| 1 | //! Floating point operations |
| 2 | |
| 3 | pub(crate) mod abs; |
| 4 | pub(crate) mod acos; |
| 5 | pub(crate) mod asin; |
| 6 | pub(crate) mod atan; |
| 7 | pub(crate) mod atan2; |
| 8 | pub(crate) mod ceil; |
| 9 | pub(crate) mod copysign; |
| 10 | pub(crate) mod cos; |
| 11 | pub(crate) mod div_euclid; |
| 12 | pub(crate) mod exp; |
| 13 | pub(crate) mod floor; |
| 14 | pub(crate) mod fract; |
| 15 | pub(crate) mod hypot; |
| 16 | pub(crate) mod inv; |
| 17 | pub(crate) mod invsqrt; |
| 18 | pub(crate) mod ln; |
| 19 | pub(crate) mod log; |
| 20 | pub(crate) mod log10; |
| 21 | pub(crate) mod log2; |
| 22 | pub(crate) mod mul_add; |
| 23 | pub(crate) mod powf; |
| 24 | pub(crate) mod powi; |
| 25 | pub(crate) mod recip; |
| 26 | pub(crate) mod rem_euclid; |
| 27 | pub(crate) mod round; |
| 28 | pub(crate) mod signum; |
| 29 | pub(crate) mod sin; |
| 30 | pub(crate) mod sin_cos; |
| 31 | pub(crate) mod sqrt; |
| 32 | pub(crate) mod tan; |
| 33 | pub(crate) mod trunc; |
| 34 | |
| 35 | use core::{ |
| 36 | cmp::Ordering, |
| 37 | fmt::{self, Display, LowerExp, UpperExp}, |
| 38 | iter::{Product, Sum}, |
| 39 | num::ParseFloatError, |
| 40 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
| 41 | str::FromStr, |
| 42 | }; |
| 43 | |
| 44 | #[cfg (feature = "num-traits" )] |
| 45 | use num_traits::{Inv, Num, One, Zero}; |
| 46 | |
| 47 | /// Sign mask. |
| 48 | pub(crate) const SIGN_MASK: u32 = 0b1000_0000_0000_0000_0000_0000_0000_0000; |
| 49 | |
| 50 | /// Exponent mask. |
| 51 | pub(crate) const EXPONENT_MASK: u32 = 0b0111_1111_1000_0000_0000_0000_0000_0000; |
| 52 | |
| 53 | /// Mantissa mask. |
| 54 | pub(crate) const MANTISSA_MASK: u32 = 0b0000_0000_0111_1111_1111_1111_1111_1111; |
| 55 | |
| 56 | /// Exponent mask. |
| 57 | pub(crate) const EXPONENT_BIAS: u32 = 127; |
| 58 | |
| 59 | /// Mantissa bits. |
| 60 | /// |
| 61 | /// Note: `MANTISSA_DIGITS` is available in `core::f32`, but the actual bits taken up are 24 - 1. |
| 62 | pub(crate) const MANTISSA_BITS: u32 = 23; |
| 63 | |
| 64 | /// 32-bit floating point wrapper which implements fast approximation-based |
| 65 | /// operations. |
| 66 | #[derive (Copy, Clone, Debug, Default, PartialEq, PartialOrd)] |
| 67 | pub struct F32(pub f32); |
| 68 | |
| 69 | impl F32 { |
| 70 | /// The value `0.0`. |
| 71 | pub const ZERO: Self = Self(0.0); |
| 72 | |
| 73 | /// The value `1.0`. |
| 74 | pub const ONE: Self = Self(1.0); |
| 75 | |
| 76 | /// The radix or base of the internal representation of `f32`. |
| 77 | pub const RADIX: u32 = f32::RADIX; |
| 78 | |
| 79 | /// Number of significant digits in base 2. |
| 80 | pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS; |
| 81 | |
| 82 | /// Approximate number of significant digits in base 10. |
| 83 | pub const DIGITS: u32 = f32::DIGITS; |
| 84 | |
| 85 | /// [Machine epsilon] value for `f32`. |
| 86 | /// |
| 87 | /// This is the difference between `1.0` and the next larger representable number. |
| 88 | /// |
| 89 | /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon |
| 90 | pub const EPSILON: Self = Self(f32::EPSILON); |
| 91 | |
| 92 | /// Smallest finite `f32` value. |
| 93 | pub const MIN: Self = Self(f32::MIN); |
| 94 | |
| 95 | /// Smallest positive normal `f32` value. |
| 96 | pub const MIN_POSITIVE: Self = Self(f32::MIN_POSITIVE); |
| 97 | |
| 98 | /// Largest finite `f32` value. |
| 99 | pub const MAX: Self = Self(f32::MAX); |
| 100 | |
| 101 | /// One greater than the minimum possible normal power of 2 exponent. |
| 102 | pub const MIN_EXP: i32 = f32::MIN_EXP; |
| 103 | |
| 104 | /// Maximum possible power of 2 exponent. |
| 105 | pub const MAX_EXP: i32 = f32::MAX_EXP; |
| 106 | |
| 107 | /// Minimum possible normal power of 10 exponent. |
| 108 | pub const MIN_10_EXP: i32 = f32::MIN_10_EXP; |
| 109 | |
| 110 | /// Maximum possible power of 10 exponent. |
| 111 | pub const MAX_10_EXP: i32 = f32::MAX_10_EXP; |
| 112 | |
| 113 | /// Not a Number (NaN). |
| 114 | pub const NAN: Self = Self(f32::NAN); |
| 115 | |
| 116 | /// Infinity (∞). |
| 117 | pub const INFINITY: Self = Self(f32::INFINITY); |
| 118 | |
| 119 | /// Negative infinity (−∞). |
| 120 | pub const NEG_INFINITY: Self = Self(f32::NEG_INFINITY); |
| 121 | |
| 122 | /// Returns `true` if this value is `NaN`. |
| 123 | #[inline ] |
| 124 | pub fn is_nan(self) -> bool { |
| 125 | self.0.is_nan() |
| 126 | } |
| 127 | |
| 128 | /// Returns `true` if this value is positive infinity or negative infinity, and |
| 129 | /// `false` otherwise. |
| 130 | #[inline ] |
| 131 | pub fn is_infinite(self) -> bool { |
| 132 | self.0.is_infinite() |
| 133 | } |
| 134 | |
| 135 | /// Returns `true` if this number is neither infinite nor `NaN`. |
| 136 | #[inline ] |
| 137 | pub fn is_finite(self) -> bool { |
| 138 | self.0.is_finite() |
| 139 | } |
| 140 | |
| 141 | /// Returns `true` if `self` has a positive sign, including `+0.0`, `NaN`s with |
| 142 | /// positive sign bit and positive infinity. |
| 143 | #[inline ] |
| 144 | pub fn is_sign_positive(self) -> bool { |
| 145 | self.0.is_sign_positive() |
| 146 | } |
| 147 | |
| 148 | /// Returns `true` if `self` has a negative sign, including `-0.0`, `NaN`s with |
| 149 | /// negative sign bit and negative infinity. |
| 150 | #[inline ] |
| 151 | pub fn is_sign_negative(self) -> bool { |
| 152 | self.0.is_sign_negative() |
| 153 | } |
| 154 | |
| 155 | /// Raw transmutation to `u32`. |
| 156 | /// |
| 157 | /// This is currently identical to `transmute::<f32, u32>(self)` on all platforms. |
| 158 | /// |
| 159 | /// See [`F32::from_bits`] for some discussion of the portability of this operation |
| 160 | /// (there are almost no issues). |
| 161 | #[inline ] |
| 162 | pub fn to_bits(self) -> u32 { |
| 163 | self.0.to_bits() |
| 164 | } |
| 165 | |
| 166 | /// Raw transmutation from `u32`. |
| 167 | /// |
| 168 | /// This is currently identical to `transmute::<u32, f32>(v)` on all platforms. |
| 169 | /// It turns out this is incredibly portable, for two reasons: |
| 170 | /// |
| 171 | /// - Floats and Ints have the same endianness on all supported platforms. |
| 172 | /// - IEEE-754 very precisely specifies the bit layout of floats. |
| 173 | /// |
| 174 | /// See [`f32::from_bits`] for more information. |
| 175 | #[inline ] |
| 176 | pub fn from_bits(v: u32) -> Self { |
| 177 | Self(f32::from_bits(v)) |
| 178 | } |
| 179 | |
| 180 | /// Extract exponent bits. |
| 181 | pub(crate) fn extract_exponent_bits(self) -> u32 { |
| 182 | (self.to_bits() & EXPONENT_MASK) |
| 183 | .overflowing_shr(MANTISSA_BITS) |
| 184 | .0 |
| 185 | } |
| 186 | |
| 187 | /// Extract the exponent of a float's value. |
| 188 | pub(crate) fn extract_exponent_value(self) -> i32 { |
| 189 | (self.extract_exponent_bits() as i32) - EXPONENT_BIAS as i32 |
| 190 | } |
| 191 | |
| 192 | /// Remove sign. |
| 193 | pub(crate) fn without_sign(self) -> Self { |
| 194 | Self::from_bits(self.to_bits() & !SIGN_MASK) |
| 195 | } |
| 196 | |
| 197 | /// Set the exponent to the given value. |
| 198 | pub(crate) fn set_exponent(self, exponent: i32) -> Self { |
| 199 | debug_assert!(exponent <= 127 && exponent >= -128); |
| 200 | let without_exponent: u32 = self.to_bits() & !EXPONENT_MASK; |
| 201 | let only_exponent: u32 = ((exponent + EXPONENT_BIAS as i32) as u32) |
| 202 | .overflowing_shl(MANTISSA_BITS) |
| 203 | .0; |
| 204 | |
| 205 | Self::from_bits(without_exponent | only_exponent) |
| 206 | } |
| 207 | |
| 208 | /// Is this floating point value equivalent to an integer? |
| 209 | pub(crate) fn is_integer(&self) -> bool { |
| 210 | let exponent = self.extract_exponent_value(); |
| 211 | let self_bits = self.to_bits(); |
| 212 | |
| 213 | // if exponent is negative we shouldn't remove anything, this stops an opposite shift. |
| 214 | let exponent_clamped = i32::max(exponent, 0) as u32; |
| 215 | |
| 216 | // find the part of the fraction that would be left over |
| 217 | let fractional_part = (self_bits).overflowing_shl(exponent_clamped).0 & MANTISSA_MASK; |
| 218 | |
| 219 | // if fractional part contains anything, we know it *isn't* an integer. |
| 220 | // if zero there will be nothing in the fractional part |
| 221 | // if it is whole, there will be nothing in the fractional part |
| 222 | fractional_part == 0 |
| 223 | } |
| 224 | |
| 225 | /// Is this floating point value even? |
| 226 | fn is_even(&self) -> bool { |
| 227 | // any floating point value that doesn't fit in an i32 range is even, |
| 228 | // and will loose 1's digit precision at exp values of 23+ |
| 229 | if self.extract_exponent_value() >= 31 { |
| 230 | true |
| 231 | } else { |
| 232 | (self.0 as i32) % 2 == 0 |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | impl Add for F32 { |
| 238 | type Output = F32; |
| 239 | |
| 240 | #[inline ] |
| 241 | fn add(self, rhs: F32) -> F32 { |
| 242 | F32(self.0 + rhs.0) |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | impl Add<f32> for F32 { |
| 247 | type Output = F32; |
| 248 | |
| 249 | #[inline ] |
| 250 | fn add(self, rhs: f32) -> F32 { |
| 251 | F32(self.0 + rhs) |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | impl Add<F32> for f32 { |
| 256 | type Output = F32; |
| 257 | |
| 258 | #[inline ] |
| 259 | fn add(self, rhs: F32) -> F32 { |
| 260 | F32(self + rhs.0) |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | impl AddAssign for F32 { |
| 265 | #[inline ] |
| 266 | fn add_assign(&mut self, rhs: F32) { |
| 267 | self.0 += rhs.0; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | impl AddAssign<f32> for F32 { |
| 272 | #[inline ] |
| 273 | fn add_assign(&mut self, rhs: f32) { |
| 274 | self.0 += rhs; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | impl AddAssign<F32> for f32 { |
| 279 | #[inline ] |
| 280 | fn add_assign(&mut self, rhs: F32) { |
| 281 | *self += rhs.0; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | impl Display for F32 { |
| 286 | #[inline ] |
| 287 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 288 | write!(fmt, " {}" , self.0) |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | impl Div for F32 { |
| 293 | type Output = F32; |
| 294 | |
| 295 | #[inline ] |
| 296 | fn div(self, rhs: F32) -> F32 { |
| 297 | F32(self.0 / rhs.0) |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | impl Div<f32> for F32 { |
| 302 | type Output = F32; |
| 303 | |
| 304 | #[inline ] |
| 305 | fn div(self, rhs: f32) -> F32 { |
| 306 | F32(self.0 / rhs) |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | impl Div<F32> for f32 { |
| 311 | type Output = F32; |
| 312 | |
| 313 | #[inline ] |
| 314 | fn div(self, rhs: F32) -> F32 { |
| 315 | F32(self / rhs.0) |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | impl DivAssign for F32 { |
| 320 | #[inline ] |
| 321 | fn div_assign(&mut self, rhs: F32) { |
| 322 | self.0 /= rhs.0; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | impl DivAssign<f32> for F32 { |
| 327 | #[inline ] |
| 328 | fn div_assign(&mut self, rhs: f32) { |
| 329 | self.0 /= rhs; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | impl DivAssign<F32> for f32 { |
| 334 | #[inline ] |
| 335 | fn div_assign(&mut self, rhs: F32) { |
| 336 | *self /= rhs.0; |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | impl From<f32> for F32 { |
| 341 | #[inline ] |
| 342 | fn from(n: f32) -> F32 { |
| 343 | F32(n) |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | impl From<F32> for f32 { |
| 348 | #[inline ] |
| 349 | fn from(n: F32) -> f32 { |
| 350 | n.0 |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | impl From<i8> for F32 { |
| 355 | #[inline ] |
| 356 | fn from(n: i8) -> F32 { |
| 357 | F32(n.into()) |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | impl From<i16> for F32 { |
| 362 | #[inline ] |
| 363 | fn from(n: i16) -> F32 { |
| 364 | F32(n.into()) |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | impl From<u8> for F32 { |
| 369 | #[inline ] |
| 370 | fn from(n: u8) -> F32 { |
| 371 | F32(n.into()) |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | impl From<u16> for F32 { |
| 376 | #[inline ] |
| 377 | fn from(n: u16) -> F32 { |
| 378 | F32(n.into()) |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | impl FromStr for F32 { |
| 383 | type Err = ParseFloatError; |
| 384 | |
| 385 | #[inline ] |
| 386 | fn from_str(src: &str) -> Result<F32, ParseFloatError> { |
| 387 | f32::from_str(src).map(op:F32) |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | impl LowerExp for F32 { |
| 392 | #[inline ] |
| 393 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 394 | write!(f, " {:e}" , self.0) |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | impl Mul for F32 { |
| 399 | type Output = F32; |
| 400 | |
| 401 | #[inline ] |
| 402 | fn mul(self, rhs: F32) -> F32 { |
| 403 | F32(self.0 * rhs.0) |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | impl Mul<f32> for F32 { |
| 408 | type Output = F32; |
| 409 | |
| 410 | #[inline ] |
| 411 | fn mul(self, rhs: f32) -> F32 { |
| 412 | F32(self.0 * rhs) |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | impl Mul<F32> for f32 { |
| 417 | type Output = F32; |
| 418 | |
| 419 | #[inline ] |
| 420 | fn mul(self, rhs: F32) -> F32 { |
| 421 | F32(self * rhs.0) |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | impl MulAssign for F32 { |
| 426 | #[inline ] |
| 427 | fn mul_assign(&mut self, rhs: F32) { |
| 428 | self.0 *= rhs.0; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | impl MulAssign<f32> for F32 { |
| 433 | #[inline ] |
| 434 | fn mul_assign(&mut self, rhs: f32) { |
| 435 | self.0 *= rhs; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | impl MulAssign<F32> for f32 { |
| 440 | #[inline ] |
| 441 | fn mul_assign(&mut self, rhs: F32) { |
| 442 | *self *= rhs.0; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | impl Neg for F32 { |
| 447 | type Output = F32; |
| 448 | |
| 449 | #[inline ] |
| 450 | fn neg(self) -> F32 { |
| 451 | F32(-self.0) |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | impl PartialEq<f32> for F32 { |
| 456 | fn eq(&self, other: &f32) -> bool { |
| 457 | self.0.eq(other) |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | impl PartialEq<F32> for f32 { |
| 462 | fn eq(&self, other: &F32) -> bool { |
| 463 | self.eq(&other.0) |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | impl PartialOrd<f32> for F32 { |
| 468 | fn partial_cmp(&self, other: &f32) -> Option<Ordering> { |
| 469 | self.0.partial_cmp(other) |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | impl PartialOrd<F32> for f32 { |
| 474 | fn partial_cmp(&self, other: &F32) -> Option<Ordering> { |
| 475 | self.partial_cmp(&other.0) |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | impl Product for F32 { |
| 480 | #[inline ] |
| 481 | fn product<I>(iter: I) -> Self |
| 482 | where |
| 483 | I: Iterator<Item = F32>, |
| 484 | { |
| 485 | F32(f32::product(iter.map(f32::from))) |
| 486 | } |
| 487 | } |
| 488 | |
| 489 | impl Rem for F32 { |
| 490 | type Output = F32; |
| 491 | |
| 492 | #[inline ] |
| 493 | fn rem(self, rhs: F32) -> F32 { |
| 494 | F32(self.0 % rhs.0) |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | impl Rem<f32> for F32 { |
| 499 | type Output = F32; |
| 500 | |
| 501 | #[inline ] |
| 502 | fn rem(self, rhs: f32) -> F32 { |
| 503 | F32(self.0 % rhs) |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | impl Rem<F32> for f32 { |
| 508 | type Output = F32; |
| 509 | |
| 510 | #[inline ] |
| 511 | fn rem(self, rhs: F32) -> F32 { |
| 512 | F32(self % rhs.0) |
| 513 | } |
| 514 | } |
| 515 | |
| 516 | impl RemAssign for F32 { |
| 517 | #[inline ] |
| 518 | fn rem_assign(&mut self, rhs: F32) { |
| 519 | self.0 %= rhs.0; |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | impl RemAssign<f32> for F32 { |
| 524 | #[inline ] |
| 525 | fn rem_assign(&mut self, rhs: f32) { |
| 526 | self.0 %= rhs; |
| 527 | } |
| 528 | } |
| 529 | |
| 530 | impl Sub for F32 { |
| 531 | type Output = F32; |
| 532 | |
| 533 | #[inline ] |
| 534 | fn sub(self, rhs: F32) -> F32 { |
| 535 | F32(self.0 - rhs.0) |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | impl Sub<f32> for F32 { |
| 540 | type Output = F32; |
| 541 | |
| 542 | #[inline ] |
| 543 | fn sub(self, rhs: f32) -> F32 { |
| 544 | F32(self.0 - rhs) |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | impl Sub<F32> for f32 { |
| 549 | type Output = F32; |
| 550 | |
| 551 | #[inline ] |
| 552 | fn sub(self, rhs: F32) -> F32 { |
| 553 | F32(self - rhs.0) |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | impl SubAssign for F32 { |
| 558 | #[inline ] |
| 559 | fn sub_assign(&mut self, rhs: F32) { |
| 560 | self.0 -= rhs.0; |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | impl SubAssign<f32> for F32 { |
| 565 | #[inline ] |
| 566 | fn sub_assign(&mut self, rhs: f32) { |
| 567 | self.0 -= rhs; |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | impl SubAssign<F32> for f32 { |
| 572 | #[inline ] |
| 573 | fn sub_assign(&mut self, rhs: F32) { |
| 574 | *self -= rhs.0; |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | impl Sum for F32 { |
| 579 | #[inline ] |
| 580 | fn sum<I>(iter: I) -> Self |
| 581 | where |
| 582 | I: Iterator<Item = F32>, |
| 583 | { |
| 584 | F32(f32::sum(iter.map(f32::from))) |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | impl UpperExp for F32 { |
| 589 | #[inline ] |
| 590 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 591 | write!(f, " {:E}" , self.0) |
| 592 | } |
| 593 | } |
| 594 | |
| 595 | #[cfg (feature = "num-traits" )] |
| 596 | #[cfg_attr (docsrs, doc(cfg(feature = "num-traits" )))] |
| 597 | impl Zero for F32 { |
| 598 | fn zero() -> Self { |
| 599 | Self::ZERO |
| 600 | } |
| 601 | |
| 602 | fn is_zero(&self) -> bool { |
| 603 | Self::ZERO == *self |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | #[cfg (feature = "num-traits" )] |
| 608 | #[cfg_attr (docsrs, doc(cfg(feature = "num-traits" )))] |
| 609 | impl One for F32 { |
| 610 | fn one() -> Self { |
| 611 | Self::ONE |
| 612 | } |
| 613 | |
| 614 | fn is_one(&self) -> bool { |
| 615 | Self::ONE == *self |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | #[cfg (feature = "num-traits" )] |
| 620 | #[cfg_attr (docsrs, doc(cfg(feature = "num-traits" )))] |
| 621 | impl Num for F32 { |
| 622 | type FromStrRadixErr = num_traits::ParseFloatError; |
| 623 | |
| 624 | fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
| 625 | f32::from_str_radix(str, radix).map(Self) |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | #[cfg (feature = "num-traits" )] |
| 630 | #[cfg_attr (docsrs, doc(cfg(feature = "num-traits" )))] |
| 631 | impl Inv for F32 { |
| 632 | type Output = Self; |
| 633 | |
| 634 | fn inv(self) -> Self { |
| 635 | self.inv() |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | #[cfg (test)] |
| 640 | mod tests { |
| 641 | #[allow (unused_imports)] // remove when we have more tests |
| 642 | use super::F32; |
| 643 | |
| 644 | #[cfg (feature = "num-traits" )] |
| 645 | #[test ] |
| 646 | fn inv_trait() { |
| 647 | assert_eq!(num_traits::Inv::inv(F32(2.0)), F32(0.5)); |
| 648 | } |
| 649 | } |
| 650 | |