| 1 | //! Streaming decompression functionality. |
| 2 | |
| 3 | use super::*; |
| 4 | use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER}; |
| 5 | use ::core::cell::Cell; |
| 6 | |
| 7 | use ::core::cmp; |
| 8 | use ::core::convert::TryInto; |
| 9 | |
| 10 | use self::output_buffer::{InputWrapper, OutputBuffer}; |
| 11 | |
| 12 | #[cfg (feature = "serde" )] |
| 13 | use crate::serde::big_array::BigArray; |
| 14 | #[cfg (feature = "serde" )] |
| 15 | use serde::{Deserialize, Serialize}; |
| 16 | |
| 17 | pub const TINFL_LZ_DICT_SIZE: usize = 32_768; |
| 18 | |
| 19 | /// A struct containing huffman code lengths and the huffman code tree used by the decompressor. |
| 20 | #[cfg_attr (not(feature = "rustc-dep-of-std" ), derive(Clone))] |
| 21 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 22 | struct HuffmanTable { |
| 23 | /// Fast lookup table for shorter huffman codes. |
| 24 | /// |
| 25 | /// See `HuffmanTable::fast_lookup`. |
| 26 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
| 27 | pub look_up: [i16; FAST_LOOKUP_SIZE as usize], |
| 28 | /// Full huffman tree. |
| 29 | /// |
| 30 | /// Positive values are edge nodes/symbols, negative values are |
| 31 | /// parent nodes/references to other nodes. |
| 32 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
| 33 | pub tree: [i16; MAX_HUFF_TREE_SIZE], |
| 34 | } |
| 35 | |
| 36 | impl HuffmanTable { |
| 37 | const fn new() -> HuffmanTable { |
| 38 | HuffmanTable { |
| 39 | look_up: [0; FAST_LOOKUP_SIZE as usize], |
| 40 | tree: [0; MAX_HUFF_TREE_SIZE], |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | /// Look for a symbol in the fast lookup table. |
| 45 | /// The symbol is stored in the lower 9 bits, the length in the next 6. |
| 46 | /// If the returned value is negative, the code wasn't found in the |
| 47 | /// fast lookup table and the full tree has to be traversed to find the code. |
| 48 | #[inline ] |
| 49 | fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 { |
| 50 | self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize] |
| 51 | } |
| 52 | |
| 53 | /// Get the symbol and the code length from the huffman tree. |
| 54 | #[inline ] |
| 55 | fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u8) -> (i32, u32) { |
| 56 | let mut symbol = fast_symbol; |
| 57 | // We step through the tree until we encounter a positive value, which indicates a |
| 58 | // symbol. |
| 59 | loop { |
| 60 | // symbol here indicates the position of the left (0) node, if the next bit is 1 |
| 61 | // we add 1 to the lookup position to get the right node. |
| 62 | let tree_index = (!symbol + ((bit_buf >> code_len) & 1) as i32) as usize; |
| 63 | |
| 64 | // Use get here to avoid generatic panic code. |
| 65 | // The init_tree code should prevent this from actually going out of bounds |
| 66 | // but if there were somehow a bug with that |
| 67 | // we would at worst end up with corrupted output in release mode. |
| 68 | debug_assert!(tree_index < self.tree.len()); |
| 69 | symbol = i32::from(self.tree.get(tree_index).copied().unwrap_or(i16::MAX)); |
| 70 | code_len += 1; |
| 71 | if symbol >= 0 { |
| 72 | break; |
| 73 | } |
| 74 | } |
| 75 | // Note: Using a u8 for code_len inside this function seems to improve performance, but changing it |
| 76 | // in localvars seems to worsen things so we convert it to a u32 here. |
| 77 | (symbol, u32::from(code_len)) |
| 78 | } |
| 79 | |
| 80 | #[inline ] |
| 81 | /// Look up a symbol and code length from the bits in the provided bit buffer. |
| 82 | /// |
| 83 | /// Returns Some(symbol, length) on success, |
| 84 | /// None if the length is 0. |
| 85 | /// |
| 86 | /// It's possible we could avoid checking for 0 if we can guarantee a sane table. |
| 87 | /// TODO: Check if a smaller type for code_len helps performance. |
| 88 | fn lookup(&self, bit_buf: BitBuffer) -> (i32, u32) { |
| 89 | let symbol = self.fast_lookup(bit_buf).into(); |
| 90 | if symbol >= 0 { |
| 91 | let length = (symbol >> 9) as u32; |
| 92 | (symbol, length) |
| 93 | } else { |
| 94 | // We didn't get a symbol from the fast lookup table, so check the tree instead. |
| 95 | self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS) |
| 96 | } |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /// The number of huffman tables used. |
| 101 | const MAX_HUFF_TABLES: usize = 3; |
| 102 | /// The length of the first (literal/length) huffman table. |
| 103 | const MAX_HUFF_SYMBOLS_0: usize = 288; |
| 104 | /// The length of the second (distance) huffman table. |
| 105 | const MAX_HUFF_SYMBOLS_1: usize = 32; |
| 106 | /// The length of the last (huffman code length) huffman table. |
| 107 | const MAX_HUFF_SYMBOLS_2: usize = 19; |
| 108 | /// The maximum length of a code that can be looked up in the fast lookup table. |
| 109 | const FAST_LOOKUP_BITS: u8 = 10; |
| 110 | /// The size of the fast lookup table. |
| 111 | const FAST_LOOKUP_SIZE: u16 = 1 << FAST_LOOKUP_BITS; |
| 112 | const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2; |
| 113 | const LITLEN_TABLE: usize = 0; |
| 114 | const DIST_TABLE: usize = 1; |
| 115 | const HUFFLEN_TABLE: usize = 2; |
| 116 | const LEN_CODES_SIZE: usize = 512; |
| 117 | const LEN_CODES_MASK: usize = LEN_CODES_SIZE - 1; |
| 118 | |
| 119 | /// Flags to [`decompress()`] to control how inflation works. |
| 120 | /// |
| 121 | /// These define bits for a bitmask argument. |
| 122 | pub mod inflate_flags { |
| 123 | /// Should we try to parse a zlib header? |
| 124 | /// |
| 125 | /// If unset, the function will expect an RFC1951 deflate stream. If set, it will expect a |
| 126 | /// RFC1950 zlib wrapper around the deflate stream. |
| 127 | pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1; |
| 128 | |
| 129 | /// There will be more input that hasn't been given to the decompressor yet. |
| 130 | /// |
| 131 | /// This is useful when you want to decompress what you have so far, |
| 132 | /// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a |
| 133 | /// network connection). When [`decompress()`][super::decompress] reaches the end of the input |
| 134 | /// without finding the end of the compressed stream, it will return |
| 135 | /// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set, |
| 136 | /// indicating that you should get more data before calling again. If not set, it will return |
| 137 | /// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress] |
| 138 | /// suggesting the stream is corrupt, since you claimed it was all there. |
| 139 | pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2; |
| 140 | |
| 141 | /// The output buffer should not wrap around. |
| 142 | pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4; |
| 143 | |
| 144 | /// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream. |
| 145 | /// |
| 146 | /// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this. |
| 147 | /// |
| 148 | /// NOTE: Enabling/disabling this between calls to decompress will result in an incorrect |
| 149 | /// checksum. |
| 150 | pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8; |
| 151 | |
| 152 | /// Ignore adler32 checksum even if we are inflating a zlib stream. |
| 153 | /// |
| 154 | /// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled. |
| 155 | /// |
| 156 | /// NOTE: This flag does not exist in miniz as it does not support this and is a |
| 157 | /// custom addition for miniz_oxide. |
| 158 | /// |
| 159 | /// NOTE: Should not be changed from enabled to disabled after decompression has started, |
| 160 | /// this will result in checksum failure (outside the unlikely event where the checksum happens |
| 161 | /// to match anyway). |
| 162 | pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64; |
| 163 | |
| 164 | /// Return [`TINFLStatus::BlockBoundary`][super::TINFLStatus::BlockBoundary] |
| 165 | /// on reaching the boundary between deflate blocks. Calling [`decompress()`][super::decompress] |
| 166 | /// again will resume decompression of the next block. |
| 167 | #[cfg (feature = "block-boundary" )] |
| 168 | pub const TINFL_FLAG_STOP_ON_BLOCK_BOUNDARY: u32 = 128; |
| 169 | } |
| 170 | |
| 171 | use self::inflate_flags::*; |
| 172 | |
| 173 | const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4]; |
| 174 | |
| 175 | #[cfg (target_pointer_width = "64" )] |
| 176 | type BitBuffer = u64; |
| 177 | |
| 178 | #[cfg (not(target_pointer_width = "64" ))] |
| 179 | type BitBuffer = u32; |
| 180 | |
| 181 | /* |
| 182 | enum HuffmanTableType { |
| 183 | LiteralLength = 0, |
| 184 | Dist = 1, |
| 185 | Huffman = 2, |
| 186 | }*/ |
| 187 | |
| 188 | /// Minimal data representing the [`DecompressorOxide`] state when it is between deflate blocks |
| 189 | /// (i.e. [`decompress()`] has returned [`TINFLStatus::BlockBoundary`]). |
| 190 | /// This can be serialized along with the last 32KiB of the output buffer, then passed to |
| 191 | /// [`DecompressorOxide::from_block_boundary_state()`] to resume decompression from the same point. |
| 192 | /// |
| 193 | /// The Zlib/Adler32 fields can be ignored if you aren't using those features |
| 194 | /// ([`TINFL_FLAG_PARSE_ZLIB_HEADER`], [`TINFL_FLAG_COMPUTE_ADLER32`]). |
| 195 | /// When deserializing, you can reconstruct `bit_buf` from the previous byte in the input file |
| 196 | /// (if you still have access to it), so `num_bits` is the only field that is always required. |
| 197 | #[derive (Clone)] |
| 198 | #[cfg (feature = "block-boundary" )] |
| 199 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 200 | pub struct BlockBoundaryState { |
| 201 | /// The number of bits from the last byte of input consumed, |
| 202 | /// that are needed for decoding the next deflate block. |
| 203 | /// Value is in range `0..=7` |
| 204 | pub num_bits: u8, |
| 205 | |
| 206 | /// The `num_bits` MSBs from the last byte of input consumed, |
| 207 | /// that are needed for decoding the next deflate block. |
| 208 | /// Stored in the LSBs of this field. |
| 209 | pub bit_buf: u8, |
| 210 | |
| 211 | /// Zlib CMF |
| 212 | pub z_header0: u32, |
| 213 | /// Zlib FLG |
| 214 | pub z_header1: u32, |
| 215 | /// Adler32 checksum of the data decompressed so far |
| 216 | pub check_adler32: u32, |
| 217 | } |
| 218 | |
| 219 | #[cfg (feature = "block-boundary" )] |
| 220 | impl Default for BlockBoundaryState { |
| 221 | fn default() -> Self { |
| 222 | BlockBoundaryState { |
| 223 | num_bits: 0, |
| 224 | bit_buf: 0, |
| 225 | z_header0: 0, |
| 226 | z_header1: 0, |
| 227 | check_adler32: 1, |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | /// Main decompression struct. |
| 233 | /// |
| 234 | #[cfg_attr (not(feature = "rustc-dep-of-std" ), derive(Clone))] |
| 235 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 236 | pub struct DecompressorOxide { |
| 237 | /// Current state of the decompressor. |
| 238 | state: core::State, |
| 239 | /// Number of bits in the bit buffer. |
| 240 | num_bits: u32, |
| 241 | /// Zlib CMF |
| 242 | z_header0: u32, |
| 243 | /// Zlib FLG |
| 244 | z_header1: u32, |
| 245 | /// Adler32 checksum from the zlib header. |
| 246 | z_adler32: u32, |
| 247 | /// 1 if the current block is the last block, 0 otherwise. |
| 248 | finish: u8, |
| 249 | /// The type of the current block. |
| 250 | /// or if in a dynamic block, which huffman table we are currently |
| 251 | // initializing. |
| 252 | block_type: u8, |
| 253 | /// 1 if the adler32 value should be checked. |
| 254 | check_adler32: u32, |
| 255 | /// Last match distance. |
| 256 | dist: u32, |
| 257 | /// Variable used for match length, symbols, and a number of other things. |
| 258 | counter: u32, |
| 259 | /// Number of extra bits for the last length or distance code. |
| 260 | num_extra: u8, |
| 261 | /// Number of entries in each huffman table. |
| 262 | table_sizes: [u16; MAX_HUFF_TABLES], |
| 263 | /// Buffer of input data. |
| 264 | bit_buf: BitBuffer, |
| 265 | /// Huffman tables. |
| 266 | tables: [HuffmanTable; MAX_HUFF_TABLES], |
| 267 | |
| 268 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
| 269 | code_size_literal: [u8; MAX_HUFF_SYMBOLS_0], |
| 270 | code_size_dist: [u8; MAX_HUFF_SYMBOLS_1], |
| 271 | code_size_huffman: [u8; MAX_HUFF_SYMBOLS_2], |
| 272 | /// Raw block header. |
| 273 | raw_header: [u8; 4], |
| 274 | /// Huffman length codes. |
| 275 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
| 276 | // MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137 |
| 277 | // Extended to 512 to allow masking to help evade bounds checks. |
| 278 | len_codes: [u8; LEN_CODES_SIZE], |
| 279 | } |
| 280 | |
| 281 | impl DecompressorOxide { |
| 282 | /// Create a new tinfl_decompressor with all fields set to 0. |
| 283 | pub fn new() -> DecompressorOxide { |
| 284 | DecompressorOxide::default() |
| 285 | } |
| 286 | |
| 287 | /// Set the current state to `Start`. |
| 288 | #[inline ] |
| 289 | pub fn init(&mut self) { |
| 290 | // The rest of the data is reset or overwritten when used. |
| 291 | self.state = core::State::Start; |
| 292 | } |
| 293 | |
| 294 | /// Returns the adler32 checksum of the currently decompressed data. |
| 295 | /// Note: Will return Some(1) if decompressing zlib but ignoring adler32. |
| 296 | #[inline ] |
| 297 | #[cfg (not(feature = "rustc-dep-of-std" ))] |
| 298 | pub fn adler32(&self) -> Option<u32> { |
| 299 | if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 { |
| 300 | Some(self.check_adler32) |
| 301 | } else { |
| 302 | None |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /// Returns the adler32 that was read from the zlib header if it exists. |
| 307 | #[inline ] |
| 308 | #[cfg (not(feature = "rustc-dep-of-std" ))] |
| 309 | pub fn adler32_header(&self) -> Option<u32> { |
| 310 | if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 { |
| 311 | Some(self.z_adler32) |
| 312 | } else { |
| 313 | None |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | // Get zlib header for tests |
| 318 | // Only for tests for now, may provide a proper function for this for later. |
| 319 | #[cfg (all(test, feature = "with-alloc" ))] |
| 320 | pub(crate) const fn zlib_header(&self) -> (u32, u32) { |
| 321 | (self.z_header0, self.z_header1) |
| 322 | } |
| 323 | |
| 324 | /*fn code_size_table(&mut self, table_num: u8) -> &mut [u8] { |
| 325 | match table_num { |
| 326 | 0 => &mut self.code_size_literal, |
| 327 | 1 => &mut self.code_size_dist, |
| 328 | _ => &mut self.code_size_huffman, |
| 329 | } |
| 330 | }*/ |
| 331 | |
| 332 | /// Returns the current [`BlockBoundaryState`]. Should only be called when |
| 333 | /// [`decompress()`] has returned [`TINFLStatus::BlockBoundary`]; |
| 334 | /// otherwise this will return `None`. |
| 335 | #[cfg (feature = "block-boundary" )] |
| 336 | pub fn block_boundary_state(&self) -> Option<BlockBoundaryState> { |
| 337 | if self.state == core::State::ReadBlockHeader { |
| 338 | // If we're in this state, undo_bytes should have emptied |
| 339 | // bit_buf of any whole bytes |
| 340 | assert!(self.num_bits < 8); |
| 341 | |
| 342 | Some(BlockBoundaryState { |
| 343 | num_bits: self.num_bits as u8, |
| 344 | bit_buf: self.bit_buf as u8, |
| 345 | z_header0: self.z_header0, |
| 346 | z_header1: self.z_header1, |
| 347 | check_adler32: self.check_adler32, |
| 348 | }) |
| 349 | } else { |
| 350 | None |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | /// Creates a new `DecompressorOxide` from the state returned by |
| 355 | /// `block_boundary_state()`. |
| 356 | /// |
| 357 | /// When calling [`decompress()`], the 32KiB of `out` preceding `out_pos` must be |
| 358 | /// initialized with the same data that it contained when `block_boundary_state()` |
| 359 | /// was called. |
| 360 | #[cfg (feature = "block-boundary" )] |
| 361 | pub fn from_block_boundary_state(st: &BlockBoundaryState) -> Self { |
| 362 | DecompressorOxide { |
| 363 | state: core::State::ReadBlockHeader, |
| 364 | num_bits: st.num_bits as u32, |
| 365 | bit_buf: st.bit_buf as BitBuffer, |
| 366 | z_header0: st.z_header0, |
| 367 | z_header1: st.z_header1, |
| 368 | z_adler32: 1, |
| 369 | check_adler32: st.check_adler32, |
| 370 | ..DecompressorOxide::default() |
| 371 | } |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | impl Default for DecompressorOxide { |
| 376 | /// Create a new tinfl_decompressor with all fields set to 0. |
| 377 | #[inline (always)] |
| 378 | fn default() -> Self { |
| 379 | DecompressorOxide { |
| 380 | state: core::State::Start, |
| 381 | num_bits: 0, |
| 382 | z_header0: 0, |
| 383 | z_header1: 0, |
| 384 | z_adler32: 0, |
| 385 | finish: 0, |
| 386 | block_type: 0, |
| 387 | check_adler32: 0, |
| 388 | dist: 0, |
| 389 | counter: 0, |
| 390 | num_extra: 0, |
| 391 | table_sizes: [0; MAX_HUFF_TABLES], |
| 392 | bit_buf: 0, |
| 393 | // TODO:(oyvindln) Check that copies here are optimized out in release mode. |
| 394 | tables: [ |
| 395 | HuffmanTable::new(), |
| 396 | HuffmanTable::new(), |
| 397 | HuffmanTable::new(), |
| 398 | ], |
| 399 | code_size_literal: [0; MAX_HUFF_SYMBOLS_0], |
| 400 | code_size_dist: [0; MAX_HUFF_SYMBOLS_1], |
| 401 | code_size_huffman: [0; MAX_HUFF_SYMBOLS_2], |
| 402 | raw_header: [0; 4], |
| 403 | len_codes: [0; LEN_CODES_SIZE], |
| 404 | } |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | #[derive (Copy, Clone, PartialEq, Eq, Debug)] |
| 409 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 410 | #[non_exhaustive ] |
| 411 | enum State { |
| 412 | Start = 0, |
| 413 | ReadZlibCmf, |
| 414 | ReadZlibFlg, |
| 415 | ReadBlockHeader, |
| 416 | BlockTypeNoCompression, |
| 417 | RawHeader, |
| 418 | RawMemcpy1, |
| 419 | RawMemcpy2, |
| 420 | ReadTableSizes, |
| 421 | ReadHufflenTableCodeSize, |
| 422 | ReadLitlenDistTablesCodeSize, |
| 423 | ReadExtraBitsCodeSize, |
| 424 | DecodeLitlen, |
| 425 | WriteSymbol, |
| 426 | ReadExtraBitsLitlen, |
| 427 | DecodeDistance, |
| 428 | ReadExtraBitsDistance, |
| 429 | RawReadFirstByte, |
| 430 | RawStoreFirstByte, |
| 431 | WriteLenBytesToEnd, |
| 432 | BlockDone, |
| 433 | HuffDecodeOuterLoop1, |
| 434 | HuffDecodeOuterLoop2, |
| 435 | ReadAdler32, |
| 436 | |
| 437 | DoneForever, |
| 438 | |
| 439 | // Failure states. |
| 440 | BlockTypeUnexpected, |
| 441 | BadCodeSizeSum, |
| 442 | BadDistOrLiteralTableLength, |
| 443 | BadTotalSymbols, |
| 444 | BadZlibHeader, |
| 445 | DistanceOutOfBounds, |
| 446 | BadRawLength, |
| 447 | BadCodeSizeDistPrevLookup, |
| 448 | InvalidLitlen, |
| 449 | InvalidDist, |
| 450 | } |
| 451 | |
| 452 | impl State { |
| 453 | #[cfg (not(feature = "rustc-dep-of-std" ))] |
| 454 | const fn is_failure(self) -> bool { |
| 455 | matches!( |
| 456 | self, |
| 457 | BlockTypeUnexpected |
| 458 | | BadCodeSizeSum |
| 459 | | BadDistOrLiteralTableLength |
| 460 | | BadTotalSymbols |
| 461 | | BadZlibHeader |
| 462 | | DistanceOutOfBounds |
| 463 | | BadRawLength |
| 464 | | BadCodeSizeDistPrevLookup |
| 465 | | InvalidLitlen |
| 466 | | InvalidDist |
| 467 | ) |
| 468 | } |
| 469 | |
| 470 | #[inline ] |
| 471 | fn begin(&mut self, new_state: State) { |
| 472 | *self = new_state; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | use self::State::*; |
| 477 | |
| 478 | // # Optimization |
| 479 | // We add a extra value at the end and make the tables 32 elements long |
| 480 | // so we can use a mask to avoid bounds checks. |
| 481 | // The invalid values are set to something high enough to avoid underflowing |
| 482 | // the match length. |
| 483 | /// Base length for each length code. |
| 484 | /// |
| 485 | /// The base is used together with the value of the extra bits to decode the actual |
| 486 | /// length/distance values in a match. |
| 487 | #[rustfmt::skip] |
| 488 | const LENGTH_BASE: [u16; 32] = [ |
| 489 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
| 490 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512 |
| 491 | ]; |
| 492 | |
| 493 | /// Number of extra bits for each length code. |
| 494 | #[rustfmt::skip] |
| 495 | const LENGTH_EXTRA: [u8; 32] = [ |
| 496 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
| 497 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0 |
| 498 | ]; |
| 499 | |
| 500 | /// Base length for each distance code. |
| 501 | #[rustfmt::skip] |
| 502 | const DIST_BASE: [u16; 30] = [ |
| 503 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, |
| 504 | 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, |
| 505 | 2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577 |
| 506 | ]; |
| 507 | |
| 508 | /// Get the number of extra bits used for a distance code. |
| 509 | /// (Code numbers above `NUM_DISTANCE_CODES` will give some garbage |
| 510 | /// value.) |
| 511 | #[inline (always)] |
| 512 | const fn num_extra_bits_for_distance_code(code: u8) -> u8 { |
| 513 | // TODO: Need to verify that this is faster on all platforms. |
| 514 | // This can be easily calculated without a lookup. |
| 515 | let c: u8 = code >> 1; |
| 516 | c.saturating_sub(1) |
| 517 | } |
| 518 | |
| 519 | /// The mask used when indexing the base/extra arrays. |
| 520 | const BASE_EXTRA_MASK: usize = 32 - 1; |
| 521 | |
| 522 | /// Read an le u16 value from the slice iterator. |
| 523 | /// |
| 524 | /// # Panics |
| 525 | /// Panics if there are less than two bytes left. |
| 526 | #[inline ] |
| 527 | fn read_u16_le(iter: &mut InputWrapper) -> u16 { |
| 528 | let ret: u16 = { |
| 529 | let two_bytes: [u8; _] = iter.as_slice()[..2].try_into().unwrap_or_default(); |
| 530 | u16::from_le_bytes(two_bytes) |
| 531 | }; |
| 532 | iter.advance(steps:2); |
| 533 | ret |
| 534 | } |
| 535 | |
| 536 | /// Ensure that there is data in the bit buffer. |
| 537 | /// |
| 538 | /// On 64-bit platform, we use a 64-bit value so this will |
| 539 | /// result in there being at least 32 bits in the bit buffer. |
| 540 | /// This function assumes that there is at least 4 bytes left in the input buffer. |
| 541 | #[inline (always)] |
| 542 | #[cfg (target_pointer_width = "64" )] |
| 543 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
| 544 | // Read four bytes into the buffer at once. |
| 545 | if l.num_bits < 30 { |
| 546 | l.bit_buf |= BitBuffer::from(in_iter.read_u32_le()) << l.num_bits; |
| 547 | l.num_bits += 32; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | /// Same as previous, but for non-64-bit platforms. |
| 552 | /// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer. |
| 553 | #[inline (always)] |
| 554 | #[cfg (not(target_pointer_width = "64" ))] |
| 555 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
| 556 | // If the buffer is 32-bit wide, read 2 bytes instead. |
| 557 | if l.num_bits < 15 { |
| 558 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
| 559 | l.num_bits += 16; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | /// Check that the zlib header is correct and that there is enough space in the buffer |
| 564 | /// for the window size specified in the header. |
| 565 | /// |
| 566 | /// See https://tools.ietf.org/html/rfc1950 |
| 567 | #[inline ] |
| 568 | const fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action { |
| 569 | let mut failed = |
| 570 | // cmf + flg should be divisible by 31. |
| 571 | (((cmf * 256) + flg) % 31 != 0) || |
| 572 | // If this flag is set, a dictionary was used for this zlib compressed data. |
| 573 | // This is currently not supported by miniz or miniz-oxide |
| 574 | ((flg & 0b0010_0000) != 0) || |
| 575 | // Compression method. Only 8(DEFLATE) is defined by the standard. |
| 576 | ((cmf & 15) != 8); |
| 577 | |
| 578 | let window_size = 1 << ((cmf >> 4) + 8); |
| 579 | if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 { |
| 580 | // Bail if the buffer is wrapping and the window size is larger than the buffer. |
| 581 | failed |= (mask + 1) < window_size; |
| 582 | } |
| 583 | |
| 584 | // Zlib doesn't allow window sizes above 32 * 1024. |
| 585 | failed |= window_size > 32_768; |
| 586 | |
| 587 | if failed { |
| 588 | Action::Jump(BadZlibHeader) |
| 589 | } else { |
| 590 | Action::Jump(ReadBlockHeader) |
| 591 | } |
| 592 | } |
| 593 | |
| 594 | enum Action { |
| 595 | None, |
| 596 | Jump(State), |
| 597 | End(TINFLStatus), |
| 598 | } |
| 599 | |
| 600 | /// Try to decode the next huffman code, and puts it in the counter field of the decompressor |
| 601 | /// if successful. |
| 602 | /// |
| 603 | /// # Returns |
| 604 | /// The specified action returned from `f` on success, |
| 605 | /// `Action::End` if there are not enough data left to decode a symbol. |
| 606 | fn decode_huffman_code<F>( |
| 607 | r: &mut DecompressorOxide, |
| 608 | l: &mut LocalVars, |
| 609 | table: usize, |
| 610 | flags: u32, |
| 611 | in_iter: &mut InputWrapper, |
| 612 | f: F, |
| 613 | ) -> Action |
| 614 | where |
| 615 | F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action, |
| 616 | { |
| 617 | // As the huffman codes can be up to 15 bits long we need at least 15 bits |
| 618 | // ready in the bit buffer to start decoding the next huffman code. |
| 619 | if l.num_bits < 15 { |
| 620 | // First, make sure there is enough data in the bit buffer to decode a huffman code. |
| 621 | if in_iter.bytes_left() < 2 { |
| 622 | // If there is less than 2 bytes left in the input buffer, we try to look up |
| 623 | // the huffman code with what's available, and return if that doesn't succeed. |
| 624 | // Original explanation in miniz: |
| 625 | // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes |
| 626 | // * remaining in the input buffer falls below 2. */ |
| 627 | // /* It reads just enough bytes from the input stream that are needed to decode |
| 628 | // * the next Huffman code (and absolutely no more). It works by trying to fully |
| 629 | // * decode a */ |
| 630 | // /* Huffman code by using whatever bits are currently present in the bit buffer. |
| 631 | // * If this fails, it reads another byte, and tries again until it succeeds or |
| 632 | // * until the */ |
| 633 | // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ |
| 634 | loop { |
| 635 | let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
| 636 | if temp >= 0 { |
| 637 | let code_len = (temp >> 9) as u32; |
| 638 | // TODO: Is there any point to check for code_len != 0 here still? |
| 639 | if (code_len != 0) && (l.num_bits >= code_len) { |
| 640 | break; |
| 641 | } |
| 642 | } else if l.num_bits > FAST_LOOKUP_BITS.into() { |
| 643 | let mut code_len = u32::from(FAST_LOOKUP_BITS); |
| 644 | loop { |
| 645 | temp = i32::from( |
| 646 | r.tables[table].tree |
| 647 | [(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize], |
| 648 | ); |
| 649 | code_len += 1; |
| 650 | if temp >= 0 || l.num_bits < code_len + 1 { |
| 651 | break; |
| 652 | } |
| 653 | } |
| 654 | if temp >= 0 { |
| 655 | break; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | // TODO: miniz jumps straight to here after getting here again after failing to read |
| 660 | // a byte. |
| 661 | // Doing that lets miniz avoid re-doing the lookup that that was done in the |
| 662 | // previous call. |
| 663 | let mut byte = 0; |
| 664 | if let a @ Action::End(_) = read_byte(in_iter, flags, |b| { |
| 665 | byte = b; |
| 666 | Action::None |
| 667 | }) { |
| 668 | return a; |
| 669 | }; |
| 670 | |
| 671 | // Do this outside closure for now to avoid borrowing r. |
| 672 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
| 673 | l.num_bits += 8; |
| 674 | |
| 675 | if l.num_bits >= 15 { |
| 676 | break; |
| 677 | } |
| 678 | } |
| 679 | } else { |
| 680 | // There is enough data in the input buffer, so read the next two bytes |
| 681 | // and add them to the bit buffer. |
| 682 | // Unwrapping here is fine since we just checked that there are at least two |
| 683 | // bytes left. |
| 684 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
| 685 | l.num_bits += 16; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // We now have at least 15 bits in the input buffer. |
| 690 | let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
| 691 | let code_len; |
| 692 | // If the symbol was found in the fast lookup table. |
| 693 | if symbol >= 0 { |
| 694 | // Get the length value from the top bits. |
| 695 | // As we shift down the sign bit, converting to an unsigned value |
| 696 | // shouldn't overflow. |
| 697 | code_len = (symbol >> 9) as u32; |
| 698 | // Mask out the length value. |
| 699 | symbol &= 511; |
| 700 | } else { |
| 701 | let res = r.tables[table].tree_lookup(symbol, l.bit_buf, FAST_LOOKUP_BITS); |
| 702 | symbol = res.0; |
| 703 | code_len = res.1; |
| 704 | }; |
| 705 | |
| 706 | l.bit_buf >>= code_len; |
| 707 | l.num_bits -= code_len; |
| 708 | f(r, l, symbol) |
| 709 | } |
| 710 | |
| 711 | /// Try to read one byte from `in_iter` and call `f` with the read byte as an argument, |
| 712 | /// returning the result. |
| 713 | /// If reading fails, `Action::End is returned` |
| 714 | #[inline ] |
| 715 | fn read_byte<F>(in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
| 716 | where |
| 717 | F: FnOnce(u8) -> Action, |
| 718 | { |
| 719 | match in_iter.read_byte() { |
| 720 | None => end_of_input(flags), |
| 721 | Some(byte: u8) => f(byte), |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | // TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always)) |
| 726 | /// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an |
| 727 | /// an argument after reading, returning the result of that function, or `Action::End` if there are |
| 728 | /// not enough bytes left. |
| 729 | #[inline ] |
| 730 | #[allow (clippy::while_immutable_condition)] |
| 731 | fn read_bits<F>( |
| 732 | l: &mut LocalVars, |
| 733 | amount: u32, |
| 734 | in_iter: &mut InputWrapper, |
| 735 | flags: u32, |
| 736 | f: F, |
| 737 | ) -> Action |
| 738 | where |
| 739 | F: FnOnce(&mut LocalVars, BitBuffer) -> Action, |
| 740 | { |
| 741 | // Clippy gives a false positive warning here due to the closure. |
| 742 | // Read enough bytes from the input iterator to cover the number of bits we want. |
| 743 | while l.num_bits < amount { |
| 744 | let action: Action = read_byte(in_iter, flags, |byte: u8| { |
| 745 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
| 746 | l.num_bits += 8; |
| 747 | Action::None |
| 748 | }); |
| 749 | |
| 750 | // If there are not enough bytes in the input iterator, return and signal that we need more. |
| 751 | if !matches!(action, Action::None) { |
| 752 | return action; |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | let bits: u64 = l.bit_buf & ((1 << amount) - 1); |
| 757 | l.bit_buf >>= amount; |
| 758 | l.num_bits -= amount; |
| 759 | f(l, bits) |
| 760 | } |
| 761 | |
| 762 | #[inline ] |
| 763 | fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
| 764 | where |
| 765 | F: FnOnce(&mut LocalVars) -> Action, |
| 766 | { |
| 767 | let num_bits: u32 = l.num_bits & 7; |
| 768 | read_bits(l, amount:num_bits, in_iter, flags, |l: &mut LocalVars, _| f(l)) |
| 769 | } |
| 770 | |
| 771 | #[inline ] |
| 772 | const fn end_of_input(flags: u32) -> Action { |
| 773 | Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 { |
| 774 | TINFLStatus::NeedsMoreInput |
| 775 | } else { |
| 776 | TINFLStatus::FailedCannotMakeProgress |
| 777 | }) |
| 778 | } |
| 779 | |
| 780 | #[inline ] |
| 781 | fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 { |
| 782 | let res: u32 = cmp::min(v1:l.num_bits >> 3, v2:max); |
| 783 | l.num_bits -= res << 3; |
| 784 | res |
| 785 | } |
| 786 | |
| 787 | fn start_static_table(r: &mut DecompressorOxide) { |
| 788 | r.table_sizes[LITLEN_TABLE] = 288; |
| 789 | r.table_sizes[DIST_TABLE] = 32; |
| 790 | r.code_size_literal[0..144].fill(8); |
| 791 | r.code_size_literal[144..256].fill(9); |
| 792 | r.code_size_literal[256..280].fill(7); |
| 793 | r.code_size_literal[280..288].fill(8); |
| 794 | r.code_size_dist[0..32].fill(5); |
| 795 | } |
| 796 | |
| 797 | #[cfg (any( |
| 798 | feature = "rustc-dep-of-std" , |
| 799 | not(feature = "with-alloc" ), |
| 800 | target_arch = "aarch64" , |
| 801 | target_arch = "arm64ec" , |
| 802 | target_arch = "loongarch64" |
| 803 | ))] |
| 804 | #[inline ] |
| 805 | const fn reverse_bits(n: u16) -> u16 { |
| 806 | // Lookup is not used when building as part of std to avoid wasting space |
| 807 | // for lookup table in every rust binary |
| 808 | // as it's only used for backtraces in the cold path |
| 809 | // - see #152 |
| 810 | |
| 811 | // armv7 and newer, and loongarch have a cpu instruction for bit reversal so |
| 812 | // it's preferable to just use that on those architectures. |
| 813 | |
| 814 | // Also disable lookup table when not using the alloc feature as |
| 815 | // we probably don't want to waste space for a lookup table in an environment |
| 816 | // without an allocator. |
| 817 | n.reverse_bits() |
| 818 | } |
| 819 | |
| 820 | #[cfg (all( |
| 821 | not(any( |
| 822 | feature = "rustc-dep-of-std" , |
| 823 | target_arch = "aarch64" , |
| 824 | target_arch = "arm64ec" , |
| 825 | target_arch = "loongarch64" |
| 826 | )), |
| 827 | feature = "with-alloc" |
| 828 | ))] |
| 829 | fn reverse_bits(n: u16) -> u16 { |
| 830 | static REVERSED_BITS_LOOKUP: [u16; 512] = { |
| 831 | let mut table: [u16; 512] = [0; 512]; |
| 832 | |
| 833 | let mut i: usize = 0; |
| 834 | while i < 512 { |
| 835 | table[i] = (i as u16).reverse_bits(); |
| 836 | i += 1; |
| 837 | } |
| 838 | |
| 839 | table |
| 840 | }; |
| 841 | |
| 842 | REVERSED_BITS_LOOKUP[n as usize] |
| 843 | } |
| 844 | |
| 845 | fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Option<Action> { |
| 846 | loop { |
| 847 | let bt = r.block_type as usize; |
| 848 | |
| 849 | let code_sizes = match bt { |
| 850 | LITLEN_TABLE => &mut r.code_size_literal[..], |
| 851 | DIST_TABLE => &mut r.code_size_dist, |
| 852 | HUFFLEN_TABLE => &mut r.code_size_huffman, |
| 853 | _ => return None, |
| 854 | }; |
| 855 | let table = &mut r.tables[bt]; |
| 856 | |
| 857 | let mut total_symbols = [0u16; 16]; |
| 858 | // Next code - we use the odd length here to simplify a loop later. |
| 859 | let mut next_code = [0u32; 17]; |
| 860 | const INVALID_CODE: i16 = (1 << 9) | 286; |
| 861 | // Set the values in the fast table to return a |
| 862 | // non-zero length and an invalid symbol instead of zero |
| 863 | // so that we do not have to have a check for a zero |
| 864 | // code length in the hot code path later |
| 865 | // and can instead error out on the invalid symbol check |
| 866 | // on bogus input. |
| 867 | table.look_up.fill(INVALID_CODE); |
| 868 | // If we are initializing the huffman code length we can skip |
| 869 | // this since these codes can't be longer than 3 bits |
| 870 | // and thus only use the fast table and this table won't be accessed so |
| 871 | // there is no point clearing it. |
| 872 | // TODO: Avoid creating this table at all. |
| 873 | if bt != HUFFLEN_TABLE { |
| 874 | table.tree.fill(0); |
| 875 | } |
| 876 | |
| 877 | let table_size = r.table_sizes[bt] as usize; |
| 878 | if table_size > code_sizes.len() { |
| 879 | return None; |
| 880 | } |
| 881 | |
| 882 | for &code_size in &code_sizes[..table_size] { |
| 883 | let cs = code_size as usize; |
| 884 | // Code sizes are limited to max 15 according to the |
| 885 | // deflate spec. |
| 886 | // If it is larger than this, something has gone wrong... |
| 887 | if cs >= total_symbols.len() { |
| 888 | return None; |
| 889 | } |
| 890 | total_symbols[cs] += 1; |
| 891 | } |
| 892 | |
| 893 | let mut used_symbols = 0; |
| 894 | let mut total = 0u32; |
| 895 | // Count up the total number of used lengths and check that the table is not under or over-subscribed. |
| 896 | for (&ts, next) in total_symbols.iter().zip(next_code[1..].iter_mut()).skip(1) { |
| 897 | used_symbols += ts; |
| 898 | total += u32::from(ts); |
| 899 | total <<= 1; |
| 900 | *next = total; |
| 901 | } |
| 902 | |
| 903 | // |
| 904 | // While it's not explicitly stated in the spec, a hufflen table |
| 905 | // with a single length (or none) would be invalid as there needs to be |
| 906 | // at minimum a length for both a non-zero length huffman code for the end of block symbol |
| 907 | // and one of the codes to represent 0 to make sense - so just reject that here as well. |
| 908 | // |
| 909 | // The distance table is allowed to have a single distance code though according to the spect it is |
| 910 | // supposed to be accompanied by a second dummy code. It can also be empty indicating no used codes. |
| 911 | // |
| 912 | // The literal/length table can not be empty as there has to be an end of block symbol, |
| 913 | // The standard doesn't specify that there should be a dummy code in case of a single |
| 914 | // symbol (i.e an empty block). Normally that's not an issue though the code will have |
| 915 | // to take that into account later on in case of malformed input. |
| 916 | if total != 65_536 && (used_symbols > 1 || bt == HUFFLEN_TABLE) { |
| 917 | return Some(Action::Jump(BadTotalSymbols)); |
| 918 | } |
| 919 | |
| 920 | let mut tree_next = -1; |
| 921 | for symbol_index in 0..table_size { |
| 922 | // Code sizes are limited to 15 according to the spec |
| 923 | // It's already checked earlier but the compiler might not be smart enough to know that. |
| 924 | let code_size = code_sizes[symbol_index] & 15; |
| 925 | if code_size == 0 { |
| 926 | continue; |
| 927 | } |
| 928 | |
| 929 | let cur_code = next_code[code_size as usize]; |
| 930 | next_code[code_size as usize] += 1; |
| 931 | |
| 932 | let n = (cur_code & (u32::MAX >> (32 - code_size))) as u16; |
| 933 | |
| 934 | let mut rev_code = if n < 512 { |
| 935 | // Using a lookup table |
| 936 | // for a small speedup here, |
| 937 | // Seems to only really make a difference on very short |
| 938 | // inputs however. |
| 939 | // 512 seems to be around a sweet spot. |
| 940 | reverse_bits(n) |
| 941 | } else { |
| 942 | n.reverse_bits() |
| 943 | } >> (16 - code_size); |
| 944 | |
| 945 | if code_size <= FAST_LOOKUP_BITS { |
| 946 | let k = (i16::from(code_size) << 9) | symbol_index as i16; |
| 947 | while rev_code < FAST_LOOKUP_SIZE { |
| 948 | table.look_up[rev_code as usize] = k; |
| 949 | rev_code += 1 << code_size; |
| 950 | } |
| 951 | continue; |
| 952 | } |
| 953 | |
| 954 | let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize]; |
| 955 | if tree_cur == INVALID_CODE { |
| 956 | table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next; |
| 957 | tree_cur = tree_next; |
| 958 | tree_next -= 2; |
| 959 | } |
| 960 | |
| 961 | rev_code >>= FAST_LOOKUP_BITS - 1; |
| 962 | for _ in FAST_LOOKUP_BITS + 1..code_size { |
| 963 | rev_code >>= 1; |
| 964 | tree_cur -= (rev_code & 1) as i16; |
| 965 | let tree_index = (-tree_cur - 1) as usize; |
| 966 | if tree_index >= table.tree.len() { |
| 967 | return None; |
| 968 | } |
| 969 | if table.tree[tree_index] == 0 { |
| 970 | table.tree[tree_index] = tree_next; |
| 971 | tree_cur = tree_next; |
| 972 | tree_next -= 2; |
| 973 | } else { |
| 974 | tree_cur = table.tree[tree_index]; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | rev_code >>= 1; |
| 979 | tree_cur -= (rev_code & 1) as i16; |
| 980 | let tree_index = (-tree_cur - 1) as usize; |
| 981 | if tree_index >= table.tree.len() { |
| 982 | return None; |
| 983 | } |
| 984 | table.tree[tree_index] = symbol_index as i16; |
| 985 | } |
| 986 | |
| 987 | if r.block_type == HUFFLEN_TABLE as u8 { |
| 988 | l.counter = 0; |
| 989 | return Some(Action::Jump(ReadLitlenDistTablesCodeSize)); |
| 990 | } |
| 991 | |
| 992 | if r.block_type == LITLEN_TABLE as u8 { |
| 993 | break; |
| 994 | } |
| 995 | r.block_type -= 1; |
| 996 | } |
| 997 | |
| 998 | l.counter = 0; |
| 999 | |
| 1000 | Some(Action::Jump(DecodeLitlen)) |
| 1001 | } |
| 1002 | |
| 1003 | // A helper macro for generating the state machine. |
| 1004 | // |
| 1005 | // As Rust doesn't have fallthrough on matches, we have to return to the match statement |
| 1006 | // and jump for each state change. (Which would ideally be optimized away, but often isn't.) |
| 1007 | macro_rules! generate_state { |
| 1008 | ($state: ident, $state_machine: tt, $f: expr) => { |
| 1009 | loop { |
| 1010 | match $f { |
| 1011 | Action::None => continue, |
| 1012 | Action::Jump(new_state) => { |
| 1013 | $state = new_state; |
| 1014 | continue $state_machine; |
| 1015 | }, |
| 1016 | Action::End(result) => break $state_machine result, |
| 1017 | } |
| 1018 | } |
| 1019 | }; |
| 1020 | } |
| 1021 | |
| 1022 | #[derive (Copy, Clone)] |
| 1023 | struct LocalVars { |
| 1024 | pub bit_buf: BitBuffer, |
| 1025 | pub num_bits: u32, |
| 1026 | pub dist: u32, |
| 1027 | pub counter: u32, |
| 1028 | pub num_extra: u8, |
| 1029 | } |
| 1030 | |
| 1031 | #[inline ] |
| 1032 | fn transfer( |
| 1033 | out_slice: &mut [u8], |
| 1034 | mut source_pos: usize, |
| 1035 | mut out_pos: usize, |
| 1036 | match_len: usize, |
| 1037 | out_buf_size_mask: usize, |
| 1038 | ) { |
| 1039 | // special case that comes up surprisingly often. in the case that `source_pos` |
| 1040 | // is 1 less than `out_pos`, we can say that the entire range will be the same |
| 1041 | // value and optimize this to be a simple `memset` |
| 1042 | let source_diff = if source_pos > out_pos { |
| 1043 | source_pos - out_pos |
| 1044 | } else { |
| 1045 | out_pos - source_pos |
| 1046 | }; |
| 1047 | |
| 1048 | // The last 3 bytes can wrap as those are dealt with separately at the end. |
| 1049 | // Use wrapping_sub rather than saturating for performance reasons here as |
| 1050 | // if source_pos + match_len is < 3 we just want to jump to the end |
| 1051 | // condition anyhow. |
| 1052 | let not_wrapping = (out_buf_size_mask == usize::MAX) |
| 1053 | || ((source_pos + match_len).wrapping_sub(3) < out_slice.len()); |
| 1054 | |
| 1055 | let end_pos = ((match_len >> 2) * 4) + out_pos; |
| 1056 | if not_wrapping && source_diff == 1 && out_pos > source_pos { |
| 1057 | let end = (match_len >> 2) * 4 + out_pos; |
| 1058 | let init = out_slice[out_pos - 1]; |
| 1059 | out_slice[out_pos..end].fill(init); |
| 1060 | out_pos = end; |
| 1061 | source_pos = end - 1; |
| 1062 | // if the difference between `source_pos` and `out_pos` is greater than 3, |
| 1063 | // and we are not wrapping, we |
| 1064 | // can do slightly better than the naive case by copying everything at once |
| 1065 | } else if not_wrapping && out_pos > source_pos && (out_pos - source_pos >= 4) { |
| 1066 | let end_pos = cmp::min(end_pos, out_slice.len().saturating_sub(3)); |
| 1067 | while out_pos < end_pos { |
| 1068 | out_slice.copy_within(source_pos..=source_pos + 3, out_pos); |
| 1069 | source_pos += 4; |
| 1070 | out_pos += 4; |
| 1071 | } |
| 1072 | } else { |
| 1073 | let end_pos = cmp::min(end_pos, out_slice.len().saturating_sub(3)); |
| 1074 | while out_pos < end_pos { |
| 1075 | // Placing these assertions moves some bounds check before the accesses which |
| 1076 | // makes the compiler able to optimize better. |
| 1077 | // Ideally we would find a safe way to remove them entirely. |
| 1078 | assert!(out_pos + 3 < out_slice.len()); |
| 1079 | assert!((source_pos + 3) & out_buf_size_mask < out_slice.len()); |
| 1080 | |
| 1081 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
| 1082 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
| 1083 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
| 1084 | out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask]; |
| 1085 | source_pos += 4; |
| 1086 | out_pos += 4; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | match match_len & 3 { |
| 1091 | 0 => (), |
| 1092 | 1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask], |
| 1093 | 2 => { |
| 1094 | assert!(out_pos + 1 < out_slice.len()); |
| 1095 | assert!((source_pos + 1) & out_buf_size_mask < out_slice.len()); |
| 1096 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
| 1097 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
| 1098 | } |
| 1099 | 3 => { |
| 1100 | assert!(out_pos + 2 < out_slice.len()); |
| 1101 | assert!((source_pos + 2) & out_buf_size_mask < out_slice.len()); |
| 1102 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
| 1103 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
| 1104 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
| 1105 | } |
| 1106 | _ => unreachable!(), |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | /// Presumes that there is at least match_len bytes in output left. |
| 1111 | #[inline ] |
| 1112 | fn apply_match( |
| 1113 | out_slice: &mut [u8], |
| 1114 | out_pos: usize, |
| 1115 | dist: usize, |
| 1116 | match_len: usize, |
| 1117 | out_buf_size_mask: usize, |
| 1118 | ) { |
| 1119 | debug_assert!(out_pos.checked_add(match_len).unwrap() <= out_slice.len()); |
| 1120 | |
| 1121 | let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask; |
| 1122 | |
| 1123 | if match_len == 3 { |
| 1124 | let out_slice = Cell::from_mut(out_slice).as_slice_of_cells(); |
| 1125 | if let Some(dst) = out_slice.get(out_pos..out_pos + 3) { |
| 1126 | // Moving bounds checks before any memory mutation allows the optimizer |
| 1127 | // combine them together. |
| 1128 | let src = out_slice |
| 1129 | .get(source_pos) |
| 1130 | .zip(out_slice.get((source_pos + 1) & out_buf_size_mask)) |
| 1131 | .zip(out_slice.get((source_pos + 2) & out_buf_size_mask)); |
| 1132 | if let Some(((a, b), c)) = src { |
| 1133 | // For correctness, the memory reads and writes have to be interleaved. |
| 1134 | // Cells make it possible for read and write references to overlap. |
| 1135 | dst[0].set(a.get()); |
| 1136 | dst[1].set(b.get()); |
| 1137 | dst[2].set(c.get()); |
| 1138 | } |
| 1139 | } |
| 1140 | return; |
| 1141 | } |
| 1142 | |
| 1143 | if cfg!(not(any(target_arch = "x86" , target_arch = "x86_64" ))) { |
| 1144 | // The copy from slice code seems to not give any added performance at least on |
| 1145 | // armv7 so transfer manually |
| 1146 | // Need to test on other platforms. |
| 1147 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
| 1148 | return; |
| 1149 | } |
| 1150 | |
| 1151 | if source_pos >= out_pos && (source_pos - out_pos) < match_len { |
| 1152 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
| 1153 | } else if match_len <= dist && source_pos + match_len < out_slice.len() { |
| 1154 | // Destination and source segments does not intersect and source does not wrap. |
| 1155 | // TODO: An invalid before start of data wrapping match reached here before |
| 1156 | // it was fixed (it wrapped around and ended overlapping again)- need |
| 1157 | // to check that we are not wrapping here. |
| 1158 | if source_pos < out_pos { |
| 1159 | let (from_slice, to_slice) = out_slice.split_at_mut(out_pos); |
| 1160 | to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]); |
| 1161 | } else { |
| 1162 | let (to_slice, from_slice) = out_slice.split_at_mut(source_pos); |
| 1163 | to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]); |
| 1164 | } |
| 1165 | } else { |
| 1166 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /// Fast inner decompression loop which is run while there is at least |
| 1171 | /// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer |
| 1172 | /// (The maximum one match would need + 1). |
| 1173 | /// |
| 1174 | /// This was inspired by a similar optimization in zlib, which uses this info to do |
| 1175 | /// faster unchecked copies of multiple bytes at a time. |
| 1176 | /// Currently we don't do this here, but this function does avoid having to jump through the |
| 1177 | /// big match loop on each state change(as rust does not have fallthrough or gotos at the moment), |
| 1178 | /// and already improves decompression speed a fair bit. |
| 1179 | fn decompress_fast( |
| 1180 | r: &mut DecompressorOxide, |
| 1181 | in_iter: &mut InputWrapper, |
| 1182 | out_buf: &mut OutputBuffer, |
| 1183 | flags: u32, |
| 1184 | local_vars: &mut LocalVars, |
| 1185 | out_buf_size_mask: usize, |
| 1186 | ) -> (TINFLStatus, State) { |
| 1187 | // Make a local copy of the most used variables, to avoid having to update and read from values |
| 1188 | // in a random memory location and to encourage more register use. |
| 1189 | let mut l = *local_vars; |
| 1190 | let mut state; |
| 1191 | |
| 1192 | let status: TINFLStatus = 'o: loop { |
| 1193 | state = State::DecodeLitlen; |
| 1194 | loop { |
| 1195 | // This function assumes that there is at least 259 bytes left in the output buffer, |
| 1196 | // and that there is at least 14 bytes left in the input buffer. 14 input bytes: |
| 1197 | // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist) |
| 1198 | // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes |
| 1199 | // We need the one extra byte as we may write one length and one full match |
| 1200 | // before checking again. |
| 1201 | if out_buf.bytes_left() < 259 || in_iter.bytes_left() < 14 { |
| 1202 | state = State::DecodeLitlen; |
| 1203 | break 'o TINFLStatus::Done; |
| 1204 | } |
| 1205 | |
| 1206 | fill_bit_buffer(&mut l, in_iter); |
| 1207 | |
| 1208 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1209 | l.counter = symbol as u32; |
| 1210 | l.bit_buf >>= code_len; |
| 1211 | l.num_bits -= code_len; |
| 1212 | |
| 1213 | if (l.counter & 256) != 0 { |
| 1214 | // The symbol is not a literal. |
| 1215 | break; |
| 1216 | } else { |
| 1217 | // If we have a 32-bit buffer we need to read another two bytes now |
| 1218 | // to have enough bits to keep going. |
| 1219 | if cfg!(not(target_pointer_width = "64" )) { |
| 1220 | fill_bit_buffer(&mut l, in_iter); |
| 1221 | } |
| 1222 | |
| 1223 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1224 | l.bit_buf >>= code_len; |
| 1225 | l.num_bits -= code_len; |
| 1226 | // The previous symbol was a literal, so write it directly and check |
| 1227 | // the next one. |
| 1228 | out_buf.write_byte(l.counter as u8); |
| 1229 | if (symbol & 256) != 0 { |
| 1230 | l.counter = symbol as u32; |
| 1231 | // The symbol is a length value. |
| 1232 | break; |
| 1233 | } else { |
| 1234 | // The symbol is a literal, so write it directly and continue. |
| 1235 | out_buf.write_byte(symbol as u8); |
| 1236 | } |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | // Mask the top bits since they may contain length info. |
| 1241 | l.counter &= 511; |
| 1242 | if l.counter == 256 { |
| 1243 | // We hit the end of block symbol. |
| 1244 | state.begin(BlockDone); |
| 1245 | break 'o TINFLStatus::Done; |
| 1246 | } else if l.counter > 285 { |
| 1247 | // Invalid code. |
| 1248 | // We already verified earlier that the code is > 256. |
| 1249 | state.begin(InvalidLitlen); |
| 1250 | break 'o TINFLStatus::Failed; |
| 1251 | } else { |
| 1252 | // The symbol was a length code. |
| 1253 | // # Optimization |
| 1254 | // Mask the value to avoid bounds checks |
| 1255 | // While the maximum is checked, the compiler isn't able to know that the |
| 1256 | // value won't wrap around here. |
| 1257 | l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
| 1258 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
| 1259 | // Length and distance codes have a number of extra bits depending on |
| 1260 | // the base, which together with the base gives us the exact value. |
| 1261 | |
| 1262 | // We need to make sure we have at least 33 (so min 5 bytes) bits in the buffer at this spot. |
| 1263 | fill_bit_buffer(&mut l, in_iter); |
| 1264 | if l.num_extra != 0 { |
| 1265 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
| 1266 | l.bit_buf >>= l.num_extra; |
| 1267 | l.num_bits -= u32::from(l.num_extra); |
| 1268 | l.counter += extra_bits as u32; |
| 1269 | } |
| 1270 | |
| 1271 | // We found a length code, so a distance code should follow. |
| 1272 | |
| 1273 | if cfg!(not(target_pointer_width = "64" )) { |
| 1274 | fill_bit_buffer(&mut l, in_iter); |
| 1275 | } |
| 1276 | |
| 1277 | let (mut symbol, code_len) = r.tables[DIST_TABLE].lookup(l.bit_buf); |
| 1278 | symbol &= 511; |
| 1279 | l.bit_buf >>= code_len; |
| 1280 | l.num_bits -= code_len; |
| 1281 | if symbol > 29 { |
| 1282 | state.begin(InvalidDist); |
| 1283 | break 'o TINFLStatus::Failed; |
| 1284 | } |
| 1285 | |
| 1286 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
| 1287 | l.dist = u32::from(DIST_BASE[symbol as usize]); |
| 1288 | |
| 1289 | if l.num_extra != 0 { |
| 1290 | fill_bit_buffer(&mut l, in_iter); |
| 1291 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
| 1292 | l.bit_buf >>= l.num_extra; |
| 1293 | l.num_bits -= u32::from(l.num_extra); |
| 1294 | l.dist += extra_bits as u32; |
| 1295 | } |
| 1296 | |
| 1297 | let position = out_buf.position(); |
| 1298 | if (l.dist as usize > out_buf.position() |
| 1299 | && (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)) |
| 1300 | || (l.dist as usize > out_buf.get_ref().len()) |
| 1301 | { |
| 1302 | // We encountered a distance that refers a position before |
| 1303 | // the start of the decoded data, so we can't continue. |
| 1304 | state.begin(DistanceOutOfBounds); |
| 1305 | break TINFLStatus::Failed; |
| 1306 | } |
| 1307 | |
| 1308 | apply_match( |
| 1309 | out_buf.get_mut(), |
| 1310 | position, |
| 1311 | l.dist as usize, |
| 1312 | l.counter as usize, |
| 1313 | out_buf_size_mask, |
| 1314 | ); |
| 1315 | |
| 1316 | out_buf.set_position(position + l.counter as usize); |
| 1317 | } |
| 1318 | }; |
| 1319 | |
| 1320 | *local_vars = l; |
| 1321 | (status, state) |
| 1322 | } |
| 1323 | |
| 1324 | /// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is |
| 1325 | /// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the |
| 1326 | /// deflate stream. |
| 1327 | /// |
| 1328 | /// # Arguments |
| 1329 | /// |
| 1330 | /// `r` is a [`DecompressorOxide`] struct with the state of this stream. |
| 1331 | /// |
| 1332 | /// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will |
| 1333 | /// start at the first byte of this buffer. |
| 1334 | /// |
| 1335 | /// `out` is a reference to the buffer that will store the decompressed data, and that |
| 1336 | /// stores previously decompressed data if any. |
| 1337 | /// |
| 1338 | /// * The offset given by `out_pos` indicates where in the output buffer slice writing should start. |
| 1339 | /// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a |
| 1340 | /// wrapping manner, and it's size is required to be a power of 2. |
| 1341 | /// * The decompression function normally needs access to 32KiB of the previously decompressed data |
| 1342 | /// (or to the beginning of the decompressed data if less than 32KiB has been decompressed.) |
| 1343 | /// - If this data is not available, decompression may fail. |
| 1344 | /// - Some deflate compressors allow specifying a window size which limits match distances to |
| 1345 | /// less than this, or alternatively an RLE mode where matches will only refer to the previous byte |
| 1346 | /// and thus allows a smaller output buffer. The window size can be specified in the zlib |
| 1347 | /// header structure, however, the header data should not be relied on to be correct. |
| 1348 | /// |
| 1349 | /// `flags` indicates settings and status to the decompression function. |
| 1350 | /// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided |
| 1351 | /// in a subsequent call to this function. |
| 1352 | /// * See the the [`inflate_flags`] module for details on other flags. |
| 1353 | /// |
| 1354 | /// # Returns |
| 1355 | /// |
| 1356 | /// Returns a tuple containing the status of the compressor, the number of input bytes read, and the |
| 1357 | /// number of bytes output to `out`. |
| 1358 | pub fn decompress( |
| 1359 | r: &mut DecompressorOxide, |
| 1360 | in_buf: &[u8], |
| 1361 | out: &mut [u8], |
| 1362 | out_pos: usize, |
| 1363 | flags: u32, |
| 1364 | ) -> (TINFLStatus, usize, usize) { |
| 1365 | let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 { |
| 1366 | usize::MAX |
| 1367 | } else { |
| 1368 | // In the case of zero len, any attempt to write would produce HasMoreOutput, |
| 1369 | // so to gracefully process the case of there really being no output, |
| 1370 | // set the mask to all zeros. |
| 1371 | out.len().saturating_sub(1) |
| 1372 | }; |
| 1373 | |
| 1374 | // Ensure the output buffer's size is a power of 2, unless the output buffer |
| 1375 | // is large enough to hold the entire output file (in which case it doesn't |
| 1376 | // matter). |
| 1377 | // Also make sure that the output buffer position is not past the end of the output buffer. |
| 1378 | if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() { |
| 1379 | return (TINFLStatus::BadParam, 0, 0); |
| 1380 | } |
| 1381 | |
| 1382 | let mut in_iter = InputWrapper::from_slice(in_buf); |
| 1383 | |
| 1384 | let mut state = r.state; |
| 1385 | |
| 1386 | let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos); |
| 1387 | |
| 1388 | // Make a local copy of the important variables here so we can work with them on the stack. |
| 1389 | let mut l = LocalVars { |
| 1390 | bit_buf: r.bit_buf, |
| 1391 | num_bits: r.num_bits, |
| 1392 | dist: r.dist, |
| 1393 | counter: r.counter, |
| 1394 | num_extra: r.num_extra, |
| 1395 | }; |
| 1396 | |
| 1397 | let mut status = 'state_machine: loop { |
| 1398 | match state { |
| 1399 | Start => generate_state!(state, 'state_machine, { |
| 1400 | l.bit_buf = 0; |
| 1401 | l.num_bits = 0; |
| 1402 | l.dist = 0; |
| 1403 | l.counter = 0; |
| 1404 | l.num_extra = 0; |
| 1405 | r.z_header0 = 0; |
| 1406 | r.z_header1 = 0; |
| 1407 | r.z_adler32 = 1; |
| 1408 | r.check_adler32 = 1; |
| 1409 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
| 1410 | Action::Jump(State::ReadZlibCmf) |
| 1411 | } else { |
| 1412 | Action::Jump(State::ReadBlockHeader) |
| 1413 | } |
| 1414 | }), |
| 1415 | |
| 1416 | ReadZlibCmf => generate_state!(state, 'state_machine, { |
| 1417 | read_byte(&mut in_iter, flags, |cmf| { |
| 1418 | r.z_header0 = u32::from(cmf); |
| 1419 | Action::Jump(State::ReadZlibFlg) |
| 1420 | }) |
| 1421 | }), |
| 1422 | |
| 1423 | ReadZlibFlg => generate_state!(state, 'state_machine, { |
| 1424 | read_byte(&mut in_iter, flags, |flg| { |
| 1425 | r.z_header1 = u32::from(flg); |
| 1426 | validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask) |
| 1427 | }) |
| 1428 | }), |
| 1429 | |
| 1430 | // Read the block header and jump to the relevant section depending on the block type. |
| 1431 | ReadBlockHeader => generate_state!(state, 'state_machine, { |
| 1432 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
| 1433 | r.finish = (bits & 1) as u8; |
| 1434 | r.block_type = ((bits >> 1) & 3) as u8; |
| 1435 | match r.block_type { |
| 1436 | 0 => Action::Jump(BlockTypeNoCompression), |
| 1437 | 1 => { |
| 1438 | start_static_table(r); |
| 1439 | init_tree(r, l).unwrap_or(Action::End(TINFLStatus::Failed)) |
| 1440 | }, |
| 1441 | 2 => { |
| 1442 | l.counter = 0; |
| 1443 | Action::Jump(ReadTableSizes) |
| 1444 | }, |
| 1445 | 3 => Action::Jump(BlockTypeUnexpected), |
| 1446 | _ => unreachable!() |
| 1447 | } |
| 1448 | }) |
| 1449 | }), |
| 1450 | |
| 1451 | // Raw/Stored/uncompressed block. |
| 1452 | BlockTypeNoCompression => generate_state!(state, 'state_machine, { |
| 1453 | pad_to_bytes(&mut l, &mut in_iter, flags, |l| { |
| 1454 | l.counter = 0; |
| 1455 | Action::Jump(RawHeader) |
| 1456 | }) |
| 1457 | }), |
| 1458 | |
| 1459 | // Check that the raw block header is correct. |
| 1460 | RawHeader => generate_state!(state, 'state_machine, { |
| 1461 | if l.counter < 4 { |
| 1462 | // Read block length and block length check. |
| 1463 | if l.num_bits != 0 { |
| 1464 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
| 1465 | r.raw_header[l.counter as usize] = bits as u8; |
| 1466 | l.counter += 1; |
| 1467 | Action::None |
| 1468 | }) |
| 1469 | } else { |
| 1470 | read_byte(&mut in_iter, flags, |byte| { |
| 1471 | r.raw_header[l.counter as usize] = byte; |
| 1472 | l.counter += 1; |
| 1473 | Action::None |
| 1474 | }) |
| 1475 | } |
| 1476 | } else { |
| 1477 | // Check if the length value of a raw block is correct. |
| 1478 | // The 2 first (2-byte) words in a raw header are the length and the |
| 1479 | // ones complement of the length. |
| 1480 | let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8); |
| 1481 | let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8); |
| 1482 | let valid = length == !check; |
| 1483 | l.counter = length.into(); |
| 1484 | |
| 1485 | if !valid { |
| 1486 | Action::Jump(BadRawLength) |
| 1487 | } else if l.counter == 0 { |
| 1488 | // Empty raw block. Sometimes used for synchronization. |
| 1489 | Action::Jump(BlockDone) |
| 1490 | } else if l.num_bits != 0 { |
| 1491 | // There is some data in the bit buffer, so we need to write that first. |
| 1492 | Action::Jump(RawReadFirstByte) |
| 1493 | } else { |
| 1494 | // The bit buffer is empty, so memcpy the rest of the uncompressed data from |
| 1495 | // the block. |
| 1496 | Action::Jump(RawMemcpy1) |
| 1497 | } |
| 1498 | } |
| 1499 | }), |
| 1500 | |
| 1501 | // Read the byte from the bit buffer. |
| 1502 | RawReadFirstByte => generate_state!(state, 'state_machine, { |
| 1503 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
| 1504 | l.dist = bits as u32; |
| 1505 | Action::Jump(RawStoreFirstByte) |
| 1506 | }) |
| 1507 | }), |
| 1508 | |
| 1509 | // Write the byte we just read to the output buffer. |
| 1510 | RawStoreFirstByte => generate_state!(state, 'state_machine, { |
| 1511 | if out_buf.bytes_left() == 0 { |
| 1512 | Action::End(TINFLStatus::HasMoreOutput) |
| 1513 | } else { |
| 1514 | out_buf.write_byte(l.dist as u8); |
| 1515 | l.counter -= 1; |
| 1516 | if l.counter == 0 || l.num_bits == 0 { |
| 1517 | Action::Jump(RawMemcpy1) |
| 1518 | } else { |
| 1519 | // There is still some data left in the bit buffer that needs to be output. |
| 1520 | // TODO: Changed this to jump to `RawReadfirstbyte` rather than |
| 1521 | // `RawStoreFirstByte` as that seemed to be the correct path, but this |
| 1522 | // needs testing. |
| 1523 | Action::Jump(RawReadFirstByte) |
| 1524 | } |
| 1525 | } |
| 1526 | }), |
| 1527 | |
| 1528 | RawMemcpy1 => generate_state!(state, 'state_machine, { |
| 1529 | if l.counter == 0 { |
| 1530 | Action::Jump(BlockDone) |
| 1531 | } else if out_buf.bytes_left() == 0 { |
| 1532 | Action::End(TINFLStatus::HasMoreOutput) |
| 1533 | } else { |
| 1534 | Action::Jump(RawMemcpy2) |
| 1535 | } |
| 1536 | }), |
| 1537 | |
| 1538 | RawMemcpy2 => generate_state!(state, 'state_machine, { |
| 1539 | if in_iter.bytes_left() > 0 { |
| 1540 | // Copy as many raw bytes as possible from the input to the output using memcpy. |
| 1541 | // Raw block lengths are limited to 64 * 1024, so casting through usize and u32 |
| 1542 | // is not an issue. |
| 1543 | let space_left = out_buf.bytes_left(); |
| 1544 | let bytes_to_copy = cmp::min(cmp::min( |
| 1545 | space_left, |
| 1546 | in_iter.bytes_left()), |
| 1547 | l.counter as usize |
| 1548 | ); |
| 1549 | |
| 1550 | out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]); |
| 1551 | |
| 1552 | in_iter.advance(bytes_to_copy); |
| 1553 | l.counter -= bytes_to_copy as u32; |
| 1554 | Action::Jump(RawMemcpy1) |
| 1555 | } else { |
| 1556 | end_of_input(flags) |
| 1557 | } |
| 1558 | }), |
| 1559 | |
| 1560 | // Read how many huffman codes/symbols are used for each table. |
| 1561 | ReadTableSizes => generate_state!(state, 'state_machine, { |
| 1562 | if l.counter < 3 { |
| 1563 | let num_bits = [5, 5, 4][l.counter as usize]; |
| 1564 | read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| { |
| 1565 | r.table_sizes[l.counter as usize] = |
| 1566 | bits as u16 + MIN_TABLE_SIZES[l.counter as usize]; |
| 1567 | l.counter += 1; |
| 1568 | Action::None |
| 1569 | }) |
| 1570 | } else { |
| 1571 | r.code_size_huffman.fill(0); |
| 1572 | l.counter = 0; |
| 1573 | // Check that the litlen and distance are within spec. |
| 1574 | // litlen table should be <=286 acc to the RFC and |
| 1575 | // additionally zlib rejects dist table sizes larger than 30. |
| 1576 | // NOTE this the final sizes after adding back predefined values, not |
| 1577 | // raw value in the data. |
| 1578 | // See miniz_oxide issue #130 and https://github.com/madler/zlib/issues/82. |
| 1579 | if r.table_sizes[LITLEN_TABLE] <= 286 && r.table_sizes[DIST_TABLE] <= 30 { |
| 1580 | Action::Jump(ReadHufflenTableCodeSize) |
| 1581 | } |
| 1582 | else { |
| 1583 | Action::Jump(BadDistOrLiteralTableLength) |
| 1584 | } |
| 1585 | } |
| 1586 | }), |
| 1587 | |
| 1588 | // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used |
| 1589 | // to decode the lengths of the main tables. |
| 1590 | ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, { |
| 1591 | if l.counter < r.table_sizes[HUFFLEN_TABLE].into() { |
| 1592 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
| 1593 | // These lengths are not stored in a normal ascending order, but rather one |
| 1594 | // specified by the deflate specification intended to put the most used |
| 1595 | // values at the front as trailing zero lengths do not have to be stored. |
| 1596 | r.code_size_huffman[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] = |
| 1597 | bits as u8; |
| 1598 | l.counter += 1; |
| 1599 | Action::None |
| 1600 | }) |
| 1601 | } else { |
| 1602 | r.table_sizes[HUFFLEN_TABLE] = MAX_HUFF_SYMBOLS_2 as u16; |
| 1603 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
| 1604 | } |
| 1605 | }), |
| 1606 | |
| 1607 | ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, { |
| 1608 | if l.counter < u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
| 1609 | decode_huffman_code( |
| 1610 | r, &mut l, HUFFLEN_TABLE, |
| 1611 | flags, &mut in_iter, |r, l, symbol| { |
| 1612 | l.dist = symbol as u32; |
| 1613 | if l.dist < 16 { |
| 1614 | r.len_codes[l.counter as usize & LEN_CODES_MASK] = l.dist as u8; |
| 1615 | l.counter += 1; |
| 1616 | Action::None |
| 1617 | } else if l.dist == 16 && l.counter == 0 { |
| 1618 | Action::Jump(BadCodeSizeDistPrevLookup) |
| 1619 | } else { |
| 1620 | // Last value is a dummy to allow mask. |
| 1621 | l.num_extra = [2, 3, 7, 0][(l.dist as usize - 16) & 3]; |
| 1622 | Action::Jump(ReadExtraBitsCodeSize) |
| 1623 | } |
| 1624 | } |
| 1625 | ) |
| 1626 | } else if l.counter != u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
| 1627 | Action::Jump(BadCodeSizeSum) |
| 1628 | } else { |
| 1629 | |
| 1630 | r.code_size_literal[..r.table_sizes[LITLEN_TABLE] as usize] |
| 1631 | .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize & LEN_CODES_MASK]); |
| 1632 | |
| 1633 | let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize; |
| 1634 | debug_assert!(dist_table_start < r.len_codes.len()); |
| 1635 | let dist_table_end = (r.table_sizes[LITLEN_TABLE] + |
| 1636 | r.table_sizes[DIST_TABLE]) as usize; |
| 1637 | let code_size_dist_end = r.table_sizes[DIST_TABLE] as usize; |
| 1638 | debug_assert!(dist_table_end < r.len_codes.len()); |
| 1639 | debug_assert!(code_size_dist_end < r.code_size_dist.len()); |
| 1640 | let dist_table_start = dist_table_start & LEN_CODES_MASK; |
| 1641 | let dist_table_end = dist_table_end & LEN_CODES_MASK; |
| 1642 | r.code_size_dist[..code_size_dist_end & (MAX_HUFF_SYMBOLS_1 - 1)] |
| 1643 | .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]); |
| 1644 | |
| 1645 | r.block_type -= 1; |
| 1646 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
| 1647 | } |
| 1648 | }), |
| 1649 | |
| 1650 | ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, { |
| 1651 | let num_extra = l.num_extra.into(); |
| 1652 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| { |
| 1653 | // Mask to avoid a bounds check. |
| 1654 | // We can use 2 since the 2 first values are the same. |
| 1655 | extra_bits += [3, 3, 11][(l.dist as usize - 16) & 2]; |
| 1656 | let val = if l.dist == 16 { |
| 1657 | debug_assert!(l.counter as usize - 1 < r.len_codes.len()); |
| 1658 | r.len_codes[(l.counter as usize - 1) & LEN_CODES_MASK] |
| 1659 | } else { |
| 1660 | 0 |
| 1661 | }; |
| 1662 | |
| 1663 | let fill_start = l.counter as usize; |
| 1664 | let fill_end = l.counter as usize + extra_bits as usize; |
| 1665 | debug_assert!(fill_start < r.len_codes.len()); |
| 1666 | debug_assert!(fill_end < r.len_codes.len()); |
| 1667 | |
| 1668 | r.len_codes[ |
| 1669 | fill_start & LEN_CODES_MASK..fill_end & LEN_CODES_MASK |
| 1670 | ].fill(val); |
| 1671 | l.counter += extra_bits as u32; |
| 1672 | Action::Jump(ReadLitlenDistTablesCodeSize) |
| 1673 | }) |
| 1674 | }), |
| 1675 | |
| 1676 | DecodeLitlen => generate_state!(state, 'state_machine, { |
| 1677 | if in_iter.bytes_left() < 4 || out_buf.bytes_left() < 2 { |
| 1678 | // See if we can decode a literal with the data we have left. |
| 1679 | // Jumps to next state (WriteSymbol) if successful. |
| 1680 | decode_huffman_code( |
| 1681 | r, |
| 1682 | &mut l, |
| 1683 | LITLEN_TABLE, |
| 1684 | flags, |
| 1685 | &mut in_iter, |
| 1686 | |_r, l, symbol| { |
| 1687 | l.counter = symbol as u32; |
| 1688 | Action::Jump(WriteSymbol) |
| 1689 | }, |
| 1690 | ) |
| 1691 | } else if |
| 1692 | // If there is enough space, use the fast inner decompression |
| 1693 | // function. |
| 1694 | out_buf.bytes_left() >= 259 && |
| 1695 | in_iter.bytes_left() >= 14 |
| 1696 | { |
| 1697 | let (status, new_state) = decompress_fast( |
| 1698 | r, |
| 1699 | &mut in_iter, |
| 1700 | &mut out_buf, |
| 1701 | flags, |
| 1702 | &mut l, |
| 1703 | out_buf_size_mask, |
| 1704 | ); |
| 1705 | |
| 1706 | state = new_state; |
| 1707 | if status == TINFLStatus::Done { |
| 1708 | Action::Jump(new_state) |
| 1709 | } else { |
| 1710 | Action::End(status) |
| 1711 | } |
| 1712 | } else { |
| 1713 | fill_bit_buffer(&mut l, &mut in_iter); |
| 1714 | |
| 1715 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1716 | |
| 1717 | l.counter = symbol as u32; |
| 1718 | l.bit_buf >>= code_len; |
| 1719 | l.num_bits -= code_len; |
| 1720 | |
| 1721 | if (l.counter & 256) != 0 { |
| 1722 | // The symbol is not a literal. |
| 1723 | Action::Jump(HuffDecodeOuterLoop1) |
| 1724 | } else { |
| 1725 | // If we have a 32-bit buffer we need to read another two bytes now |
| 1726 | // to have enough bits to keep going. |
| 1727 | if cfg!(not(target_pointer_width = "64" )) { |
| 1728 | fill_bit_buffer(&mut l, &mut in_iter); |
| 1729 | } |
| 1730 | |
| 1731 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1732 | |
| 1733 | l.bit_buf >>= code_len; |
| 1734 | l.num_bits -= code_len; |
| 1735 | // The previous symbol was a literal, so write it directly and check |
| 1736 | // the next one. |
| 1737 | out_buf.write_byte(l.counter as u8); |
| 1738 | if (symbol & 256) != 0 { |
| 1739 | l.counter = symbol as u32; |
| 1740 | // The symbol is a length value. |
| 1741 | Action::Jump(HuffDecodeOuterLoop1) |
| 1742 | } else { |
| 1743 | // The symbol is a literal, so write it directly and continue. |
| 1744 | out_buf.write_byte(symbol as u8); |
| 1745 | Action::None |
| 1746 | } |
| 1747 | |
| 1748 | } |
| 1749 | |
| 1750 | } |
| 1751 | }), |
| 1752 | |
| 1753 | WriteSymbol => generate_state!(state, 'state_machine, { |
| 1754 | if l.counter >= 256 { |
| 1755 | Action::Jump(HuffDecodeOuterLoop1) |
| 1756 | } else if out_buf.bytes_left() > 0 { |
| 1757 | out_buf.write_byte(l.counter as u8); |
| 1758 | Action::Jump(DecodeLitlen) |
| 1759 | } else { |
| 1760 | Action::End(TINFLStatus::HasMoreOutput) |
| 1761 | } |
| 1762 | }), |
| 1763 | |
| 1764 | HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, { |
| 1765 | // Mask the top bits since they may contain length info. |
| 1766 | l.counter &= 511; |
| 1767 | |
| 1768 | if l.counter |
| 1769 | == 256 { |
| 1770 | // We hit the end of block symbol. |
| 1771 | Action::Jump(BlockDone) |
| 1772 | } else if l.counter > 285 { |
| 1773 | // Invalid code. |
| 1774 | // We already verified earlier that the code is > 256. |
| 1775 | Action::Jump(InvalidLitlen) |
| 1776 | } else { |
| 1777 | // # Optimization |
| 1778 | // Mask the value to avoid bounds checks |
| 1779 | // We could use get_unchecked later if can statically verify that |
| 1780 | // this will never go out of bounds. |
| 1781 | l.num_extra = |
| 1782 | LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
| 1783 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
| 1784 | // Length and distance codes have a number of extra bits depending on |
| 1785 | // the base, which together with the base gives us the exact value. |
| 1786 | if l.num_extra != 0 { |
| 1787 | Action::Jump(ReadExtraBitsLitlen) |
| 1788 | } else { |
| 1789 | Action::Jump(DecodeDistance) |
| 1790 | } |
| 1791 | } |
| 1792 | }), |
| 1793 | |
| 1794 | ReadExtraBitsLitlen => generate_state!(state, 'state_machine, { |
| 1795 | let num_extra = l.num_extra.into(); |
| 1796 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
| 1797 | l.counter += extra_bits as u32; |
| 1798 | Action::Jump(DecodeDistance) |
| 1799 | }) |
| 1800 | }), |
| 1801 | |
| 1802 | DecodeDistance => generate_state!(state, 'state_machine, { |
| 1803 | // Try to read a huffman code from the input buffer and look up what |
| 1804 | // length code the decoded symbol refers to. |
| 1805 | decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| { |
| 1806 | // # Optimizaton - transform the value into usize here before the check so |
| 1807 | // the compiler can optimize the bounds check later - ideally it should |
| 1808 | // know that the value can't be negative from earlier in the |
| 1809 | // decode_huffman_code function but it seems it may not be able |
| 1810 | // to make the assumption that it can't be negative and thus |
| 1811 | // overflow if it's converted after the check. |
| 1812 | let symbol = symbol as usize; |
| 1813 | if symbol > 29 { |
| 1814 | // Invalid distance code. |
| 1815 | return Action::Jump(InvalidDist) |
| 1816 | } |
| 1817 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
| 1818 | l.dist = u32::from(DIST_BASE[symbol]); |
| 1819 | if l.num_extra != 0 { |
| 1820 | // ReadEXTRA_BITS_DISTACNE |
| 1821 | Action::Jump(ReadExtraBitsDistance) |
| 1822 | } else { |
| 1823 | Action::Jump(HuffDecodeOuterLoop2) |
| 1824 | } |
| 1825 | }) |
| 1826 | }), |
| 1827 | |
| 1828 | ReadExtraBitsDistance => generate_state!(state, 'state_machine, { |
| 1829 | let num_extra = l.num_extra.into(); |
| 1830 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
| 1831 | l.dist += extra_bits as u32; |
| 1832 | Action::Jump(HuffDecodeOuterLoop2) |
| 1833 | }) |
| 1834 | }), |
| 1835 | |
| 1836 | HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, { |
| 1837 | if (l.dist as usize > out_buf.position() && |
| 1838 | (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)) || (l.dist as usize > out_buf.get_ref().len()) |
| 1839 | { |
| 1840 | // We encountered a distance that refers a position before |
| 1841 | // the start of the decoded data, so we can't continue. |
| 1842 | Action::Jump(DistanceOutOfBounds) |
| 1843 | } else { |
| 1844 | let out_pos = out_buf.position(); |
| 1845 | let source_pos = out_buf.position() |
| 1846 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
| 1847 | |
| 1848 | let out_len = out_buf.get_ref().len(); |
| 1849 | let match_end_pos = out_buf.position() + l.counter as usize; |
| 1850 | |
| 1851 | if match_end_pos > out_len || |
| 1852 | // miniz doesn't do this check here. Not sure how it makes sure |
| 1853 | // that this case doesn't happen. |
| 1854 | (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize) |
| 1855 | { |
| 1856 | // Not enough space for all of the data in the output buffer, |
| 1857 | // so copy what we have space for. |
| 1858 | if l.counter == 0 { |
| 1859 | Action::Jump(DecodeLitlen) |
| 1860 | } else { |
| 1861 | Action::Jump(WriteLenBytesToEnd) |
| 1862 | } |
| 1863 | } else { |
| 1864 | apply_match( |
| 1865 | out_buf.get_mut(), |
| 1866 | out_pos, |
| 1867 | l.dist as usize, |
| 1868 | l.counter as usize, |
| 1869 | out_buf_size_mask |
| 1870 | ); |
| 1871 | out_buf.set_position(out_pos + l.counter as usize); |
| 1872 | Action::Jump(DecodeLitlen) |
| 1873 | } |
| 1874 | } |
| 1875 | }), |
| 1876 | |
| 1877 | WriteLenBytesToEnd => generate_state!(state, 'state_machine, { |
| 1878 | if out_buf.bytes_left() > 0 { |
| 1879 | let out_pos = out_buf.position(); |
| 1880 | let source_pos = out_buf.position() |
| 1881 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
| 1882 | |
| 1883 | |
| 1884 | let len = cmp::min(out_buf.bytes_left(), l.counter as usize); |
| 1885 | |
| 1886 | transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask); |
| 1887 | |
| 1888 | out_buf.set_position(out_pos + len); |
| 1889 | l.counter -= len as u32; |
| 1890 | if l.counter == 0 { |
| 1891 | Action::Jump(DecodeLitlen) |
| 1892 | } else { |
| 1893 | Action::None |
| 1894 | } |
| 1895 | } else { |
| 1896 | Action::End(TINFLStatus::HasMoreOutput) |
| 1897 | } |
| 1898 | }), |
| 1899 | |
| 1900 | BlockDone => generate_state!(state, 'state_machine, { |
| 1901 | // End once we've read the last block. |
| 1902 | if r.finish != 0 { |
| 1903 | pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None); |
| 1904 | |
| 1905 | let in_consumed = in_buf.len() - in_iter.bytes_left(); |
| 1906 | let undo = undo_bytes(&mut l, in_consumed as u32) as usize; |
| 1907 | in_iter = InputWrapper::from_slice(in_buf[in_consumed - undo..].iter().as_slice()); |
| 1908 | |
| 1909 | l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1; |
| 1910 | debug_assert_eq!(l.num_bits, 0); |
| 1911 | |
| 1912 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
| 1913 | l.counter = 0; |
| 1914 | Action::Jump(ReadAdler32) |
| 1915 | } else { |
| 1916 | Action::Jump(DoneForever) |
| 1917 | } |
| 1918 | } else { |
| 1919 | #[cfg (feature = "block-boundary" )] |
| 1920 | if flags & TINFL_FLAG_STOP_ON_BLOCK_BOUNDARY != 0 { |
| 1921 | Action::End(TINFLStatus::BlockBoundary) |
| 1922 | } else { |
| 1923 | Action::Jump(ReadBlockHeader) |
| 1924 | } |
| 1925 | #[cfg (not(feature = "block-boundary" ))] |
| 1926 | { |
| 1927 | Action::Jump(ReadBlockHeader) |
| 1928 | } |
| 1929 | } |
| 1930 | }), |
| 1931 | |
| 1932 | ReadAdler32 => generate_state!(state, 'state_machine, { |
| 1933 | if l.counter < 4 { |
| 1934 | if l.num_bits != 0 { |
| 1935 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
| 1936 | r.z_adler32 <<= 8; |
| 1937 | r.z_adler32 |= bits as u32; |
| 1938 | l.counter += 1; |
| 1939 | Action::None |
| 1940 | }) |
| 1941 | } else { |
| 1942 | read_byte(&mut in_iter, flags, |byte| { |
| 1943 | r.z_adler32 <<= 8; |
| 1944 | r.z_adler32 |= u32::from(byte); |
| 1945 | l.counter += 1; |
| 1946 | Action::None |
| 1947 | }) |
| 1948 | } |
| 1949 | } else { |
| 1950 | Action::Jump(DoneForever) |
| 1951 | } |
| 1952 | }), |
| 1953 | |
| 1954 | // We are done. |
| 1955 | DoneForever => break TINFLStatus::Done, |
| 1956 | |
| 1957 | // Anything else indicates failure. |
| 1958 | // BadZlibHeader | BadRawLength | BadDistOrLiteralTableLength | BlockTypeUnexpected | |
| 1959 | // DistanceOutOfBounds | |
| 1960 | // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen | |
| 1961 | // InvalidDist | InvalidCodeLen |
| 1962 | _ => break TINFLStatus::Failed, |
| 1963 | }; |
| 1964 | }; |
| 1965 | |
| 1966 | let in_undo = if status != TINFLStatus::NeedsMoreInput |
| 1967 | && status != TINFLStatus::FailedCannotMakeProgress |
| 1968 | { |
| 1969 | undo_bytes(&mut l, (in_buf.len() - in_iter.bytes_left()) as u32) as usize |
| 1970 | } else { |
| 1971 | 0 |
| 1972 | }; |
| 1973 | |
| 1974 | // If we're returning after completing a block, prepare for the next block when called again. |
| 1975 | #[cfg (feature = "block-boundary" )] |
| 1976 | if status == TINFLStatus::BlockBoundary { |
| 1977 | state = State::ReadBlockHeader; |
| 1978 | } |
| 1979 | |
| 1980 | // Make sure HasMoreOutput overrides NeedsMoreInput if the output buffer is full. |
| 1981 | // (Unless the missing input is the adler32 value in which case we don't need to write anything.) |
| 1982 | // TODO: May want to see if we can do this in a better way. |
| 1983 | if status == TINFLStatus::NeedsMoreInput |
| 1984 | && out_buf.bytes_left() == 0 |
| 1985 | && state != State::ReadAdler32 |
| 1986 | { |
| 1987 | status = TINFLStatus::HasMoreOutput |
| 1988 | } |
| 1989 | |
| 1990 | r.state = state; |
| 1991 | r.bit_buf = l.bit_buf; |
| 1992 | r.num_bits = l.num_bits; |
| 1993 | r.dist = l.dist; |
| 1994 | r.counter = l.counter; |
| 1995 | r.num_extra = l.num_extra; |
| 1996 | |
| 1997 | r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1; |
| 1998 | |
| 1999 | // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if |
| 2000 | // requested. |
| 2001 | let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 { |
| 2002 | flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0 |
| 2003 | } else { |
| 2004 | // If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum. |
| 2005 | false |
| 2006 | }; |
| 2007 | if need_adler && status as i32 >= 0 { |
| 2008 | let out_buf_pos = out_buf.position(); |
| 2009 | r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]); |
| 2010 | |
| 2011 | // disabled so that random input from fuzzer would not be rejected early, |
| 2012 | // before it has a chance to reach interesting parts of code |
| 2013 | if !cfg!(fuzzing) { |
| 2014 | // Once we are done, check if the checksum matches with the one provided in the zlib header. |
| 2015 | if status == TINFLStatus::Done |
| 2016 | && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 |
| 2017 | && r.check_adler32 != r.z_adler32 |
| 2018 | { |
| 2019 | status = TINFLStatus::Adler32Mismatch; |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | ( |
| 2025 | status, |
| 2026 | in_buf.len() - in_iter.bytes_left() - in_undo, |
| 2027 | out_buf.position() - out_pos, |
| 2028 | ) |
| 2029 | } |
| 2030 | |
| 2031 | #[cfg (test)] |
| 2032 | mod test { |
| 2033 | use super::*; |
| 2034 | |
| 2035 | //TODO: Fix these. |
| 2036 | |
| 2037 | fn tinfl_decompress_oxide<'i>( |
| 2038 | r: &mut DecompressorOxide, |
| 2039 | input_buffer: &'i [u8], |
| 2040 | output_buffer: &mut [u8], |
| 2041 | flags: u32, |
| 2042 | ) -> (TINFLStatus, &'i [u8], usize) { |
| 2043 | let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags); |
| 2044 | (status, &input_buffer[in_pos..], out_pos) |
| 2045 | } |
| 2046 | |
| 2047 | #[test ] |
| 2048 | fn decompress_zlib() { |
| 2049 | let encoded = [ |
| 2050 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
| 2051 | ]; |
| 2052 | let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER; |
| 2053 | |
| 2054 | let mut b = DecompressorOxide::new(); |
| 2055 | const LEN: usize = 32; |
| 2056 | let mut b_buf = [0; LEN]; |
| 2057 | |
| 2058 | // This should fail with the out buffer being to small. |
| 2059 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
| 2060 | |
| 2061 | assert!(b_status.0 == TINFLStatus::Failed); |
| 2062 | |
| 2063 | let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 2064 | |
| 2065 | b = DecompressorOxide::new(); |
| 2066 | |
| 2067 | // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail. |
| 2068 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
| 2069 | |
| 2070 | assert_eq!(b_buf[..b_status.2], b"Hello, zlib!" [..]); |
| 2071 | assert!(b_status.0 == TINFLStatus::Done); |
| 2072 | } |
| 2073 | |
| 2074 | #[cfg (feature = "with-alloc" )] |
| 2075 | #[test ] |
| 2076 | fn raw_block() { |
| 2077 | const LEN: usize = 64; |
| 2078 | |
| 2079 | let text = b"Hello, zlib!" ; |
| 2080 | let encoded = { |
| 2081 | let len = text.len(); |
| 2082 | let notlen = !len; |
| 2083 | let mut encoded = vec![ |
| 2084 | 1, |
| 2085 | len as u8, |
| 2086 | (len >> 8) as u8, |
| 2087 | notlen as u8, |
| 2088 | (notlen >> 8) as u8, |
| 2089 | ]; |
| 2090 | encoded.extend_from_slice(&text[..]); |
| 2091 | encoded |
| 2092 | }; |
| 2093 | |
| 2094 | //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER | |
| 2095 | let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 2096 | |
| 2097 | let mut b = DecompressorOxide::new(); |
| 2098 | |
| 2099 | let mut b_buf = [0; LEN]; |
| 2100 | |
| 2101 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
| 2102 | assert_eq!(b_buf[..b_status.2], text[..]); |
| 2103 | assert_eq!(b_status.0, TINFLStatus::Done); |
| 2104 | } |
| 2105 | |
| 2106 | fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) { |
| 2107 | let ret = table.lookup(bit_buf); |
| 2108 | (ret.0 & 511, ret.1) |
| 2109 | } |
| 2110 | |
| 2111 | #[test ] |
| 2112 | fn fixed_table_lookup() { |
| 2113 | let mut d = DecompressorOxide::new(); |
| 2114 | d.block_type = 1; |
| 2115 | start_static_table(&mut d); |
| 2116 | let mut l = LocalVars { |
| 2117 | bit_buf: d.bit_buf, |
| 2118 | num_bits: d.num_bits, |
| 2119 | dist: d.dist, |
| 2120 | counter: d.counter, |
| 2121 | num_extra: d.num_extra, |
| 2122 | }; |
| 2123 | init_tree(&mut d, &mut l).unwrap(); |
| 2124 | let llt = &d.tables[LITLEN_TABLE]; |
| 2125 | let dt = &d.tables[DIST_TABLE]; |
| 2126 | assert_eq!(masked_lookup(llt, 0b00001100), (0, 8)); |
| 2127 | assert_eq!(masked_lookup(llt, 0b00011110), (72, 8)); |
| 2128 | assert_eq!(masked_lookup(llt, 0b01011110), (74, 8)); |
| 2129 | assert_eq!(masked_lookup(llt, 0b11111101), (143, 8)); |
| 2130 | assert_eq!(masked_lookup(llt, 0b000010011), (144, 9)); |
| 2131 | assert_eq!(masked_lookup(llt, 0b111111111), (255, 9)); |
| 2132 | assert_eq!(masked_lookup(llt, 0b00000000), (256, 7)); |
| 2133 | assert_eq!(masked_lookup(llt, 0b1110100), (279, 7)); |
| 2134 | assert_eq!(masked_lookup(llt, 0b00000011), (280, 8)); |
| 2135 | assert_eq!(masked_lookup(llt, 0b11100011), (287, 8)); |
| 2136 | |
| 2137 | assert_eq!(masked_lookup(dt, 0), (0, 5)); |
| 2138 | assert_eq!(masked_lookup(dt, 20), (5, 5)); |
| 2139 | } |
| 2140 | |
| 2141 | // Only run this test with alloc enabled as it uses a larger buffer. |
| 2142 | #[cfg (feature = "with-alloc" )] |
| 2143 | fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) { |
| 2144 | let mut r = DecompressorOxide::default(); |
| 2145 | let mut output_buf = vec![0; 1024 * 32]; |
| 2146 | let flags = if zlib { |
| 2147 | inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER |
| 2148 | } else { |
| 2149 | 0 |
| 2150 | } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
| 2151 | | TINFL_FLAG_HAS_MORE_INPUT; |
| 2152 | let (d_status, _in_bytes, _out_bytes) = |
| 2153 | decompress(&mut r, input, &mut output_buf, 0, flags); |
| 2154 | assert_eq!(expected_status, d_status); |
| 2155 | assert_eq!(expected_state, r.state); |
| 2156 | } |
| 2157 | |
| 2158 | #[cfg (feature = "with-alloc" )] |
| 2159 | #[test ] |
| 2160 | fn bogus_input() { |
| 2161 | use self::check_result as cr; |
| 2162 | const F: TINFLStatus = TINFLStatus::Failed; |
| 2163 | const OK: TINFLStatus = TINFLStatus::Done; |
| 2164 | // Bad CM. |
| 2165 | cr(&[0x77, 0x85], F, State::BadZlibHeader, true); |
| 2166 | // Bad window size (but check is correct). |
| 2167 | cr(&[0x88, 0x98], F, State::BadZlibHeader, true); |
| 2168 | // Bad check bits. |
| 2169 | cr(&[0x78, 0x98], F, State::BadZlibHeader, true); |
| 2170 | |
| 2171 | // Too many code lengths. (From inflate library issues) |
| 2172 | cr( |
| 2173 | b"M \xff\xffM* \xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM" , |
| 2174 | F, |
| 2175 | State::BadDistOrLiteralTableLength, |
| 2176 | false, |
| 2177 | ); |
| 2178 | |
| 2179 | // Bad CLEN (also from inflate library issues) |
| 2180 | cr( |
| 2181 | b" \xdd\xff\xff*M \x94ffffffffff" , |
| 2182 | F, |
| 2183 | State::BadDistOrLiteralTableLength, |
| 2184 | false, |
| 2185 | ); |
| 2186 | |
| 2187 | // Port of inflate coverage tests from zlib-ng |
| 2188 | // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c |
| 2189 | let c = |a, b, c| cr(a, b, c, false); |
| 2190 | |
| 2191 | // Invalid uncompressed/raw block length. |
| 2192 | c(&[0, 0, 0, 0, 0], F, State::BadRawLength); |
| 2193 | // Ok empty uncompressed block. |
| 2194 | c(&[3, 0], OK, State::DoneForever); |
| 2195 | // Invalid block type. |
| 2196 | c(&[6], F, State::BlockTypeUnexpected); |
| 2197 | // Ok uncompressed block. |
| 2198 | c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever); |
| 2199 | // Too many litlens, we handle this later than zlib, so this test won't |
| 2200 | // give the same result. |
| 2201 | // c(&[0xfc, 0, 0], F, State::BadTotalSymbols); |
| 2202 | // Invalid set of code lengths - TODO Check if this is the correct error for this. |
| 2203 | c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols); |
| 2204 | // Invalid repeat in list of code lengths. |
| 2205 | // (Try to repeat a non-existent code.) |
| 2206 | c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup); |
| 2207 | // Missing end of block code (should we have a separate error for this?) - fails on further input |
| 2208 | // c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols); |
| 2209 | // Invalid set of literals/lengths |
| 2210 | c( |
| 2211 | &[ |
| 2212 | 4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0, |
| 2213 | ], |
| 2214 | F, |
| 2215 | State::BadTotalSymbols, |
| 2216 | ); |
| 2217 | // Invalid set of distances _ needsmoreinput |
| 2218 | // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols); |
| 2219 | // Invalid distance code |
| 2220 | c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist); |
| 2221 | |
| 2222 | // Distance refers to position before the start |
| 2223 | c( |
| 2224 | &[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], |
| 2225 | F, |
| 2226 | State::DistanceOutOfBounds, |
| 2227 | ); |
| 2228 | |
| 2229 | // Trailer |
| 2230 | // Bad gzip trailer checksum GZip header not handled by miniz_oxide |
| 2231 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
| 2232 | // Bad gzip trailer length |
| 2233 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
| 2234 | } |
| 2235 | |
| 2236 | #[test ] |
| 2237 | fn empty_output_buffer_non_wrapping() { |
| 2238 | let encoded = [ |
| 2239 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
| 2240 | ]; |
| 2241 | let flags = TINFL_FLAG_COMPUTE_ADLER32 |
| 2242 | | TINFL_FLAG_PARSE_ZLIB_HEADER |
| 2243 | | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 2244 | let mut r = DecompressorOxide::new(); |
| 2245 | let mut output_buf: [u8; 0] = []; |
| 2246 | // Check that we handle an empty buffer properly and not panicking. |
| 2247 | // https://github.com/Frommi/miniz_oxide/issues/23 |
| 2248 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
| 2249 | assert!(res == (TINFLStatus::HasMoreOutput, 4, 0)); |
| 2250 | } |
| 2251 | |
| 2252 | #[test ] |
| 2253 | fn empty_output_buffer_wrapping() { |
| 2254 | let encoded = [ |
| 2255 | 0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00, |
| 2256 | ]; |
| 2257 | let flags = TINFL_FLAG_COMPUTE_ADLER32; |
| 2258 | let mut r = DecompressorOxide::new(); |
| 2259 | let mut output_buf: [u8; 0] = []; |
| 2260 | // Check that we handle an empty buffer properly and not panicking. |
| 2261 | // https://github.com/Frommi/miniz_oxide/issues/23 |
| 2262 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
| 2263 | assert!(res == (TINFLStatus::HasMoreOutput, 2, 0)); |
| 2264 | } |
| 2265 | |
| 2266 | #[test ] |
| 2267 | fn dist_extra_bits() { |
| 2268 | use self::num_extra_bits_for_distance_code; |
| 2269 | // Number of extra bits for each distance code. |
| 2270 | const DIST_EXTRA: [u8; 29] = [ |
| 2271 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, |
| 2272 | 12, 13, |
| 2273 | ]; |
| 2274 | |
| 2275 | for (i, &dist) in DIST_EXTRA.iter().enumerate() { |
| 2276 | assert_eq!(dist, num_extra_bits_for_distance_code(i as u8)); |
| 2277 | } |
| 2278 | } |
| 2279 | |
| 2280 | #[test ] |
| 2281 | fn check_tree() { |
| 2282 | let mut r = DecompressorOxide::new(); |
| 2283 | let mut l = LocalVars { |
| 2284 | bit_buf: 0, |
| 2285 | num_bits: 0, |
| 2286 | dist: 0, |
| 2287 | counter: 0, |
| 2288 | num_extra: 0, |
| 2289 | }; |
| 2290 | |
| 2291 | r.code_size_huffman[0] = 1; |
| 2292 | r.code_size_huffman[1] = 1; |
| 2293 | //r.code_size_huffman[2] = 3; |
| 2294 | //r.code_size_huffman[3] = 3; |
| 2295 | //r.code_size_huffman[1] = 4; |
| 2296 | r.block_type = HUFFLEN_TABLE as u8; |
| 2297 | r.table_sizes[HUFFLEN_TABLE] = 4; |
| 2298 | let res = init_tree(&mut r, &mut l).unwrap(); |
| 2299 | |
| 2300 | let status = match res { |
| 2301 | Action::Jump(s) => s, |
| 2302 | _ => { |
| 2303 | //println!("issue"); |
| 2304 | return; |
| 2305 | } |
| 2306 | }; |
| 2307 | //println!("status {:?}", status); |
| 2308 | assert!(status != BadTotalSymbols); |
| 2309 | } |
| 2310 | |
| 2311 | #[test ] |
| 2312 | fn reverse_bits_lookup() { |
| 2313 | use super::reverse_bits; |
| 2314 | for i in 0..512 { |
| 2315 | assert_eq!(reverse_bits(i), i.reverse_bits()); |
| 2316 | } |
| 2317 | } |
| 2318 | } |
| 2319 | |