| 1 | //! Square root approximation function for a single-precision float. |
| 2 | //! |
| 3 | //! Method described at: <https://bits.stephan-brumme.com/squareRoot.html> |
| 4 | |
| 5 | use super::F32; |
| 6 | |
| 7 | impl F32 { |
| 8 | /// Approximates the square root of a number with an average deviation of ~5%. |
| 9 | /// |
| 10 | /// Returns [`Self::NAN`] if `self` is a negative number. |
| 11 | pub fn sqrt(self) -> Self { |
| 12 | if self >= Self::ZERO { |
| 13 | Self::from_bits((self.to_bits() + 0x3f80_0000) >> 1) |
| 14 | } else { |
| 15 | Self::NAN |
| 16 | } |
| 17 | } |
| 18 | } |
| 19 | |
| 20 | #[cfg (test)] |
| 21 | pub(crate) mod tests { |
| 22 | use super::F32; |
| 23 | |
| 24 | /// Deviation from the actual value (5%) |
| 25 | pub(crate) const MAX_ERROR: f32 = 0.05; |
| 26 | |
| 27 | /// Square root test vectors - `(input, output)` |
| 28 | pub(crate) const TEST_VECTORS: &[(f32, f32)] = &[ |
| 29 | (1.0, 1.0), |
| 30 | (2.0, 1.414), |
| 31 | (3.0, 1.732), |
| 32 | (4.0, 2.0), |
| 33 | (5.0, 2.236), |
| 34 | (10.0, 3.162), |
| 35 | (100.0, 10.0), |
| 36 | (250.0, 15.811), |
| 37 | (500.0, 22.36), |
| 38 | (1000.0, 31.622), |
| 39 | (2500.0, 50.0), |
| 40 | (5000.0, 70.710), |
| 41 | (1000000.0, 1000.0), |
| 42 | (2500000.0, 1581.138), |
| 43 | (5000000.0, 2236.067), |
| 44 | (10000000.0, 3162.277), |
| 45 | (25000000.0, 5000.0), |
| 46 | (50000000.0, 7071.067), |
| 47 | (100000000.0, 10000.0), |
| 48 | ]; |
| 49 | |
| 50 | #[test ] |
| 51 | fn sanity_check() { |
| 52 | for &(x, expected) in TEST_VECTORS { |
| 53 | let sqrt_x = F32(x).sqrt(); |
| 54 | let allowed_delta = x * MAX_ERROR; |
| 55 | let actual_delta = sqrt_x - expected; |
| 56 | |
| 57 | assert!( |
| 58 | actual_delta <= allowed_delta, |
| 59 | "delta {} too large: {} vs {}" , |
| 60 | actual_delta, |
| 61 | sqrt_x, |
| 62 | expected |
| 63 | ); |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | #[test ] |
| 68 | fn negative_is_nan() { |
| 69 | assert!(F32(-1.0).sqrt().is_nan()); |
| 70 | } |
| 71 | } |
| 72 | |