| 1 | //! Exp approximation for a single-precision float. |
| 2 | //! |
| 3 | //! Method described at: <https://stackoverflow.com/a/6985769/2036035> |
| 4 | |
| 5 | use super::{EXPONENT_BIAS, F32}; |
| 6 | use core::f32::consts; |
| 7 | |
| 8 | impl F32 { |
| 9 | /// Returns `e^(self)`, (the exponential function). |
| 10 | #[inline ] |
| 11 | pub fn exp(self) -> Self { |
| 12 | self.exp_ln2_approx(4) |
| 13 | } |
| 14 | |
| 15 | /// Exp approximation for `f32`. |
| 16 | pub(crate) fn exp_ln2_approx(self, partial_iter: u32) -> Self { |
| 17 | if self == Self::ZERO { |
| 18 | return Self::ONE; |
| 19 | } |
| 20 | |
| 21 | if (self - Self::ONE).abs() < f32::EPSILON { |
| 22 | return consts::E.into(); |
| 23 | } |
| 24 | |
| 25 | if (self - (-Self::ONE)).abs() < f32::EPSILON { |
| 26 | return Self::ONE / consts::E; |
| 27 | } |
| 28 | |
| 29 | // log base 2(E) == 1/ln(2) |
| 30 | // x_fract + x_whole = x/ln2_recip |
| 31 | // ln2*(x_fract + x_whole) = x |
| 32 | let x_ln2recip = self * consts::LOG2_E; |
| 33 | let x_fract = x_ln2recip.fract(); |
| 34 | let x_trunc = x_ln2recip.trunc(); |
| 35 | |
| 36 | //guaranteed to be 0 < x < 1.0 |
| 37 | let x_fract = x_fract * consts::LN_2; |
| 38 | let fract_exp = x_fract.exp_smallx(partial_iter); |
| 39 | |
| 40 | //need the 2^n portion, we can just extract that from the whole number exp portion |
| 41 | let fract_exponent: i32 = fract_exp |
| 42 | .extract_exponent_value() |
| 43 | .saturating_add(x_trunc.0 as i32); |
| 44 | |
| 45 | if fract_exponent < -(EXPONENT_BIAS as i32) { |
| 46 | return Self::ZERO; |
| 47 | } |
| 48 | |
| 49 | if fract_exponent > ((EXPONENT_BIAS + 1) as i32) { |
| 50 | return Self::INFINITY; |
| 51 | } |
| 52 | |
| 53 | fract_exp.set_exponent(fract_exponent) |
| 54 | } |
| 55 | |
| 56 | /// if x is between 0.0 and 1.0, we can approximate it with the a series |
| 57 | /// |
| 58 | /// Series from here: |
| 59 | /// <https://stackoverflow.com/a/6984495> |
| 60 | /// |
| 61 | /// e^x ~= 1 + x(1 + x/2(1 + (x? |
| 62 | #[inline ] |
| 63 | pub(crate) fn exp_smallx(self, iter: u32) -> Self { |
| 64 | let mut total = 1.0; |
| 65 | |
| 66 | for i in (1..=iter).rev() { |
| 67 | total = 1.0 + ((self.0 / (i as f32)) * total); |
| 68 | } |
| 69 | |
| 70 | Self(total) |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | #[cfg (test)] |
| 75 | mod tests { |
| 76 | use super::F32; |
| 77 | |
| 78 | pub(crate) const MAX_ERROR: f32 = 0.001; |
| 79 | |
| 80 | /// exp test vectors - `(input, output)` |
| 81 | pub(crate) const TEST_VECTORS: &[(f32, f32)] = &[ |
| 82 | (1e-07, 1.0000001), |
| 83 | (1e-06, 1.000001), |
| 84 | (1e-05, 1.00001), |
| 85 | (1e-04, 1.0001), |
| 86 | (0.001, 1.0010005), |
| 87 | (0.01, 1.0100502), |
| 88 | (0.1, 1.105171), |
| 89 | (1.0, 2.7182817), |
| 90 | (10.0, 22026.465), |
| 91 | (-1e-08, 1.0), |
| 92 | (-1e-07, 0.9999999), |
| 93 | (-1e-06, 0.999999), |
| 94 | (-1e-05, 0.99999), |
| 95 | (-1e-04, 0.9999), |
| 96 | (-0.001, 0.9990005), |
| 97 | (-0.01, 0.99004984), |
| 98 | (-0.1, 0.9048374), |
| 99 | (-1.0, 0.36787945), |
| 100 | (-10.0, 4.539_993e-5), |
| 101 | ]; |
| 102 | |
| 103 | #[test ] |
| 104 | fn sanity_check() { |
| 105 | assert_eq!(F32(-1000000.0).exp(), F32::ZERO); |
| 106 | |
| 107 | for &(x, expected) in TEST_VECTORS { |
| 108 | let exp_x = F32(x).exp(); |
| 109 | let relative_error = (exp_x - expected).abs() / expected; |
| 110 | |
| 111 | assert!( |
| 112 | relative_error <= MAX_ERROR, |
| 113 | "relative_error {} too large for input {} : {} vs {}" , |
| 114 | relative_error, |
| 115 | x, |
| 116 | exp_x, |
| 117 | expected |
| 118 | ); |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |