}" , last, first); |
| 44 | //! } else { |
| 45 | //! println!(" - end" ); |
| 46 | //! } |
| 47 | //! } |
| 48 | //! _ => { panic!() } |
| 49 | //! } |
| 50 | //! } |
| 51 | //! ``` |
| 52 | //! |
| 53 | //! Chaining the provided iterators allow performing some path manipulations lazily |
| 54 | //! without allocating actual path objects to hold the result of the transformations. |
| 55 | //! |
| 56 | //! ``` |
| 57 | //! extern crate lyon_path; |
| 58 | //! use lyon_path::iterator::*; |
| 59 | //! use lyon_path::math::{point, Angle, Rotation}; |
| 60 | //! use lyon_path::Path; |
| 61 | //! |
| 62 | //! fn main() { |
| 63 | //! // In practice it is more common to iterate over Path objects than vectors |
| 64 | //! // of SVG commands (the former can be constructed from the latter). |
| 65 | //! let mut builder = Path::builder(); |
| 66 | //! builder.begin(point(1.0, 1.0)); |
| 67 | //! builder.line_to(point(2.0, 1.0)); |
| 68 | //! builder.quadratic_bezier_to(point(2.0, 2.0), point(1.0, 2.0)); |
| 69 | //! builder.cubic_bezier_to(point(0.0, 2.0), point(0.0, 0.0), point(1.0, 0.0)); |
| 70 | //! builder.end(true); |
| 71 | //! let path = builder.build(); |
| 72 | //! |
| 73 | //! let transform = Rotation::new(Angle::radians(1.0)); |
| 74 | //! |
| 75 | //! for evt in path.iter().transformed(&transform).flattened(0.1) { |
| 76 | //! // ... |
| 77 | //! } |
| 78 | //! } |
| 79 | //! ``` |
| 80 | |
| 81 | use crate::geom::traits::Transformation; |
| 82 | use crate::geom::{cubic_bezier, quadratic_bezier, CubicBezierSegment, QuadraticBezierSegment}; |
| 83 | use crate::math::*; |
| 84 | use crate::{Attributes, Event, PathEvent}; |
| 85 | |
| 86 | // TODO: It would be great to add support for attributes in PathIterator. |
| 87 | |
| 88 | /// An extension trait for `PathEvent` iterators. |
| 89 | pub trait PathIterator: Iterator<Item = PathEvent> + Sized { |
| 90 | /// Returns an iterator that turns curves into line segments. |
| 91 | fn flattened(self, tolerance: f32) -> Flattened<Self> { |
| 92 | Flattened::new(tolerance, self) |
| 93 | } |
| 94 | |
| 95 | /// Returns an iterator applying a 2D transform to all of its events. |
| 96 | fn transformed<T: Transformation<f32>>(self, mat: &T) -> Transformed<Self, T> { |
| 97 | Transformed::new(transform:mat, self) |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | impl<Iter> PathIterator for Iter where Iter: Iterator<Item = PathEvent> {} |
| 102 | |
| 103 | pub struct NoAttributes<Iter>(pub(crate) Iter); |
| 104 | |
| 105 | impl<'l, Iter> NoAttributes<Iter> |
| 106 | where |
| 107 | Iter: Iterator<Item = Event<(Point, Attributes<'l>), Point>>, |
| 108 | { |
| 109 | pub fn with_attributes(self) -> Iter { |
| 110 | self.0 |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | impl<'l, Iter> Iterator for NoAttributes<Iter> |
| 115 | where |
| 116 | Iter: Iterator<Item = Event<(Point, Attributes<'l>), Point>>, |
| 117 | { |
| 118 | type Item = PathEvent; |
| 119 | fn next(&mut self) -> Option<PathEvent> { |
| 120 | self.0.next().map(|event: Event<(Point2D, …), …>| event.with_points()) |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /// An iterator that consumes `Event` iterator and yields flattened path events (with no curves). |
| 125 | pub struct Flattened<Iter> { |
| 126 | it: Iter, |
| 127 | current_position: Point, |
| 128 | current_curve: TmpFlatteningIter, |
| 129 | tolerance: f32, |
| 130 | } |
| 131 | |
| 132 | enum TmpFlatteningIter { |
| 133 | Quadratic(quadratic_bezier::Flattened<f32>), |
| 134 | Cubic(cubic_bezier::Flattened<f32>), |
| 135 | None, |
| 136 | } |
| 137 | |
| 138 | impl<Iter: Iterator<Item = PathEvent>> Flattened<Iter> { |
| 139 | /// Create the iterator. |
| 140 | pub fn new(tolerance: f32, it: Iter) -> Self { |
| 141 | Flattened { |
| 142 | it, |
| 143 | current_position: point(x:0.0, y:0.0), |
| 144 | current_curve: TmpFlatteningIter::None, |
| 145 | tolerance, |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | impl<Iter> Iterator for Flattened<Iter> |
| 151 | where |
| 152 | Iter: Iterator<Item = PathEvent>, |
| 153 | { |
| 154 | type Item = PathEvent; |
| 155 | fn next(&mut self) -> Option<PathEvent> { |
| 156 | match self.current_curve { |
| 157 | TmpFlatteningIter::Quadratic(ref mut it) => { |
| 158 | if let Some(to) = it.next() { |
| 159 | let from = self.current_position; |
| 160 | self.current_position = to; |
| 161 | return Some(PathEvent::Line { from, to }); |
| 162 | } |
| 163 | } |
| 164 | TmpFlatteningIter::Cubic(ref mut it) => { |
| 165 | if let Some(to) = it.next() { |
| 166 | let from = self.current_position; |
| 167 | self.current_position = to; |
| 168 | return Some(PathEvent::Line { from, to }); |
| 169 | } |
| 170 | } |
| 171 | _ => {} |
| 172 | } |
| 173 | self.current_curve = TmpFlatteningIter::None; |
| 174 | match self.it.next() { |
| 175 | Some(PathEvent::Begin { at }) => Some(PathEvent::Begin { at }), |
| 176 | Some(PathEvent::Line { from, to }) => Some(PathEvent::Line { from, to }), |
| 177 | Some(PathEvent::End { last, first, close }) => { |
| 178 | Some(PathEvent::End { last, first, close }) |
| 179 | } |
| 180 | Some(PathEvent::Quadratic { from, ctrl, to }) => { |
| 181 | self.current_position = from; |
| 182 | self.current_curve = TmpFlatteningIter::Quadratic( |
| 183 | QuadraticBezierSegment { from, ctrl, to }.flattened(self.tolerance), |
| 184 | ); |
| 185 | self.next() |
| 186 | } |
| 187 | Some(PathEvent::Cubic { |
| 188 | from, |
| 189 | ctrl1, |
| 190 | ctrl2, |
| 191 | to, |
| 192 | }) => { |
| 193 | self.current_position = from; |
| 194 | self.current_curve = TmpFlatteningIter::Cubic( |
| 195 | CubicBezierSegment { |
| 196 | from, |
| 197 | ctrl1, |
| 198 | ctrl2, |
| 199 | to, |
| 200 | } |
| 201 | .flattened(self.tolerance), |
| 202 | ); |
| 203 | self.next() |
| 204 | } |
| 205 | None => None, |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 210 | // At minimum, the inner iterator size hint plus the flattening iterator size hint can form the lower |
| 211 | // bracket. |
| 212 | // We can't determine a maximum limit. |
| 213 | let mut lo = self.it.size_hint().0; |
| 214 | match &self.current_curve { |
| 215 | TmpFlatteningIter::Quadratic(t) => { |
| 216 | lo += t.size_hint().0; |
| 217 | } |
| 218 | TmpFlatteningIter::Cubic(t) => { |
| 219 | lo += t.size_hint().0; |
| 220 | } |
| 221 | _ => {} |
| 222 | } |
| 223 | (lo, None) |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | /// Applies a 2D transform to a path iterator and yields the resulting path iterator. |
| 228 | pub struct Transformed<'l, I, T> { |
| 229 | it: I, |
| 230 | transform: &'l T, |
| 231 | } |
| 232 | |
| 233 | impl<'l, I, T: Transformation<f32>> Transformed<'l, I, T> |
| 234 | where |
| 235 | I: Iterator<Item = PathEvent>, |
| 236 | { |
| 237 | /// Creates a new transformed path iterator from a path iterator. |
| 238 | #[inline ] |
| 239 | pub fn new(transform: &'l T, it: I) -> Transformed<'l, I, T> { |
| 240 | Transformed { it, transform } |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | impl<'l, I, T> Iterator for Transformed<'l, I, T> |
| 245 | where |
| 246 | I: Iterator<Item = PathEvent>, |
| 247 | T: Transformation<f32>, |
| 248 | { |
| 249 | type Item = PathEvent; |
| 250 | fn next(&mut self) -> Option<PathEvent> { |
| 251 | match self.it.next() { |
| 252 | None => None, |
| 253 | Some(ref evt: &Event, …>) => Some(evt.transformed(self.transform)), |
| 254 | } |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | /// An iterator that consumes an iterator of `Point`s and produces `Event`s. |
| 259 | /// |
| 260 | /// # Example |
| 261 | /// |
| 262 | /// ``` |
| 263 | /// # extern crate lyon_path; |
| 264 | /// # use lyon_path::iterator::FromPolyline; |
| 265 | /// # use lyon_path::math::point; |
| 266 | /// # fn main() { |
| 267 | /// let points = [ |
| 268 | /// point(1.0, 1.0), |
| 269 | /// point(2.0, 1.0), |
| 270 | /// point(1.0, 2.0) |
| 271 | /// ]; |
| 272 | /// let iter = FromPolyline::closed(points.iter().cloned()); |
| 273 | /// # } |
| 274 | /// ``` |
| 275 | pub struct FromPolyline<Iter> { |
| 276 | iter: Iter, |
| 277 | current: Point, |
| 278 | first: Point, |
| 279 | is_first: bool, |
| 280 | done: bool, |
| 281 | close: bool, |
| 282 | } |
| 283 | |
| 284 | impl<Iter: Iterator<Item = Point>> FromPolyline<Iter> { |
| 285 | pub fn new(close: bool, iter: Iter) -> Self { |
| 286 | FromPolyline { |
| 287 | iter, |
| 288 | current: point(x:0.0, y:0.0), |
| 289 | first: point(x:0.0, y:0.0), |
| 290 | is_first: true, |
| 291 | done: false, |
| 292 | close, |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | pub fn closed(iter: Iter) -> Self { |
| 297 | FromPolyline::new(close:true, iter) |
| 298 | } |
| 299 | |
| 300 | pub fn open(iter: Iter) -> Self { |
| 301 | FromPolyline::new(close:false, iter) |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | impl<Iter> Iterator for FromPolyline<Iter> |
| 306 | where |
| 307 | Iter: Iterator<Item = Point>, |
| 308 | { |
| 309 | type Item = PathEvent; |
| 310 | |
| 311 | fn next(&mut self) -> Option<PathEvent> { |
| 312 | if self.done { |
| 313 | return None; |
| 314 | } |
| 315 | |
| 316 | if let Some(next) = self.iter.next() { |
| 317 | debug_assert!(next.x.is_finite()); |
| 318 | debug_assert!(next.y.is_finite()); |
| 319 | let from = self.current; |
| 320 | self.current = next; |
| 321 | return if self.is_first { |
| 322 | self.is_first = false; |
| 323 | self.first = next; |
| 324 | Some(PathEvent::Begin { at: next }) |
| 325 | } else { |
| 326 | Some(PathEvent::Line { from, to: next }) |
| 327 | }; |
| 328 | } |
| 329 | |
| 330 | self.done = true; |
| 331 | |
| 332 | Some(PathEvent::End { |
| 333 | last: self.current, |
| 334 | first: self.first, |
| 335 | close: self.close, |
| 336 | }) |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | #[test ] |
| 341 | fn test_from_polyline_open() { |
| 342 | let points = &[ |
| 343 | point(1.0, 1.0), |
| 344 | point(3.0, 1.0), |
| 345 | point(4.0, 5.0), |
| 346 | point(5.0, 2.0), |
| 347 | ]; |
| 348 | |
| 349 | let mut evts = FromPolyline::open(points.iter().cloned()); |
| 350 | |
| 351 | assert_eq!( |
| 352 | evts.next(), |
| 353 | Some(PathEvent::Begin { |
| 354 | at: point(1.0, 1.0) |
| 355 | }) |
| 356 | ); |
| 357 | assert_eq!( |
| 358 | evts.next(), |
| 359 | Some(PathEvent::Line { |
| 360 | from: point(1.0, 1.0), |
| 361 | to: point(3.0, 1.0) |
| 362 | }) |
| 363 | ); |
| 364 | assert_eq!( |
| 365 | evts.next(), |
| 366 | Some(PathEvent::Line { |
| 367 | from: point(3.0, 1.0), |
| 368 | to: point(4.0, 5.0) |
| 369 | }) |
| 370 | ); |
| 371 | assert_eq!( |
| 372 | evts.next(), |
| 373 | Some(PathEvent::Line { |
| 374 | from: point(4.0, 5.0), |
| 375 | to: point(5.0, 2.0) |
| 376 | }) |
| 377 | ); |
| 378 | assert_eq!( |
| 379 | evts.next(), |
| 380 | Some(PathEvent::End { |
| 381 | last: point(5.0, 2.0), |
| 382 | first: point(1.0, 1.0), |
| 383 | close: false |
| 384 | }) |
| 385 | ); |
| 386 | assert_eq!(evts.next(), None); |
| 387 | } |
| 388 | |
| 389 | #[test ] |
| 390 | fn test_from_polyline_closed() { |
| 391 | let points = &[ |
| 392 | point(1.0, 1.0), |
| 393 | point(3.0, 1.0), |
| 394 | point(4.0, 5.0), |
| 395 | point(5.0, 2.0), |
| 396 | ]; |
| 397 | |
| 398 | let mut evts = FromPolyline::closed(points.iter().cloned()); |
| 399 | |
| 400 | assert_eq!( |
| 401 | evts.next(), |
| 402 | Some(PathEvent::Begin { |
| 403 | at: point(1.0, 1.0) |
| 404 | }) |
| 405 | ); |
| 406 | assert_eq!( |
| 407 | evts.next(), |
| 408 | Some(PathEvent::Line { |
| 409 | from: point(1.0, 1.0), |
| 410 | to: point(3.0, 1.0) |
| 411 | }) |
| 412 | ); |
| 413 | assert_eq!( |
| 414 | evts.next(), |
| 415 | Some(PathEvent::Line { |
| 416 | from: point(3.0, 1.0), |
| 417 | to: point(4.0, 5.0) |
| 418 | }) |
| 419 | ); |
| 420 | assert_eq!( |
| 421 | evts.next(), |
| 422 | Some(PathEvent::Line { |
| 423 | from: point(4.0, 5.0), |
| 424 | to: point(5.0, 2.0) |
| 425 | }) |
| 426 | ); |
| 427 | assert_eq!( |
| 428 | evts.next(), |
| 429 | Some(PathEvent::End { |
| 430 | last: point(5.0, 2.0), |
| 431 | first: point(1.0, 1.0), |
| 432 | close: true |
| 433 | }) |
| 434 | ); |
| 435 | assert_eq!(evts.next(), None); |
| 436 | } |
| 437 | |