1 | //! Streaming decompression functionality. |
2 | |
3 | use super::*; |
4 | use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER}; |
5 | use ::core::cell::Cell; |
6 | |
7 | use ::core::cmp; |
8 | use ::core::convert::TryInto; |
9 | |
10 | use self::output_buffer::{InputWrapper, OutputBuffer}; |
11 | |
12 | #[cfg (feature = "serde" )] |
13 | use crate::serde::big_array::BigArray; |
14 | #[cfg (feature = "serde" )] |
15 | use serde::{Deserialize, Serialize}; |
16 | |
17 | pub const TINFL_LZ_DICT_SIZE: usize = 32_768; |
18 | |
19 | /// A struct containing huffman code lengths and the huffman code tree used by the decompressor. |
20 | #[cfg_attr (not(feature = "rustc-dep-of-std" ), derive(Clone))] |
21 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
22 | struct HuffmanTable { |
23 | /// Fast lookup table for shorter huffman codes. |
24 | /// |
25 | /// See `HuffmanTable::fast_lookup`. |
26 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
27 | pub look_up: [i16; FAST_LOOKUP_SIZE as usize], |
28 | /// Full huffman tree. |
29 | /// |
30 | /// Positive values are edge nodes/symbols, negative values are |
31 | /// parent nodes/references to other nodes. |
32 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
33 | pub tree: [i16; MAX_HUFF_TREE_SIZE], |
34 | } |
35 | |
36 | impl HuffmanTable { |
37 | const fn new() -> HuffmanTable { |
38 | HuffmanTable { |
39 | look_up: [0; FAST_LOOKUP_SIZE as usize], |
40 | tree: [0; MAX_HUFF_TREE_SIZE], |
41 | } |
42 | } |
43 | |
44 | /// Look for a symbol in the fast lookup table. |
45 | /// The symbol is stored in the lower 9 bits, the length in the next 6. |
46 | /// If the returned value is negative, the code wasn't found in the |
47 | /// fast lookup table and the full tree has to be traversed to find the code. |
48 | #[inline ] |
49 | fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 { |
50 | self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize] |
51 | } |
52 | |
53 | /// Get the symbol and the code length from the huffman tree. |
54 | #[inline ] |
55 | fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u8) -> (i32, u32) { |
56 | let mut symbol = fast_symbol; |
57 | // We step through the tree until we encounter a positive value, which indicates a |
58 | // symbol. |
59 | loop { |
60 | // symbol here indicates the position of the left (0) node, if the next bit is 1 |
61 | // we add 1 to the lookup position to get the right node. |
62 | let tree_index = (!symbol + ((bit_buf >> code_len) & 1) as i32) as usize; |
63 | |
64 | // Use get here to avoid generatic panic code. |
65 | // The init_tree code should prevent this from actually going out of bounds |
66 | // but if there were somehow a bug with that |
67 | // we would at worst end up with corrupted output in release mode. |
68 | debug_assert!(tree_index < self.tree.len()); |
69 | symbol = i32::from(self.tree.get(tree_index).copied().unwrap_or(i16::MAX)); |
70 | code_len += 1; |
71 | if symbol >= 0 { |
72 | break; |
73 | } |
74 | } |
75 | // Note: Using a u8 for code_len inside this function seems to improve performance, but changing it |
76 | // in localvars seems to worsen things so we convert it to a u32 here. |
77 | (symbol, u32::from(code_len)) |
78 | } |
79 | |
80 | #[inline ] |
81 | /// Look up a symbol and code length from the bits in the provided bit buffer. |
82 | /// |
83 | /// Returns Some(symbol, length) on success, |
84 | /// None if the length is 0. |
85 | /// |
86 | /// It's possible we could avoid checking for 0 if we can guarantee a sane table. |
87 | /// TODO: Check if a smaller type for code_len helps performance. |
88 | fn lookup(&self, bit_buf: BitBuffer) -> (i32, u32) { |
89 | let symbol = self.fast_lookup(bit_buf).into(); |
90 | if symbol >= 0 { |
91 | let length = (symbol >> 9) as u32; |
92 | (symbol, length) |
93 | } else { |
94 | // We didn't get a symbol from the fast lookup table, so check the tree instead. |
95 | self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS) |
96 | } |
97 | } |
98 | } |
99 | |
100 | /// The number of huffman tables used. |
101 | const MAX_HUFF_TABLES: usize = 3; |
102 | /// The length of the first (literal/length) huffman table. |
103 | const MAX_HUFF_SYMBOLS_0: usize = 288; |
104 | /// The length of the second (distance) huffman table. |
105 | const MAX_HUFF_SYMBOLS_1: usize = 32; |
106 | /// The length of the last (huffman code length) huffman table. |
107 | const MAX_HUFF_SYMBOLS_2: usize = 19; |
108 | /// The maximum length of a code that can be looked up in the fast lookup table. |
109 | const FAST_LOOKUP_BITS: u8 = 10; |
110 | /// The size of the fast lookup table. |
111 | const FAST_LOOKUP_SIZE: u16 = 1 << FAST_LOOKUP_BITS; |
112 | const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2; |
113 | const LITLEN_TABLE: usize = 0; |
114 | const DIST_TABLE: usize = 1; |
115 | const HUFFLEN_TABLE: usize = 2; |
116 | const LEN_CODES_SIZE: usize = 512; |
117 | const LEN_CODES_MASK: usize = LEN_CODES_SIZE - 1; |
118 | |
119 | /// Flags to [`decompress()`] to control how inflation works. |
120 | /// |
121 | /// These define bits for a bitmask argument. |
122 | pub mod inflate_flags { |
123 | /// Should we try to parse a zlib header? |
124 | /// |
125 | /// If unset, the function will expect an RFC1951 deflate stream. If set, it will expect a |
126 | /// RFC1950 zlib wrapper around the deflate stream. |
127 | pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1; |
128 | |
129 | /// There will be more input that hasn't been given to the decompressor yet. |
130 | /// |
131 | /// This is useful when you want to decompress what you have so far, |
132 | /// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a |
133 | /// network connection). When [`decompress()`][super::decompress] reaches the end of the input |
134 | /// without finding the end of the compressed stream, it will return |
135 | /// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set, |
136 | /// indicating that you should get more data before calling again. If not set, it will return |
137 | /// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress] |
138 | /// suggesting the stream is corrupt, since you claimed it was all there. |
139 | pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2; |
140 | |
141 | /// The output buffer should not wrap around. |
142 | pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4; |
143 | |
144 | /// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream. |
145 | /// |
146 | /// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this. |
147 | /// |
148 | /// NOTE: Enabling/disabling this between calls to decompress will result in an incorrect |
149 | /// checksum. |
150 | pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8; |
151 | |
152 | /// Ignore adler32 checksum even if we are inflating a zlib stream. |
153 | /// |
154 | /// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled. |
155 | /// |
156 | /// NOTE: This flag does not exist in miniz as it does not support this and is a |
157 | /// custom addition for miniz_oxide. |
158 | /// |
159 | /// NOTE: Should not be changed from enabled to disabled after decompression has started, |
160 | /// this will result in checksum failure (outside the unlikely event where the checksum happens |
161 | /// to match anyway). |
162 | pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64; |
163 | |
164 | /// Return [`TINFLStatus::BlockBoundary`][super::TINFLStatus::BlockBoundary] |
165 | /// on reaching the boundary between deflate blocks. Calling [`decompress()`][super::decompress] |
166 | /// again will resume decompression of the next block. |
167 | #[cfg (feature = "block-boundary" )] |
168 | pub const TINFL_FLAG_STOP_ON_BLOCK_BOUNDARY: u32 = 128; |
169 | } |
170 | |
171 | use self::inflate_flags::*; |
172 | |
173 | const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4]; |
174 | |
175 | #[cfg (target_pointer_width = "64" )] |
176 | type BitBuffer = u64; |
177 | |
178 | #[cfg (not(target_pointer_width = "64" ))] |
179 | type BitBuffer = u32; |
180 | |
181 | /* |
182 | enum HuffmanTableType { |
183 | LiteralLength = 0, |
184 | Dist = 1, |
185 | Huffman = 2, |
186 | }*/ |
187 | |
188 | /// Minimal data representing the [`DecompressorOxide`] state when it is between deflate blocks |
189 | /// (i.e. [`decompress()`] has returned [`TINFLStatus::BlockBoundary`]). |
190 | /// This can be serialized along with the last 32KiB of the output buffer, then passed to |
191 | /// [`DecompressorOxide::from_block_boundary_state()`] to resume decompression from the same point. |
192 | /// |
193 | /// The Zlib/Adler32 fields can be ignored if you aren't using those features |
194 | /// ([`TINFL_FLAG_PARSE_ZLIB_HEADER`], [`TINFL_FLAG_COMPUTE_ADLER32`]). |
195 | /// When deserializing, you can reconstruct `bit_buf` from the previous byte in the input file |
196 | /// (if you still have access to it), so `num_bits` is the only field that is always required. |
197 | #[derive (Clone)] |
198 | #[cfg (feature = "block-boundary" )] |
199 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
200 | pub struct BlockBoundaryState { |
201 | /// The number of bits from the last byte of input consumed, |
202 | /// that are needed for decoding the next deflate block. |
203 | /// Value is in range `0..=7` |
204 | pub num_bits: u8, |
205 | |
206 | /// The `num_bits` MSBs from the last byte of input consumed, |
207 | /// that are needed for decoding the next deflate block. |
208 | /// Stored in the LSBs of this field. |
209 | pub bit_buf: u8, |
210 | |
211 | /// Zlib CMF |
212 | pub z_header0: u32, |
213 | /// Zlib FLG |
214 | pub z_header1: u32, |
215 | /// Adler32 checksum of the data decompressed so far |
216 | pub check_adler32: u32, |
217 | } |
218 | |
219 | #[cfg (feature = "block-boundary" )] |
220 | impl Default for BlockBoundaryState { |
221 | fn default() -> Self { |
222 | BlockBoundaryState { |
223 | num_bits: 0, |
224 | bit_buf: 0, |
225 | z_header0: 0, |
226 | z_header1: 0, |
227 | check_adler32: 1, |
228 | } |
229 | } |
230 | } |
231 | |
232 | /// Main decompression struct. |
233 | /// |
234 | #[cfg_attr (not(feature = "rustc-dep-of-std" ), derive(Clone))] |
235 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
236 | pub struct DecompressorOxide { |
237 | /// Current state of the decompressor. |
238 | state: core::State, |
239 | /// Number of bits in the bit buffer. |
240 | num_bits: u32, |
241 | /// Zlib CMF |
242 | z_header0: u32, |
243 | /// Zlib FLG |
244 | z_header1: u32, |
245 | /// Adler32 checksum from the zlib header. |
246 | z_adler32: u32, |
247 | /// 1 if the current block is the last block, 0 otherwise. |
248 | finish: u8, |
249 | /// The type of the current block. |
250 | /// or if in a dynamic block, which huffman table we are currently |
251 | // initializing. |
252 | block_type: u8, |
253 | /// 1 if the adler32 value should be checked. |
254 | check_adler32: u32, |
255 | /// Last match distance. |
256 | dist: u32, |
257 | /// Variable used for match length, symbols, and a number of other things. |
258 | counter: u32, |
259 | /// Number of extra bits for the last length or distance code. |
260 | num_extra: u8, |
261 | /// Number of entries in each huffman table. |
262 | table_sizes: [u16; MAX_HUFF_TABLES], |
263 | /// Buffer of input data. |
264 | bit_buf: BitBuffer, |
265 | /// Huffman tables. |
266 | tables: [HuffmanTable; MAX_HUFF_TABLES], |
267 | |
268 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
269 | code_size_literal: [u8; MAX_HUFF_SYMBOLS_0], |
270 | code_size_dist: [u8; MAX_HUFF_SYMBOLS_1], |
271 | code_size_huffman: [u8; MAX_HUFF_SYMBOLS_2], |
272 | /// Raw block header. |
273 | raw_header: [u8; 4], |
274 | /// Huffman length codes. |
275 | #[cfg_attr (feature = "serde" , serde(with = "BigArray" ))] |
276 | // MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137 |
277 | // Extended to 512 to allow masking to help evade bounds checks. |
278 | len_codes: [u8; LEN_CODES_SIZE], |
279 | } |
280 | |
281 | impl DecompressorOxide { |
282 | /// Create a new tinfl_decompressor with all fields set to 0. |
283 | pub fn new() -> DecompressorOxide { |
284 | DecompressorOxide::default() |
285 | } |
286 | |
287 | /// Set the current state to `Start`. |
288 | #[inline ] |
289 | pub fn init(&mut self) { |
290 | // The rest of the data is reset or overwritten when used. |
291 | self.state = core::State::Start; |
292 | } |
293 | |
294 | /// Returns the adler32 checksum of the currently decompressed data. |
295 | /// Note: Will return Some(1) if decompressing zlib but ignoring adler32. |
296 | #[inline ] |
297 | #[cfg (not(feature = "rustc-dep-of-std" ))] |
298 | pub fn adler32(&self) -> Option<u32> { |
299 | if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 { |
300 | Some(self.check_adler32) |
301 | } else { |
302 | None |
303 | } |
304 | } |
305 | |
306 | /// Returns the adler32 that was read from the zlib header if it exists. |
307 | #[inline ] |
308 | #[cfg (not(feature = "rustc-dep-of-std" ))] |
309 | pub fn adler32_header(&self) -> Option<u32> { |
310 | if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 { |
311 | Some(self.z_adler32) |
312 | } else { |
313 | None |
314 | } |
315 | } |
316 | |
317 | // Get zlib header for tests |
318 | // Only for tests for now, may provide a proper function for this for later. |
319 | #[cfg (all(test, feature = "with-alloc" ))] |
320 | pub(crate) const fn zlib_header(&self) -> (u32, u32) { |
321 | (self.z_header0, self.z_header1) |
322 | } |
323 | |
324 | /*fn code_size_table(&mut self, table_num: u8) -> &mut [u8] { |
325 | match table_num { |
326 | 0 => &mut self.code_size_literal, |
327 | 1 => &mut self.code_size_dist, |
328 | _ => &mut self.code_size_huffman, |
329 | } |
330 | }*/ |
331 | |
332 | /// Returns the current [`BlockBoundaryState`]. Should only be called when |
333 | /// [`decompress()`] has returned [`TINFLStatus::BlockBoundary`]; |
334 | /// otherwise this will return `None`. |
335 | #[cfg (feature = "block-boundary" )] |
336 | pub fn block_boundary_state(&self) -> Option<BlockBoundaryState> { |
337 | if self.state == core::State::ReadBlockHeader { |
338 | // If we're in this state, undo_bytes should have emptied |
339 | // bit_buf of any whole bytes |
340 | assert!(self.num_bits < 8); |
341 | |
342 | Some(BlockBoundaryState { |
343 | num_bits: self.num_bits as u8, |
344 | bit_buf: self.bit_buf as u8, |
345 | z_header0: self.z_header0, |
346 | z_header1: self.z_header1, |
347 | check_adler32: self.check_adler32, |
348 | }) |
349 | } else { |
350 | None |
351 | } |
352 | } |
353 | |
354 | /// Creates a new `DecompressorOxide` from the state returned by |
355 | /// `block_boundary_state()`. |
356 | /// |
357 | /// When calling [`decompress()`], the 32KiB of `out` preceding `out_pos` must be |
358 | /// initialized with the same data that it contained when `block_boundary_state()` |
359 | /// was called. |
360 | #[cfg (feature = "block-boundary" )] |
361 | pub fn from_block_boundary_state(st: &BlockBoundaryState) -> Self { |
362 | DecompressorOxide { |
363 | state: core::State::ReadBlockHeader, |
364 | num_bits: st.num_bits as u32, |
365 | bit_buf: st.bit_buf as BitBuffer, |
366 | z_header0: st.z_header0, |
367 | z_header1: st.z_header1, |
368 | z_adler32: 1, |
369 | check_adler32: st.check_adler32, |
370 | ..DecompressorOxide::default() |
371 | } |
372 | } |
373 | } |
374 | |
375 | impl Default for DecompressorOxide { |
376 | /// Create a new tinfl_decompressor with all fields set to 0. |
377 | #[inline (always)] |
378 | fn default() -> Self { |
379 | DecompressorOxide { |
380 | state: core::State::Start, |
381 | num_bits: 0, |
382 | z_header0: 0, |
383 | z_header1: 0, |
384 | z_adler32: 0, |
385 | finish: 0, |
386 | block_type: 0, |
387 | check_adler32: 0, |
388 | dist: 0, |
389 | counter: 0, |
390 | num_extra: 0, |
391 | table_sizes: [0; MAX_HUFF_TABLES], |
392 | bit_buf: 0, |
393 | // TODO:(oyvindln) Check that copies here are optimized out in release mode. |
394 | tables: [ |
395 | HuffmanTable::new(), |
396 | HuffmanTable::new(), |
397 | HuffmanTable::new(), |
398 | ], |
399 | code_size_literal: [0; MAX_HUFF_SYMBOLS_0], |
400 | code_size_dist: [0; MAX_HUFF_SYMBOLS_1], |
401 | code_size_huffman: [0; MAX_HUFF_SYMBOLS_2], |
402 | raw_header: [0; 4], |
403 | len_codes: [0; LEN_CODES_SIZE], |
404 | } |
405 | } |
406 | } |
407 | |
408 | #[derive (Copy, Clone, PartialEq, Eq, Debug)] |
409 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
410 | #[non_exhaustive ] |
411 | enum State { |
412 | Start = 0, |
413 | ReadZlibCmf, |
414 | ReadZlibFlg, |
415 | ReadBlockHeader, |
416 | BlockTypeNoCompression, |
417 | RawHeader, |
418 | RawMemcpy1, |
419 | RawMemcpy2, |
420 | ReadTableSizes, |
421 | ReadHufflenTableCodeSize, |
422 | ReadLitlenDistTablesCodeSize, |
423 | ReadExtraBitsCodeSize, |
424 | DecodeLitlen, |
425 | WriteSymbol, |
426 | ReadExtraBitsLitlen, |
427 | DecodeDistance, |
428 | ReadExtraBitsDistance, |
429 | RawReadFirstByte, |
430 | RawStoreFirstByte, |
431 | WriteLenBytesToEnd, |
432 | BlockDone, |
433 | HuffDecodeOuterLoop1, |
434 | HuffDecodeOuterLoop2, |
435 | ReadAdler32, |
436 | |
437 | DoneForever, |
438 | |
439 | // Failure states. |
440 | BlockTypeUnexpected, |
441 | BadCodeSizeSum, |
442 | BadDistOrLiteralTableLength, |
443 | BadTotalSymbols, |
444 | BadZlibHeader, |
445 | DistanceOutOfBounds, |
446 | BadRawLength, |
447 | BadCodeSizeDistPrevLookup, |
448 | InvalidLitlen, |
449 | InvalidDist, |
450 | } |
451 | |
452 | impl State { |
453 | #[cfg (not(feature = "rustc-dep-of-std" ))] |
454 | const fn is_failure(self) -> bool { |
455 | matches!( |
456 | self, |
457 | BlockTypeUnexpected |
458 | | BadCodeSizeSum |
459 | | BadDistOrLiteralTableLength |
460 | | BadTotalSymbols |
461 | | BadZlibHeader |
462 | | DistanceOutOfBounds |
463 | | BadRawLength |
464 | | BadCodeSizeDistPrevLookup |
465 | | InvalidLitlen |
466 | | InvalidDist |
467 | ) |
468 | } |
469 | |
470 | #[inline ] |
471 | fn begin(&mut self, new_state: State) { |
472 | *self = new_state; |
473 | } |
474 | } |
475 | |
476 | use self::State::*; |
477 | |
478 | // # Optimization |
479 | // We add a extra value at the end and make the tables 32 elements long |
480 | // so we can use a mask to avoid bounds checks. |
481 | // The invalid values are set to something high enough to avoid underflowing |
482 | // the match length. |
483 | /// Base length for each length code. |
484 | /// |
485 | /// The base is used together with the value of the extra bits to decode the actual |
486 | /// length/distance values in a match. |
487 | #[rustfmt::skip] |
488 | const LENGTH_BASE: [u16; 32] = [ |
489 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
490 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512 |
491 | ]; |
492 | |
493 | /// Number of extra bits for each length code. |
494 | #[rustfmt::skip] |
495 | const LENGTH_EXTRA: [u8; 32] = [ |
496 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
497 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0 |
498 | ]; |
499 | |
500 | /// Base length for each distance code. |
501 | #[rustfmt::skip] |
502 | const DIST_BASE: [u16; 30] = [ |
503 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, |
504 | 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, |
505 | 2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577 |
506 | ]; |
507 | |
508 | /// Get the number of extra bits used for a distance code. |
509 | /// (Code numbers above `NUM_DISTANCE_CODES` will give some garbage |
510 | /// value.) |
511 | #[inline (always)] |
512 | const fn num_extra_bits_for_distance_code(code: u8) -> u8 { |
513 | // TODO: Need to verify that this is faster on all platforms. |
514 | // This can be easily calculated without a lookup. |
515 | let c: u8 = code >> 1; |
516 | c.saturating_sub(1) |
517 | } |
518 | |
519 | /// The mask used when indexing the base/extra arrays. |
520 | const BASE_EXTRA_MASK: usize = 32 - 1; |
521 | |
522 | /// Read an le u16 value from the slice iterator. |
523 | /// |
524 | /// # Panics |
525 | /// Panics if there are less than two bytes left. |
526 | #[inline ] |
527 | fn read_u16_le(iter: &mut InputWrapper) -> u16 { |
528 | let ret: u16 = { |
529 | let two_bytes: [u8; _] = iter.as_slice()[..2].try_into().unwrap_or_default(); |
530 | u16::from_le_bytes(two_bytes) |
531 | }; |
532 | iter.advance(steps:2); |
533 | ret |
534 | } |
535 | |
536 | /// Ensure that there is data in the bit buffer. |
537 | /// |
538 | /// On 64-bit platform, we use a 64-bit value so this will |
539 | /// result in there being at least 32 bits in the bit buffer. |
540 | /// This function assumes that there is at least 4 bytes left in the input buffer. |
541 | #[inline (always)] |
542 | #[cfg (target_pointer_width = "64" )] |
543 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
544 | // Read four bytes into the buffer at once. |
545 | if l.num_bits < 30 { |
546 | l.bit_buf |= BitBuffer::from(in_iter.read_u32_le()) << l.num_bits; |
547 | l.num_bits += 32; |
548 | } |
549 | } |
550 | |
551 | /// Same as previous, but for non-64-bit platforms. |
552 | /// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer. |
553 | #[inline (always)] |
554 | #[cfg (not(target_pointer_width = "64" ))] |
555 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
556 | // If the buffer is 32-bit wide, read 2 bytes instead. |
557 | if l.num_bits < 15 { |
558 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
559 | l.num_bits += 16; |
560 | } |
561 | } |
562 | |
563 | /// Check that the zlib header is correct and that there is enough space in the buffer |
564 | /// for the window size specified in the header. |
565 | /// |
566 | /// See https://tools.ietf.org/html/rfc1950 |
567 | #[inline ] |
568 | const fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action { |
569 | let mut failed = |
570 | // cmf + flg should be divisible by 31. |
571 | (((cmf * 256) + flg) % 31 != 0) || |
572 | // If this flag is set, a dictionary was used for this zlib compressed data. |
573 | // This is currently not supported by miniz or miniz-oxide |
574 | ((flg & 0b0010_0000) != 0) || |
575 | // Compression method. Only 8(DEFLATE) is defined by the standard. |
576 | ((cmf & 15) != 8); |
577 | |
578 | let window_size = 1 << ((cmf >> 4) + 8); |
579 | if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 { |
580 | // Bail if the buffer is wrapping and the window size is larger than the buffer. |
581 | failed |= (mask + 1) < window_size; |
582 | } |
583 | |
584 | // Zlib doesn't allow window sizes above 32 * 1024. |
585 | failed |= window_size > 32_768; |
586 | |
587 | if failed { |
588 | Action::Jump(BadZlibHeader) |
589 | } else { |
590 | Action::Jump(ReadBlockHeader) |
591 | } |
592 | } |
593 | |
594 | enum Action { |
595 | None, |
596 | Jump(State), |
597 | End(TINFLStatus), |
598 | } |
599 | |
600 | /// Try to decode the next huffman code, and puts it in the counter field of the decompressor |
601 | /// if successful. |
602 | /// |
603 | /// # Returns |
604 | /// The specified action returned from `f` on success, |
605 | /// `Action::End` if there are not enough data left to decode a symbol. |
606 | fn decode_huffman_code<F>( |
607 | r: &mut DecompressorOxide, |
608 | l: &mut LocalVars, |
609 | table: usize, |
610 | flags: u32, |
611 | in_iter: &mut InputWrapper, |
612 | f: F, |
613 | ) -> Action |
614 | where |
615 | F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action, |
616 | { |
617 | // As the huffman codes can be up to 15 bits long we need at least 15 bits |
618 | // ready in the bit buffer to start decoding the next huffman code. |
619 | if l.num_bits < 15 { |
620 | // First, make sure there is enough data in the bit buffer to decode a huffman code. |
621 | if in_iter.bytes_left() < 2 { |
622 | // If there is less than 2 bytes left in the input buffer, we try to look up |
623 | // the huffman code with what's available, and return if that doesn't succeed. |
624 | // Original explanation in miniz: |
625 | // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes |
626 | // * remaining in the input buffer falls below 2. */ |
627 | // /* It reads just enough bytes from the input stream that are needed to decode |
628 | // * the next Huffman code (and absolutely no more). It works by trying to fully |
629 | // * decode a */ |
630 | // /* Huffman code by using whatever bits are currently present in the bit buffer. |
631 | // * If this fails, it reads another byte, and tries again until it succeeds or |
632 | // * until the */ |
633 | // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ |
634 | loop { |
635 | let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
636 | if temp >= 0 { |
637 | let code_len = (temp >> 9) as u32; |
638 | // TODO: Is there any point to check for code_len != 0 here still? |
639 | if (code_len != 0) && (l.num_bits >= code_len) { |
640 | break; |
641 | } |
642 | } else if l.num_bits > FAST_LOOKUP_BITS.into() { |
643 | let mut code_len = u32::from(FAST_LOOKUP_BITS); |
644 | loop { |
645 | temp = i32::from( |
646 | r.tables[table].tree |
647 | [(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize], |
648 | ); |
649 | code_len += 1; |
650 | if temp >= 0 || l.num_bits < code_len + 1 { |
651 | break; |
652 | } |
653 | } |
654 | if temp >= 0 { |
655 | break; |
656 | } |
657 | } |
658 | |
659 | // TODO: miniz jumps straight to here after getting here again after failing to read |
660 | // a byte. |
661 | // Doing that lets miniz avoid re-doing the lookup that that was done in the |
662 | // previous call. |
663 | let mut byte = 0; |
664 | if let a @ Action::End(_) = read_byte(in_iter, flags, |b| { |
665 | byte = b; |
666 | Action::None |
667 | }) { |
668 | return a; |
669 | }; |
670 | |
671 | // Do this outside closure for now to avoid borrowing r. |
672 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
673 | l.num_bits += 8; |
674 | |
675 | if l.num_bits >= 15 { |
676 | break; |
677 | } |
678 | } |
679 | } else { |
680 | // There is enough data in the input buffer, so read the next two bytes |
681 | // and add them to the bit buffer. |
682 | // Unwrapping here is fine since we just checked that there are at least two |
683 | // bytes left. |
684 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
685 | l.num_bits += 16; |
686 | } |
687 | } |
688 | |
689 | // We now have at least 15 bits in the input buffer. |
690 | let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
691 | let code_len; |
692 | // If the symbol was found in the fast lookup table. |
693 | if symbol >= 0 { |
694 | // Get the length value from the top bits. |
695 | // As we shift down the sign bit, converting to an unsigned value |
696 | // shouldn't overflow. |
697 | code_len = (symbol >> 9) as u32; |
698 | // Mask out the length value. |
699 | symbol &= 511; |
700 | } else { |
701 | let res = r.tables[table].tree_lookup(symbol, l.bit_buf, FAST_LOOKUP_BITS); |
702 | symbol = res.0; |
703 | code_len = res.1; |
704 | }; |
705 | |
706 | l.bit_buf >>= code_len; |
707 | l.num_bits -= code_len; |
708 | f(r, l, symbol) |
709 | } |
710 | |
711 | /// Try to read one byte from `in_iter` and call `f` with the read byte as an argument, |
712 | /// returning the result. |
713 | /// If reading fails, `Action::End is returned` |
714 | #[inline ] |
715 | fn read_byte<F>(in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
716 | where |
717 | F: FnOnce(u8) -> Action, |
718 | { |
719 | match in_iter.read_byte() { |
720 | None => end_of_input(flags), |
721 | Some(byte: u8) => f(byte), |
722 | } |
723 | } |
724 | |
725 | // TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always)) |
726 | /// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an |
727 | /// an argument after reading, returning the result of that function, or `Action::End` if there are |
728 | /// not enough bytes left. |
729 | #[inline ] |
730 | #[allow (clippy::while_immutable_condition)] |
731 | fn read_bits<F>( |
732 | l: &mut LocalVars, |
733 | amount: u32, |
734 | in_iter: &mut InputWrapper, |
735 | flags: u32, |
736 | f: F, |
737 | ) -> Action |
738 | where |
739 | F: FnOnce(&mut LocalVars, BitBuffer) -> Action, |
740 | { |
741 | // Clippy gives a false positive warning here due to the closure. |
742 | // Read enough bytes from the input iterator to cover the number of bits we want. |
743 | while l.num_bits < amount { |
744 | let action: Action = read_byte(in_iter, flags, |byte: u8| { |
745 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
746 | l.num_bits += 8; |
747 | Action::None |
748 | }); |
749 | |
750 | // If there are not enough bytes in the input iterator, return and signal that we need more. |
751 | if !matches!(action, Action::None) { |
752 | return action; |
753 | } |
754 | } |
755 | |
756 | let bits: u64 = l.bit_buf & ((1 << amount) - 1); |
757 | l.bit_buf >>= amount; |
758 | l.num_bits -= amount; |
759 | f(l, bits) |
760 | } |
761 | |
762 | #[inline ] |
763 | fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
764 | where |
765 | F: FnOnce(&mut LocalVars) -> Action, |
766 | { |
767 | let num_bits: u32 = l.num_bits & 7; |
768 | read_bits(l, amount:num_bits, in_iter, flags, |l: &mut LocalVars, _| f(l)) |
769 | } |
770 | |
771 | #[inline ] |
772 | const fn end_of_input(flags: u32) -> Action { |
773 | Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 { |
774 | TINFLStatus::NeedsMoreInput |
775 | } else { |
776 | TINFLStatus::FailedCannotMakeProgress |
777 | }) |
778 | } |
779 | |
780 | #[inline ] |
781 | fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 { |
782 | let res: u32 = cmp::min(v1:l.num_bits >> 3, v2:max); |
783 | l.num_bits -= res << 3; |
784 | res |
785 | } |
786 | |
787 | fn start_static_table(r: &mut DecompressorOxide) { |
788 | r.table_sizes[LITLEN_TABLE] = 288; |
789 | r.table_sizes[DIST_TABLE] = 32; |
790 | r.code_size_literal[0..144].fill(8); |
791 | r.code_size_literal[144..256].fill(9); |
792 | r.code_size_literal[256..280].fill(7); |
793 | r.code_size_literal[280..288].fill(8); |
794 | r.code_size_dist[0..32].fill(5); |
795 | } |
796 | |
797 | #[cfg (any( |
798 | feature = "rustc-dep-of-std" , |
799 | not(feature = "with-alloc" ), |
800 | target_arch = "aarch64" , |
801 | target_arch = "arm64ec" , |
802 | target_arch = "loongarch64" |
803 | ))] |
804 | #[inline ] |
805 | const fn reverse_bits(n: u16) -> u16 { |
806 | // Lookup is not used when building as part of std to avoid wasting space |
807 | // for lookup table in every rust binary |
808 | // as it's only used for backtraces in the cold path |
809 | // - see #152 |
810 | |
811 | // armv7 and newer, and loongarch have a cpu instruction for bit reversal so |
812 | // it's preferable to just use that on those architectures. |
813 | |
814 | // Also disable lookup table when not using the alloc feature as |
815 | // we probably don't want to waste space for a lookup table in an environment |
816 | // without an allocator. |
817 | n.reverse_bits() |
818 | } |
819 | |
820 | #[cfg (all( |
821 | not(any( |
822 | feature = "rustc-dep-of-std" , |
823 | target_arch = "aarch64" , |
824 | target_arch = "arm64ec" , |
825 | target_arch = "loongarch64" |
826 | )), |
827 | feature = "with-alloc" |
828 | ))] |
829 | fn reverse_bits(n: u16) -> u16 { |
830 | static REVERSED_BITS_LOOKUP: [u16; 512] = { |
831 | let mut table: [u16; 512] = [0; 512]; |
832 | |
833 | let mut i: usize = 0; |
834 | while i < 512 { |
835 | table[i] = (i as u16).reverse_bits(); |
836 | i += 1; |
837 | } |
838 | |
839 | table |
840 | }; |
841 | |
842 | REVERSED_BITS_LOOKUP[n as usize] |
843 | } |
844 | |
845 | fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Option<Action> { |
846 | loop { |
847 | let bt = r.block_type as usize; |
848 | |
849 | let code_sizes = match bt { |
850 | LITLEN_TABLE => &mut r.code_size_literal[..], |
851 | DIST_TABLE => &mut r.code_size_dist, |
852 | HUFFLEN_TABLE => &mut r.code_size_huffman, |
853 | _ => return None, |
854 | }; |
855 | let table = &mut r.tables[bt]; |
856 | |
857 | let mut total_symbols = [0u16; 16]; |
858 | // Next code - we use the odd length here to simplify a loop later. |
859 | let mut next_code = [0u32; 17]; |
860 | const INVALID_CODE: i16 = (1 << 9) | 286; |
861 | // Set the values in the fast table to return a |
862 | // non-zero length and an invalid symbol instead of zero |
863 | // so that we do not have to have a check for a zero |
864 | // code length in the hot code path later |
865 | // and can instead error out on the invalid symbol check |
866 | // on bogus input. |
867 | table.look_up.fill(INVALID_CODE); |
868 | // If we are initializing the huffman code length we can skip |
869 | // this since these codes can't be longer than 3 bits |
870 | // and thus only use the fast table and this table won't be accessed so |
871 | // there is no point clearing it. |
872 | // TODO: Avoid creating this table at all. |
873 | if bt != HUFFLEN_TABLE { |
874 | table.tree.fill(0); |
875 | } |
876 | |
877 | let table_size = r.table_sizes[bt] as usize; |
878 | if table_size > code_sizes.len() { |
879 | return None; |
880 | } |
881 | |
882 | for &code_size in &code_sizes[..table_size] { |
883 | let cs = code_size as usize; |
884 | // Code sizes are limited to max 15 according to the |
885 | // deflate spec. |
886 | // If it is larger than this, something has gone wrong... |
887 | if cs >= total_symbols.len() { |
888 | return None; |
889 | } |
890 | total_symbols[cs] += 1; |
891 | } |
892 | |
893 | let mut used_symbols = 0; |
894 | let mut total = 0u32; |
895 | // Count up the total number of used lengths and check that the table is not under or over-subscribed. |
896 | for (&ts, next) in total_symbols.iter().zip(next_code[1..].iter_mut()).skip(1) { |
897 | used_symbols += ts; |
898 | total += u32::from(ts); |
899 | total <<= 1; |
900 | *next = total; |
901 | } |
902 | |
903 | // |
904 | // While it's not explicitly stated in the spec, a hufflen table |
905 | // with a single length (or none) would be invalid as there needs to be |
906 | // at minimum a length for both a non-zero length huffman code for the end of block symbol |
907 | // and one of the codes to represent 0 to make sense - so just reject that here as well. |
908 | // |
909 | // The distance table is allowed to have a single distance code though according to the spect it is |
910 | // supposed to be accompanied by a second dummy code. It can also be empty indicating no used codes. |
911 | // |
912 | // The literal/length table can not be empty as there has to be an end of block symbol, |
913 | // The standard doesn't specify that there should be a dummy code in case of a single |
914 | // symbol (i.e an empty block). Normally that's not an issue though the code will have |
915 | // to take that into account later on in case of malformed input. |
916 | if total != 65_536 && (used_symbols > 1 || bt == HUFFLEN_TABLE) { |
917 | return Some(Action::Jump(BadTotalSymbols)); |
918 | } |
919 | |
920 | let mut tree_next = -1; |
921 | for symbol_index in 0..table_size { |
922 | // Code sizes are limited to 15 according to the spec |
923 | // It's already checked earlier but the compiler might not be smart enough to know that. |
924 | let code_size = code_sizes[symbol_index] & 15; |
925 | if code_size == 0 { |
926 | continue; |
927 | } |
928 | |
929 | let cur_code = next_code[code_size as usize]; |
930 | next_code[code_size as usize] += 1; |
931 | |
932 | let n = (cur_code & (u32::MAX >> (32 - code_size))) as u16; |
933 | |
934 | let mut rev_code = if n < 512 { |
935 | // Using a lookup table |
936 | // for a small speedup here, |
937 | // Seems to only really make a difference on very short |
938 | // inputs however. |
939 | // 512 seems to be around a sweet spot. |
940 | reverse_bits(n) |
941 | } else { |
942 | n.reverse_bits() |
943 | } >> (16 - code_size); |
944 | |
945 | if code_size <= FAST_LOOKUP_BITS { |
946 | let k = (i16::from(code_size) << 9) | symbol_index as i16; |
947 | while rev_code < FAST_LOOKUP_SIZE { |
948 | table.look_up[rev_code as usize] = k; |
949 | rev_code += 1 << code_size; |
950 | } |
951 | continue; |
952 | } |
953 | |
954 | let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize]; |
955 | if tree_cur == INVALID_CODE { |
956 | table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next; |
957 | tree_cur = tree_next; |
958 | tree_next -= 2; |
959 | } |
960 | |
961 | rev_code >>= FAST_LOOKUP_BITS - 1; |
962 | for _ in FAST_LOOKUP_BITS + 1..code_size { |
963 | rev_code >>= 1; |
964 | tree_cur -= (rev_code & 1) as i16; |
965 | let tree_index = (-tree_cur - 1) as usize; |
966 | if tree_index >= table.tree.len() { |
967 | return None; |
968 | } |
969 | if table.tree[tree_index] == 0 { |
970 | table.tree[tree_index] = tree_next; |
971 | tree_cur = tree_next; |
972 | tree_next -= 2; |
973 | } else { |
974 | tree_cur = table.tree[tree_index]; |
975 | } |
976 | } |
977 | |
978 | rev_code >>= 1; |
979 | tree_cur -= (rev_code & 1) as i16; |
980 | let tree_index = (-tree_cur - 1) as usize; |
981 | if tree_index >= table.tree.len() { |
982 | return None; |
983 | } |
984 | table.tree[tree_index] = symbol_index as i16; |
985 | } |
986 | |
987 | if r.block_type == HUFFLEN_TABLE as u8 { |
988 | l.counter = 0; |
989 | return Some(Action::Jump(ReadLitlenDistTablesCodeSize)); |
990 | } |
991 | |
992 | if r.block_type == LITLEN_TABLE as u8 { |
993 | break; |
994 | } |
995 | r.block_type -= 1; |
996 | } |
997 | |
998 | l.counter = 0; |
999 | |
1000 | Some(Action::Jump(DecodeLitlen)) |
1001 | } |
1002 | |
1003 | // A helper macro for generating the state machine. |
1004 | // |
1005 | // As Rust doesn't have fallthrough on matches, we have to return to the match statement |
1006 | // and jump for each state change. (Which would ideally be optimized away, but often isn't.) |
1007 | macro_rules! generate_state { |
1008 | ($state: ident, $state_machine: tt, $f: expr) => { |
1009 | loop { |
1010 | match $f { |
1011 | Action::None => continue, |
1012 | Action::Jump(new_state) => { |
1013 | $state = new_state; |
1014 | continue $state_machine; |
1015 | }, |
1016 | Action::End(result) => break $state_machine result, |
1017 | } |
1018 | } |
1019 | }; |
1020 | } |
1021 | |
1022 | #[derive (Copy, Clone)] |
1023 | struct LocalVars { |
1024 | pub bit_buf: BitBuffer, |
1025 | pub num_bits: u32, |
1026 | pub dist: u32, |
1027 | pub counter: u32, |
1028 | pub num_extra: u8, |
1029 | } |
1030 | |
1031 | #[inline ] |
1032 | fn transfer( |
1033 | out_slice: &mut [u8], |
1034 | mut source_pos: usize, |
1035 | mut out_pos: usize, |
1036 | match_len: usize, |
1037 | out_buf_size_mask: usize, |
1038 | ) { |
1039 | // special case that comes up surprisingly often. in the case that `source_pos` |
1040 | // is 1 less than `out_pos`, we can say that the entire range will be the same |
1041 | // value and optimize this to be a simple `memset` |
1042 | let source_diff = if source_pos > out_pos { |
1043 | source_pos - out_pos |
1044 | } else { |
1045 | out_pos - source_pos |
1046 | }; |
1047 | |
1048 | // The last 3 bytes can wrap as those are dealt with separately at the end. |
1049 | // Use wrapping_sub rather than saturating for performance reasons here as |
1050 | // if source_pos + match_len is < 3 we just want to jump to the end |
1051 | // condition anyhow. |
1052 | let not_wrapping = (out_buf_size_mask == usize::MAX) |
1053 | || ((source_pos + match_len).wrapping_sub(3) < out_slice.len()); |
1054 | |
1055 | let end_pos = ((match_len >> 2) * 4) + out_pos; |
1056 | if not_wrapping && source_diff == 1 && out_pos > source_pos { |
1057 | let end = (match_len >> 2) * 4 + out_pos; |
1058 | let init = out_slice[out_pos - 1]; |
1059 | out_slice[out_pos..end].fill(init); |
1060 | out_pos = end; |
1061 | source_pos = end - 1; |
1062 | // if the difference between `source_pos` and `out_pos` is greater than 3, |
1063 | // and we are not wrapping, we |
1064 | // can do slightly better than the naive case by copying everything at once |
1065 | } else if not_wrapping && out_pos > source_pos && (out_pos - source_pos >= 4) { |
1066 | let end_pos = cmp::min(end_pos, out_slice.len().saturating_sub(3)); |
1067 | while out_pos < end_pos { |
1068 | out_slice.copy_within(source_pos..=source_pos + 3, out_pos); |
1069 | source_pos += 4; |
1070 | out_pos += 4; |
1071 | } |
1072 | } else { |
1073 | let end_pos = cmp::min(end_pos, out_slice.len().saturating_sub(3)); |
1074 | while out_pos < end_pos { |
1075 | // Placing these assertions moves some bounds check before the accesses which |
1076 | // makes the compiler able to optimize better. |
1077 | // Ideally we would find a safe way to remove them entirely. |
1078 | assert!(out_pos + 3 < out_slice.len()); |
1079 | assert!((source_pos + 3) & out_buf_size_mask < out_slice.len()); |
1080 | |
1081 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
1082 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
1083 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
1084 | out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask]; |
1085 | source_pos += 4; |
1086 | out_pos += 4; |
1087 | } |
1088 | } |
1089 | |
1090 | match match_len & 3 { |
1091 | 0 => (), |
1092 | 1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask], |
1093 | 2 => { |
1094 | assert!(out_pos + 1 < out_slice.len()); |
1095 | assert!((source_pos + 1) & out_buf_size_mask < out_slice.len()); |
1096 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
1097 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
1098 | } |
1099 | 3 => { |
1100 | assert!(out_pos + 2 < out_slice.len()); |
1101 | assert!((source_pos + 2) & out_buf_size_mask < out_slice.len()); |
1102 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
1103 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
1104 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
1105 | } |
1106 | _ => unreachable!(), |
1107 | } |
1108 | } |
1109 | |
1110 | /// Presumes that there is at least match_len bytes in output left. |
1111 | #[inline ] |
1112 | fn apply_match( |
1113 | out_slice: &mut [u8], |
1114 | out_pos: usize, |
1115 | dist: usize, |
1116 | match_len: usize, |
1117 | out_buf_size_mask: usize, |
1118 | ) { |
1119 | debug_assert!(out_pos.checked_add(match_len).unwrap() <= out_slice.len()); |
1120 | |
1121 | let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask; |
1122 | |
1123 | if match_len == 3 { |
1124 | let out_slice = Cell::from_mut(out_slice).as_slice_of_cells(); |
1125 | if let Some(dst) = out_slice.get(out_pos..out_pos + 3) { |
1126 | // Moving bounds checks before any memory mutation allows the optimizer |
1127 | // combine them together. |
1128 | let src = out_slice |
1129 | .get(source_pos) |
1130 | .zip(out_slice.get((source_pos + 1) & out_buf_size_mask)) |
1131 | .zip(out_slice.get((source_pos + 2) & out_buf_size_mask)); |
1132 | if let Some(((a, b), c)) = src { |
1133 | // For correctness, the memory reads and writes have to be interleaved. |
1134 | // Cells make it possible for read and write references to overlap. |
1135 | dst[0].set(a.get()); |
1136 | dst[1].set(b.get()); |
1137 | dst[2].set(c.get()); |
1138 | } |
1139 | } |
1140 | return; |
1141 | } |
1142 | |
1143 | if cfg!(not(any(target_arch = "x86" , target_arch = "x86_64" ))) { |
1144 | // The copy from slice code seems to not give any added performance at least on |
1145 | // armv7 so transfer manually |
1146 | // Need to test on other platforms. |
1147 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
1148 | return; |
1149 | } |
1150 | |
1151 | if source_pos >= out_pos && (source_pos - out_pos) < match_len { |
1152 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
1153 | } else if match_len <= dist && source_pos + match_len < out_slice.len() { |
1154 | // Destination and source segments does not intersect and source does not wrap. |
1155 | // TODO: An invalid before start of data wrapping match reached here before |
1156 | // it was fixed (it wrapped around and ended overlapping again)- need |
1157 | // to check that we are not wrapping here. |
1158 | if source_pos < out_pos { |
1159 | let (from_slice, to_slice) = out_slice.split_at_mut(out_pos); |
1160 | to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]); |
1161 | } else { |
1162 | let (to_slice, from_slice) = out_slice.split_at_mut(source_pos); |
1163 | to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]); |
1164 | } |
1165 | } else { |
1166 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
1167 | } |
1168 | } |
1169 | |
1170 | /// Fast inner decompression loop which is run while there is at least |
1171 | /// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer |
1172 | /// (The maximum one match would need + 1). |
1173 | /// |
1174 | /// This was inspired by a similar optimization in zlib, which uses this info to do |
1175 | /// faster unchecked copies of multiple bytes at a time. |
1176 | /// Currently we don't do this here, but this function does avoid having to jump through the |
1177 | /// big match loop on each state change(as rust does not have fallthrough or gotos at the moment), |
1178 | /// and already improves decompression speed a fair bit. |
1179 | fn decompress_fast( |
1180 | r: &mut DecompressorOxide, |
1181 | in_iter: &mut InputWrapper, |
1182 | out_buf: &mut OutputBuffer, |
1183 | flags: u32, |
1184 | local_vars: &mut LocalVars, |
1185 | out_buf_size_mask: usize, |
1186 | ) -> (TINFLStatus, State) { |
1187 | // Make a local copy of the most used variables, to avoid having to update and read from values |
1188 | // in a random memory location and to encourage more register use. |
1189 | let mut l = *local_vars; |
1190 | let mut state; |
1191 | |
1192 | let status: TINFLStatus = 'o: loop { |
1193 | state = State::DecodeLitlen; |
1194 | loop { |
1195 | // This function assumes that there is at least 259 bytes left in the output buffer, |
1196 | // and that there is at least 14 bytes left in the input buffer. 14 input bytes: |
1197 | // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist) |
1198 | // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes |
1199 | // We need the one extra byte as we may write one length and one full match |
1200 | // before checking again. |
1201 | if out_buf.bytes_left() < 259 || in_iter.bytes_left() < 14 { |
1202 | state = State::DecodeLitlen; |
1203 | break 'o TINFLStatus::Done; |
1204 | } |
1205 | |
1206 | fill_bit_buffer(&mut l, in_iter); |
1207 | |
1208 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1209 | l.counter = symbol as u32; |
1210 | l.bit_buf >>= code_len; |
1211 | l.num_bits -= code_len; |
1212 | |
1213 | if (l.counter & 256) != 0 { |
1214 | // The symbol is not a literal. |
1215 | break; |
1216 | } else { |
1217 | // If we have a 32-bit buffer we need to read another two bytes now |
1218 | // to have enough bits to keep going. |
1219 | if cfg!(not(target_pointer_width = "64" )) { |
1220 | fill_bit_buffer(&mut l, in_iter); |
1221 | } |
1222 | |
1223 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1224 | l.bit_buf >>= code_len; |
1225 | l.num_bits -= code_len; |
1226 | // The previous symbol was a literal, so write it directly and check |
1227 | // the next one. |
1228 | out_buf.write_byte(l.counter as u8); |
1229 | if (symbol & 256) != 0 { |
1230 | l.counter = symbol as u32; |
1231 | // The symbol is a length value. |
1232 | break; |
1233 | } else { |
1234 | // The symbol is a literal, so write it directly and continue. |
1235 | out_buf.write_byte(symbol as u8); |
1236 | } |
1237 | } |
1238 | } |
1239 | |
1240 | // Mask the top bits since they may contain length info. |
1241 | l.counter &= 511; |
1242 | if l.counter == 256 { |
1243 | // We hit the end of block symbol. |
1244 | state.begin(BlockDone); |
1245 | break 'o TINFLStatus::Done; |
1246 | } else if l.counter > 285 { |
1247 | // Invalid code. |
1248 | // We already verified earlier that the code is > 256. |
1249 | state.begin(InvalidLitlen); |
1250 | break 'o TINFLStatus::Failed; |
1251 | } else { |
1252 | // The symbol was a length code. |
1253 | // # Optimization |
1254 | // Mask the value to avoid bounds checks |
1255 | // While the maximum is checked, the compiler isn't able to know that the |
1256 | // value won't wrap around here. |
1257 | l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
1258 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
1259 | // Length and distance codes have a number of extra bits depending on |
1260 | // the base, which together with the base gives us the exact value. |
1261 | |
1262 | // We need to make sure we have at least 33 (so min 5 bytes) bits in the buffer at this spot. |
1263 | fill_bit_buffer(&mut l, in_iter); |
1264 | if l.num_extra != 0 { |
1265 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
1266 | l.bit_buf >>= l.num_extra; |
1267 | l.num_bits -= u32::from(l.num_extra); |
1268 | l.counter += extra_bits as u32; |
1269 | } |
1270 | |
1271 | // We found a length code, so a distance code should follow. |
1272 | |
1273 | if cfg!(not(target_pointer_width = "64" )) { |
1274 | fill_bit_buffer(&mut l, in_iter); |
1275 | } |
1276 | |
1277 | let (mut symbol, code_len) = r.tables[DIST_TABLE].lookup(l.bit_buf); |
1278 | symbol &= 511; |
1279 | l.bit_buf >>= code_len; |
1280 | l.num_bits -= code_len; |
1281 | if symbol > 29 { |
1282 | state.begin(InvalidDist); |
1283 | break 'o TINFLStatus::Failed; |
1284 | } |
1285 | |
1286 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
1287 | l.dist = u32::from(DIST_BASE[symbol as usize]); |
1288 | |
1289 | if l.num_extra != 0 { |
1290 | fill_bit_buffer(&mut l, in_iter); |
1291 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
1292 | l.bit_buf >>= l.num_extra; |
1293 | l.num_bits -= u32::from(l.num_extra); |
1294 | l.dist += extra_bits as u32; |
1295 | } |
1296 | |
1297 | let position = out_buf.position(); |
1298 | if (l.dist as usize > out_buf.position() |
1299 | && (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)) |
1300 | || (l.dist as usize > out_buf.get_ref().len()) |
1301 | { |
1302 | // We encountered a distance that refers a position before |
1303 | // the start of the decoded data, so we can't continue. |
1304 | state.begin(DistanceOutOfBounds); |
1305 | break TINFLStatus::Failed; |
1306 | } |
1307 | |
1308 | apply_match( |
1309 | out_buf.get_mut(), |
1310 | position, |
1311 | l.dist as usize, |
1312 | l.counter as usize, |
1313 | out_buf_size_mask, |
1314 | ); |
1315 | |
1316 | out_buf.set_position(position + l.counter as usize); |
1317 | } |
1318 | }; |
1319 | |
1320 | *local_vars = l; |
1321 | (status, state) |
1322 | } |
1323 | |
1324 | /// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is |
1325 | /// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the |
1326 | /// deflate stream. |
1327 | /// |
1328 | /// # Arguments |
1329 | /// |
1330 | /// `r` is a [`DecompressorOxide`] struct with the state of this stream. |
1331 | /// |
1332 | /// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will |
1333 | /// start at the first byte of this buffer. |
1334 | /// |
1335 | /// `out` is a reference to the buffer that will store the decompressed data, and that |
1336 | /// stores previously decompressed data if any. |
1337 | /// |
1338 | /// * The offset given by `out_pos` indicates where in the output buffer slice writing should start. |
1339 | /// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a |
1340 | /// wrapping manner, and it's size is required to be a power of 2. |
1341 | /// * The decompression function normally needs access to 32KiB of the previously decompressed data |
1342 | /// (or to the beginning of the decompressed data if less than 32KiB has been decompressed.) |
1343 | /// - If this data is not available, decompression may fail. |
1344 | /// - Some deflate compressors allow specifying a window size which limits match distances to |
1345 | /// less than this, or alternatively an RLE mode where matches will only refer to the previous byte |
1346 | /// and thus allows a smaller output buffer. The window size can be specified in the zlib |
1347 | /// header structure, however, the header data should not be relied on to be correct. |
1348 | /// |
1349 | /// `flags` indicates settings and status to the decompression function. |
1350 | /// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided |
1351 | /// in a subsequent call to this function. |
1352 | /// * See the the [`inflate_flags`] module for details on other flags. |
1353 | /// |
1354 | /// # Returns |
1355 | /// |
1356 | /// Returns a tuple containing the status of the compressor, the number of input bytes read, and the |
1357 | /// number of bytes output to `out`. |
1358 | pub fn decompress( |
1359 | r: &mut DecompressorOxide, |
1360 | in_buf: &[u8], |
1361 | out: &mut [u8], |
1362 | out_pos: usize, |
1363 | flags: u32, |
1364 | ) -> (TINFLStatus, usize, usize) { |
1365 | let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 { |
1366 | usize::MAX |
1367 | } else { |
1368 | // In the case of zero len, any attempt to write would produce HasMoreOutput, |
1369 | // so to gracefully process the case of there really being no output, |
1370 | // set the mask to all zeros. |
1371 | out.len().saturating_sub(1) |
1372 | }; |
1373 | |
1374 | // Ensure the output buffer's size is a power of 2, unless the output buffer |
1375 | // is large enough to hold the entire output file (in which case it doesn't |
1376 | // matter). |
1377 | // Also make sure that the output buffer position is not past the end of the output buffer. |
1378 | if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() { |
1379 | return (TINFLStatus::BadParam, 0, 0); |
1380 | } |
1381 | |
1382 | let mut in_iter = InputWrapper::from_slice(in_buf); |
1383 | |
1384 | let mut state = r.state; |
1385 | |
1386 | let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos); |
1387 | |
1388 | // Make a local copy of the important variables here so we can work with them on the stack. |
1389 | let mut l = LocalVars { |
1390 | bit_buf: r.bit_buf, |
1391 | num_bits: r.num_bits, |
1392 | dist: r.dist, |
1393 | counter: r.counter, |
1394 | num_extra: r.num_extra, |
1395 | }; |
1396 | |
1397 | let mut status = 'state_machine: loop { |
1398 | match state { |
1399 | Start => generate_state!(state, 'state_machine, { |
1400 | l.bit_buf = 0; |
1401 | l.num_bits = 0; |
1402 | l.dist = 0; |
1403 | l.counter = 0; |
1404 | l.num_extra = 0; |
1405 | r.z_header0 = 0; |
1406 | r.z_header1 = 0; |
1407 | r.z_adler32 = 1; |
1408 | r.check_adler32 = 1; |
1409 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
1410 | Action::Jump(State::ReadZlibCmf) |
1411 | } else { |
1412 | Action::Jump(State::ReadBlockHeader) |
1413 | } |
1414 | }), |
1415 | |
1416 | ReadZlibCmf => generate_state!(state, 'state_machine, { |
1417 | read_byte(&mut in_iter, flags, |cmf| { |
1418 | r.z_header0 = u32::from(cmf); |
1419 | Action::Jump(State::ReadZlibFlg) |
1420 | }) |
1421 | }), |
1422 | |
1423 | ReadZlibFlg => generate_state!(state, 'state_machine, { |
1424 | read_byte(&mut in_iter, flags, |flg| { |
1425 | r.z_header1 = u32::from(flg); |
1426 | validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask) |
1427 | }) |
1428 | }), |
1429 | |
1430 | // Read the block header and jump to the relevant section depending on the block type. |
1431 | ReadBlockHeader => generate_state!(state, 'state_machine, { |
1432 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
1433 | r.finish = (bits & 1) as u8; |
1434 | r.block_type = ((bits >> 1) & 3) as u8; |
1435 | match r.block_type { |
1436 | 0 => Action::Jump(BlockTypeNoCompression), |
1437 | 1 => { |
1438 | start_static_table(r); |
1439 | init_tree(r, l).unwrap_or(Action::End(TINFLStatus::Failed)) |
1440 | }, |
1441 | 2 => { |
1442 | l.counter = 0; |
1443 | Action::Jump(ReadTableSizes) |
1444 | }, |
1445 | 3 => Action::Jump(BlockTypeUnexpected), |
1446 | _ => unreachable!() |
1447 | } |
1448 | }) |
1449 | }), |
1450 | |
1451 | // Raw/Stored/uncompressed block. |
1452 | BlockTypeNoCompression => generate_state!(state, 'state_machine, { |
1453 | pad_to_bytes(&mut l, &mut in_iter, flags, |l| { |
1454 | l.counter = 0; |
1455 | Action::Jump(RawHeader) |
1456 | }) |
1457 | }), |
1458 | |
1459 | // Check that the raw block header is correct. |
1460 | RawHeader => generate_state!(state, 'state_machine, { |
1461 | if l.counter < 4 { |
1462 | // Read block length and block length check. |
1463 | if l.num_bits != 0 { |
1464 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
1465 | r.raw_header[l.counter as usize] = bits as u8; |
1466 | l.counter += 1; |
1467 | Action::None |
1468 | }) |
1469 | } else { |
1470 | read_byte(&mut in_iter, flags, |byte| { |
1471 | r.raw_header[l.counter as usize] = byte; |
1472 | l.counter += 1; |
1473 | Action::None |
1474 | }) |
1475 | } |
1476 | } else { |
1477 | // Check if the length value of a raw block is correct. |
1478 | // The 2 first (2-byte) words in a raw header are the length and the |
1479 | // ones complement of the length. |
1480 | let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8); |
1481 | let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8); |
1482 | let valid = length == !check; |
1483 | l.counter = length.into(); |
1484 | |
1485 | if !valid { |
1486 | Action::Jump(BadRawLength) |
1487 | } else if l.counter == 0 { |
1488 | // Empty raw block. Sometimes used for synchronization. |
1489 | Action::Jump(BlockDone) |
1490 | } else if l.num_bits != 0 { |
1491 | // There is some data in the bit buffer, so we need to write that first. |
1492 | Action::Jump(RawReadFirstByte) |
1493 | } else { |
1494 | // The bit buffer is empty, so memcpy the rest of the uncompressed data from |
1495 | // the block. |
1496 | Action::Jump(RawMemcpy1) |
1497 | } |
1498 | } |
1499 | }), |
1500 | |
1501 | // Read the byte from the bit buffer. |
1502 | RawReadFirstByte => generate_state!(state, 'state_machine, { |
1503 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
1504 | l.dist = bits as u32; |
1505 | Action::Jump(RawStoreFirstByte) |
1506 | }) |
1507 | }), |
1508 | |
1509 | // Write the byte we just read to the output buffer. |
1510 | RawStoreFirstByte => generate_state!(state, 'state_machine, { |
1511 | if out_buf.bytes_left() == 0 { |
1512 | Action::End(TINFLStatus::HasMoreOutput) |
1513 | } else { |
1514 | out_buf.write_byte(l.dist as u8); |
1515 | l.counter -= 1; |
1516 | if l.counter == 0 || l.num_bits == 0 { |
1517 | Action::Jump(RawMemcpy1) |
1518 | } else { |
1519 | // There is still some data left in the bit buffer that needs to be output. |
1520 | // TODO: Changed this to jump to `RawReadfirstbyte` rather than |
1521 | // `RawStoreFirstByte` as that seemed to be the correct path, but this |
1522 | // needs testing. |
1523 | Action::Jump(RawReadFirstByte) |
1524 | } |
1525 | } |
1526 | }), |
1527 | |
1528 | RawMemcpy1 => generate_state!(state, 'state_machine, { |
1529 | if l.counter == 0 { |
1530 | Action::Jump(BlockDone) |
1531 | } else if out_buf.bytes_left() == 0 { |
1532 | Action::End(TINFLStatus::HasMoreOutput) |
1533 | } else { |
1534 | Action::Jump(RawMemcpy2) |
1535 | } |
1536 | }), |
1537 | |
1538 | RawMemcpy2 => generate_state!(state, 'state_machine, { |
1539 | if in_iter.bytes_left() > 0 { |
1540 | // Copy as many raw bytes as possible from the input to the output using memcpy. |
1541 | // Raw block lengths are limited to 64 * 1024, so casting through usize and u32 |
1542 | // is not an issue. |
1543 | let space_left = out_buf.bytes_left(); |
1544 | let bytes_to_copy = cmp::min(cmp::min( |
1545 | space_left, |
1546 | in_iter.bytes_left()), |
1547 | l.counter as usize |
1548 | ); |
1549 | |
1550 | out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]); |
1551 | |
1552 | in_iter.advance(bytes_to_copy); |
1553 | l.counter -= bytes_to_copy as u32; |
1554 | Action::Jump(RawMemcpy1) |
1555 | } else { |
1556 | end_of_input(flags) |
1557 | } |
1558 | }), |
1559 | |
1560 | // Read how many huffman codes/symbols are used for each table. |
1561 | ReadTableSizes => generate_state!(state, 'state_machine, { |
1562 | if l.counter < 3 { |
1563 | let num_bits = [5, 5, 4][l.counter as usize]; |
1564 | read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| { |
1565 | r.table_sizes[l.counter as usize] = |
1566 | bits as u16 + MIN_TABLE_SIZES[l.counter as usize]; |
1567 | l.counter += 1; |
1568 | Action::None |
1569 | }) |
1570 | } else { |
1571 | r.code_size_huffman.fill(0); |
1572 | l.counter = 0; |
1573 | // Check that the litlen and distance are within spec. |
1574 | // litlen table should be <=286 acc to the RFC and |
1575 | // additionally zlib rejects dist table sizes larger than 30. |
1576 | // NOTE this the final sizes after adding back predefined values, not |
1577 | // raw value in the data. |
1578 | // See miniz_oxide issue #130 and https://github.com/madler/zlib/issues/82. |
1579 | if r.table_sizes[LITLEN_TABLE] <= 286 && r.table_sizes[DIST_TABLE] <= 30 { |
1580 | Action::Jump(ReadHufflenTableCodeSize) |
1581 | } |
1582 | else { |
1583 | Action::Jump(BadDistOrLiteralTableLength) |
1584 | } |
1585 | } |
1586 | }), |
1587 | |
1588 | // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used |
1589 | // to decode the lengths of the main tables. |
1590 | ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, { |
1591 | if l.counter < r.table_sizes[HUFFLEN_TABLE].into() { |
1592 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
1593 | // These lengths are not stored in a normal ascending order, but rather one |
1594 | // specified by the deflate specification intended to put the most used |
1595 | // values at the front as trailing zero lengths do not have to be stored. |
1596 | r.code_size_huffman[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] = |
1597 | bits as u8; |
1598 | l.counter += 1; |
1599 | Action::None |
1600 | }) |
1601 | } else { |
1602 | r.table_sizes[HUFFLEN_TABLE] = MAX_HUFF_SYMBOLS_2 as u16; |
1603 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
1604 | } |
1605 | }), |
1606 | |
1607 | ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, { |
1608 | if l.counter < u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
1609 | decode_huffman_code( |
1610 | r, &mut l, HUFFLEN_TABLE, |
1611 | flags, &mut in_iter, |r, l, symbol| { |
1612 | l.dist = symbol as u32; |
1613 | if l.dist < 16 { |
1614 | r.len_codes[l.counter as usize & LEN_CODES_MASK] = l.dist as u8; |
1615 | l.counter += 1; |
1616 | Action::None |
1617 | } else if l.dist == 16 && l.counter == 0 { |
1618 | Action::Jump(BadCodeSizeDistPrevLookup) |
1619 | } else { |
1620 | // Last value is a dummy to allow mask. |
1621 | l.num_extra = [2, 3, 7, 0][(l.dist as usize - 16) & 3]; |
1622 | Action::Jump(ReadExtraBitsCodeSize) |
1623 | } |
1624 | } |
1625 | ) |
1626 | } else if l.counter != u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
1627 | Action::Jump(BadCodeSizeSum) |
1628 | } else { |
1629 | |
1630 | r.code_size_literal[..r.table_sizes[LITLEN_TABLE] as usize] |
1631 | .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize & LEN_CODES_MASK]); |
1632 | |
1633 | let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize; |
1634 | debug_assert!(dist_table_start < r.len_codes.len()); |
1635 | let dist_table_end = (r.table_sizes[LITLEN_TABLE] + |
1636 | r.table_sizes[DIST_TABLE]) as usize; |
1637 | let code_size_dist_end = r.table_sizes[DIST_TABLE] as usize; |
1638 | debug_assert!(dist_table_end < r.len_codes.len()); |
1639 | debug_assert!(code_size_dist_end < r.code_size_dist.len()); |
1640 | let dist_table_start = dist_table_start & LEN_CODES_MASK; |
1641 | let dist_table_end = dist_table_end & LEN_CODES_MASK; |
1642 | r.code_size_dist[..code_size_dist_end & (MAX_HUFF_SYMBOLS_1 - 1)] |
1643 | .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]); |
1644 | |
1645 | r.block_type -= 1; |
1646 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
1647 | } |
1648 | }), |
1649 | |
1650 | ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, { |
1651 | let num_extra = l.num_extra.into(); |
1652 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| { |
1653 | // Mask to avoid a bounds check. |
1654 | // We can use 2 since the 2 first values are the same. |
1655 | extra_bits += [3, 3, 11][(l.dist as usize - 16) & 2]; |
1656 | let val = if l.dist == 16 { |
1657 | debug_assert!(l.counter as usize - 1 < r.len_codes.len()); |
1658 | r.len_codes[(l.counter as usize - 1) & LEN_CODES_MASK] |
1659 | } else { |
1660 | 0 |
1661 | }; |
1662 | |
1663 | let fill_start = l.counter as usize; |
1664 | let fill_end = l.counter as usize + extra_bits as usize; |
1665 | debug_assert!(fill_start < r.len_codes.len()); |
1666 | debug_assert!(fill_end < r.len_codes.len()); |
1667 | |
1668 | r.len_codes[ |
1669 | fill_start & LEN_CODES_MASK..fill_end & LEN_CODES_MASK |
1670 | ].fill(val); |
1671 | l.counter += extra_bits as u32; |
1672 | Action::Jump(ReadLitlenDistTablesCodeSize) |
1673 | }) |
1674 | }), |
1675 | |
1676 | DecodeLitlen => generate_state!(state, 'state_machine, { |
1677 | if in_iter.bytes_left() < 4 || out_buf.bytes_left() < 2 { |
1678 | // See if we can decode a literal with the data we have left. |
1679 | // Jumps to next state (WriteSymbol) if successful. |
1680 | decode_huffman_code( |
1681 | r, |
1682 | &mut l, |
1683 | LITLEN_TABLE, |
1684 | flags, |
1685 | &mut in_iter, |
1686 | |_r, l, symbol| { |
1687 | l.counter = symbol as u32; |
1688 | Action::Jump(WriteSymbol) |
1689 | }, |
1690 | ) |
1691 | } else if |
1692 | // If there is enough space, use the fast inner decompression |
1693 | // function. |
1694 | out_buf.bytes_left() >= 259 && |
1695 | in_iter.bytes_left() >= 14 |
1696 | { |
1697 | let (status, new_state) = decompress_fast( |
1698 | r, |
1699 | &mut in_iter, |
1700 | &mut out_buf, |
1701 | flags, |
1702 | &mut l, |
1703 | out_buf_size_mask, |
1704 | ); |
1705 | |
1706 | state = new_state; |
1707 | if status == TINFLStatus::Done { |
1708 | Action::Jump(new_state) |
1709 | } else { |
1710 | Action::End(status) |
1711 | } |
1712 | } else { |
1713 | fill_bit_buffer(&mut l, &mut in_iter); |
1714 | |
1715 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1716 | |
1717 | l.counter = symbol as u32; |
1718 | l.bit_buf >>= code_len; |
1719 | l.num_bits -= code_len; |
1720 | |
1721 | if (l.counter & 256) != 0 { |
1722 | // The symbol is not a literal. |
1723 | Action::Jump(HuffDecodeOuterLoop1) |
1724 | } else { |
1725 | // If we have a 32-bit buffer we need to read another two bytes now |
1726 | // to have enough bits to keep going. |
1727 | if cfg!(not(target_pointer_width = "64" )) { |
1728 | fill_bit_buffer(&mut l, &mut in_iter); |
1729 | } |
1730 | |
1731 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1732 | |
1733 | l.bit_buf >>= code_len; |
1734 | l.num_bits -= code_len; |
1735 | // The previous symbol was a literal, so write it directly and check |
1736 | // the next one. |
1737 | out_buf.write_byte(l.counter as u8); |
1738 | if (symbol & 256) != 0 { |
1739 | l.counter = symbol as u32; |
1740 | // The symbol is a length value. |
1741 | Action::Jump(HuffDecodeOuterLoop1) |
1742 | } else { |
1743 | // The symbol is a literal, so write it directly and continue. |
1744 | out_buf.write_byte(symbol as u8); |
1745 | Action::None |
1746 | } |
1747 | |
1748 | } |
1749 | |
1750 | } |
1751 | }), |
1752 | |
1753 | WriteSymbol => generate_state!(state, 'state_machine, { |
1754 | if l.counter >= 256 { |
1755 | Action::Jump(HuffDecodeOuterLoop1) |
1756 | } else if out_buf.bytes_left() > 0 { |
1757 | out_buf.write_byte(l.counter as u8); |
1758 | Action::Jump(DecodeLitlen) |
1759 | } else { |
1760 | Action::End(TINFLStatus::HasMoreOutput) |
1761 | } |
1762 | }), |
1763 | |
1764 | HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, { |
1765 | // Mask the top bits since they may contain length info. |
1766 | l.counter &= 511; |
1767 | |
1768 | if l.counter |
1769 | == 256 { |
1770 | // We hit the end of block symbol. |
1771 | Action::Jump(BlockDone) |
1772 | } else if l.counter > 285 { |
1773 | // Invalid code. |
1774 | // We already verified earlier that the code is > 256. |
1775 | Action::Jump(InvalidLitlen) |
1776 | } else { |
1777 | // # Optimization |
1778 | // Mask the value to avoid bounds checks |
1779 | // We could use get_unchecked later if can statically verify that |
1780 | // this will never go out of bounds. |
1781 | l.num_extra = |
1782 | LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
1783 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
1784 | // Length and distance codes have a number of extra bits depending on |
1785 | // the base, which together with the base gives us the exact value. |
1786 | if l.num_extra != 0 { |
1787 | Action::Jump(ReadExtraBitsLitlen) |
1788 | } else { |
1789 | Action::Jump(DecodeDistance) |
1790 | } |
1791 | } |
1792 | }), |
1793 | |
1794 | ReadExtraBitsLitlen => generate_state!(state, 'state_machine, { |
1795 | let num_extra = l.num_extra.into(); |
1796 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
1797 | l.counter += extra_bits as u32; |
1798 | Action::Jump(DecodeDistance) |
1799 | }) |
1800 | }), |
1801 | |
1802 | DecodeDistance => generate_state!(state, 'state_machine, { |
1803 | // Try to read a huffman code from the input buffer and look up what |
1804 | // length code the decoded symbol refers to. |
1805 | decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| { |
1806 | // # Optimizaton - transform the value into usize here before the check so |
1807 | // the compiler can optimize the bounds check later - ideally it should |
1808 | // know that the value can't be negative from earlier in the |
1809 | // decode_huffman_code function but it seems it may not be able |
1810 | // to make the assumption that it can't be negative and thus |
1811 | // overflow if it's converted after the check. |
1812 | let symbol = symbol as usize; |
1813 | if symbol > 29 { |
1814 | // Invalid distance code. |
1815 | return Action::Jump(InvalidDist) |
1816 | } |
1817 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
1818 | l.dist = u32::from(DIST_BASE[symbol]); |
1819 | if l.num_extra != 0 { |
1820 | // ReadEXTRA_BITS_DISTACNE |
1821 | Action::Jump(ReadExtraBitsDistance) |
1822 | } else { |
1823 | Action::Jump(HuffDecodeOuterLoop2) |
1824 | } |
1825 | }) |
1826 | }), |
1827 | |
1828 | ReadExtraBitsDistance => generate_state!(state, 'state_machine, { |
1829 | let num_extra = l.num_extra.into(); |
1830 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
1831 | l.dist += extra_bits as u32; |
1832 | Action::Jump(HuffDecodeOuterLoop2) |
1833 | }) |
1834 | }), |
1835 | |
1836 | HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, { |
1837 | if (l.dist as usize > out_buf.position() && |
1838 | (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0)) || (l.dist as usize > out_buf.get_ref().len()) |
1839 | { |
1840 | // We encountered a distance that refers a position before |
1841 | // the start of the decoded data, so we can't continue. |
1842 | Action::Jump(DistanceOutOfBounds) |
1843 | } else { |
1844 | let out_pos = out_buf.position(); |
1845 | let source_pos = out_buf.position() |
1846 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
1847 | |
1848 | let out_len = out_buf.get_ref().len(); |
1849 | let match_end_pos = out_buf.position() + l.counter as usize; |
1850 | |
1851 | if match_end_pos > out_len || |
1852 | // miniz doesn't do this check here. Not sure how it makes sure |
1853 | // that this case doesn't happen. |
1854 | (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize) |
1855 | { |
1856 | // Not enough space for all of the data in the output buffer, |
1857 | // so copy what we have space for. |
1858 | if l.counter == 0 { |
1859 | Action::Jump(DecodeLitlen) |
1860 | } else { |
1861 | Action::Jump(WriteLenBytesToEnd) |
1862 | } |
1863 | } else { |
1864 | apply_match( |
1865 | out_buf.get_mut(), |
1866 | out_pos, |
1867 | l.dist as usize, |
1868 | l.counter as usize, |
1869 | out_buf_size_mask |
1870 | ); |
1871 | out_buf.set_position(out_pos + l.counter as usize); |
1872 | Action::Jump(DecodeLitlen) |
1873 | } |
1874 | } |
1875 | }), |
1876 | |
1877 | WriteLenBytesToEnd => generate_state!(state, 'state_machine, { |
1878 | if out_buf.bytes_left() > 0 { |
1879 | let out_pos = out_buf.position(); |
1880 | let source_pos = out_buf.position() |
1881 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
1882 | |
1883 | |
1884 | let len = cmp::min(out_buf.bytes_left(), l.counter as usize); |
1885 | |
1886 | transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask); |
1887 | |
1888 | out_buf.set_position(out_pos + len); |
1889 | l.counter -= len as u32; |
1890 | if l.counter == 0 { |
1891 | Action::Jump(DecodeLitlen) |
1892 | } else { |
1893 | Action::None |
1894 | } |
1895 | } else { |
1896 | Action::End(TINFLStatus::HasMoreOutput) |
1897 | } |
1898 | }), |
1899 | |
1900 | BlockDone => generate_state!(state, 'state_machine, { |
1901 | // End once we've read the last block. |
1902 | if r.finish != 0 { |
1903 | pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None); |
1904 | |
1905 | let in_consumed = in_buf.len() - in_iter.bytes_left(); |
1906 | let undo = undo_bytes(&mut l, in_consumed as u32) as usize; |
1907 | in_iter = InputWrapper::from_slice(in_buf[in_consumed - undo..].iter().as_slice()); |
1908 | |
1909 | l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1; |
1910 | debug_assert_eq!(l.num_bits, 0); |
1911 | |
1912 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
1913 | l.counter = 0; |
1914 | Action::Jump(ReadAdler32) |
1915 | } else { |
1916 | Action::Jump(DoneForever) |
1917 | } |
1918 | } else { |
1919 | #[cfg (feature = "block-boundary" )] |
1920 | if flags & TINFL_FLAG_STOP_ON_BLOCK_BOUNDARY != 0 { |
1921 | Action::End(TINFLStatus::BlockBoundary) |
1922 | } else { |
1923 | Action::Jump(ReadBlockHeader) |
1924 | } |
1925 | #[cfg (not(feature = "block-boundary" ))] |
1926 | { |
1927 | Action::Jump(ReadBlockHeader) |
1928 | } |
1929 | } |
1930 | }), |
1931 | |
1932 | ReadAdler32 => generate_state!(state, 'state_machine, { |
1933 | if l.counter < 4 { |
1934 | if l.num_bits != 0 { |
1935 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
1936 | r.z_adler32 <<= 8; |
1937 | r.z_adler32 |= bits as u32; |
1938 | l.counter += 1; |
1939 | Action::None |
1940 | }) |
1941 | } else { |
1942 | read_byte(&mut in_iter, flags, |byte| { |
1943 | r.z_adler32 <<= 8; |
1944 | r.z_adler32 |= u32::from(byte); |
1945 | l.counter += 1; |
1946 | Action::None |
1947 | }) |
1948 | } |
1949 | } else { |
1950 | Action::Jump(DoneForever) |
1951 | } |
1952 | }), |
1953 | |
1954 | // We are done. |
1955 | DoneForever => break TINFLStatus::Done, |
1956 | |
1957 | // Anything else indicates failure. |
1958 | // BadZlibHeader | BadRawLength | BadDistOrLiteralTableLength | BlockTypeUnexpected | |
1959 | // DistanceOutOfBounds | |
1960 | // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen | |
1961 | // InvalidDist | InvalidCodeLen |
1962 | _ => break TINFLStatus::Failed, |
1963 | }; |
1964 | }; |
1965 | |
1966 | let in_undo = if status != TINFLStatus::NeedsMoreInput |
1967 | && status != TINFLStatus::FailedCannotMakeProgress |
1968 | { |
1969 | undo_bytes(&mut l, (in_buf.len() - in_iter.bytes_left()) as u32) as usize |
1970 | } else { |
1971 | 0 |
1972 | }; |
1973 | |
1974 | // If we're returning after completing a block, prepare for the next block when called again. |
1975 | #[cfg (feature = "block-boundary" )] |
1976 | if status == TINFLStatus::BlockBoundary { |
1977 | state = State::ReadBlockHeader; |
1978 | } |
1979 | |
1980 | // Make sure HasMoreOutput overrides NeedsMoreInput if the output buffer is full. |
1981 | // (Unless the missing input is the adler32 value in which case we don't need to write anything.) |
1982 | // TODO: May want to see if we can do this in a better way. |
1983 | if status == TINFLStatus::NeedsMoreInput |
1984 | && out_buf.bytes_left() == 0 |
1985 | && state != State::ReadAdler32 |
1986 | { |
1987 | status = TINFLStatus::HasMoreOutput |
1988 | } |
1989 | |
1990 | r.state = state; |
1991 | r.bit_buf = l.bit_buf; |
1992 | r.num_bits = l.num_bits; |
1993 | r.dist = l.dist; |
1994 | r.counter = l.counter; |
1995 | r.num_extra = l.num_extra; |
1996 | |
1997 | r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1; |
1998 | |
1999 | // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if |
2000 | // requested. |
2001 | let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 { |
2002 | flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0 |
2003 | } else { |
2004 | // If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum. |
2005 | false |
2006 | }; |
2007 | if need_adler && status as i32 >= 0 { |
2008 | let out_buf_pos = out_buf.position(); |
2009 | r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]); |
2010 | |
2011 | // disabled so that random input from fuzzer would not be rejected early, |
2012 | // before it has a chance to reach interesting parts of code |
2013 | if !cfg!(fuzzing) { |
2014 | // Once we are done, check if the checksum matches with the one provided in the zlib header. |
2015 | if status == TINFLStatus::Done |
2016 | && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 |
2017 | && r.check_adler32 != r.z_adler32 |
2018 | { |
2019 | status = TINFLStatus::Adler32Mismatch; |
2020 | } |
2021 | } |
2022 | } |
2023 | |
2024 | ( |
2025 | status, |
2026 | in_buf.len() - in_iter.bytes_left() - in_undo, |
2027 | out_buf.position() - out_pos, |
2028 | ) |
2029 | } |
2030 | |
2031 | #[cfg (test)] |
2032 | mod test { |
2033 | use super::*; |
2034 | |
2035 | //TODO: Fix these. |
2036 | |
2037 | fn tinfl_decompress_oxide<'i>( |
2038 | r: &mut DecompressorOxide, |
2039 | input_buffer: &'i [u8], |
2040 | output_buffer: &mut [u8], |
2041 | flags: u32, |
2042 | ) -> (TINFLStatus, &'i [u8], usize) { |
2043 | let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags); |
2044 | (status, &input_buffer[in_pos..], out_pos) |
2045 | } |
2046 | |
2047 | #[test ] |
2048 | fn decompress_zlib() { |
2049 | let encoded = [ |
2050 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
2051 | ]; |
2052 | let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER; |
2053 | |
2054 | let mut b = DecompressorOxide::new(); |
2055 | const LEN: usize = 32; |
2056 | let mut b_buf = [0; LEN]; |
2057 | |
2058 | // This should fail with the out buffer being to small. |
2059 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
2060 | |
2061 | assert!(b_status.0 == TINFLStatus::Failed); |
2062 | |
2063 | let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
2064 | |
2065 | b = DecompressorOxide::new(); |
2066 | |
2067 | // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail. |
2068 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
2069 | |
2070 | assert_eq!(b_buf[..b_status.2], b"Hello, zlib!" [..]); |
2071 | assert!(b_status.0 == TINFLStatus::Done); |
2072 | } |
2073 | |
2074 | #[cfg (feature = "with-alloc" )] |
2075 | #[test ] |
2076 | fn raw_block() { |
2077 | const LEN: usize = 64; |
2078 | |
2079 | let text = b"Hello, zlib!" ; |
2080 | let encoded = { |
2081 | let len = text.len(); |
2082 | let notlen = !len; |
2083 | let mut encoded = vec![ |
2084 | 1, |
2085 | len as u8, |
2086 | (len >> 8) as u8, |
2087 | notlen as u8, |
2088 | (notlen >> 8) as u8, |
2089 | ]; |
2090 | encoded.extend_from_slice(&text[..]); |
2091 | encoded |
2092 | }; |
2093 | |
2094 | //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER | |
2095 | let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
2096 | |
2097 | let mut b = DecompressorOxide::new(); |
2098 | |
2099 | let mut b_buf = [0; LEN]; |
2100 | |
2101 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
2102 | assert_eq!(b_buf[..b_status.2], text[..]); |
2103 | assert_eq!(b_status.0, TINFLStatus::Done); |
2104 | } |
2105 | |
2106 | fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) { |
2107 | let ret = table.lookup(bit_buf); |
2108 | (ret.0 & 511, ret.1) |
2109 | } |
2110 | |
2111 | #[test ] |
2112 | fn fixed_table_lookup() { |
2113 | let mut d = DecompressorOxide::new(); |
2114 | d.block_type = 1; |
2115 | start_static_table(&mut d); |
2116 | let mut l = LocalVars { |
2117 | bit_buf: d.bit_buf, |
2118 | num_bits: d.num_bits, |
2119 | dist: d.dist, |
2120 | counter: d.counter, |
2121 | num_extra: d.num_extra, |
2122 | }; |
2123 | init_tree(&mut d, &mut l).unwrap(); |
2124 | let llt = &d.tables[LITLEN_TABLE]; |
2125 | let dt = &d.tables[DIST_TABLE]; |
2126 | assert_eq!(masked_lookup(llt, 0b00001100), (0, 8)); |
2127 | assert_eq!(masked_lookup(llt, 0b00011110), (72, 8)); |
2128 | assert_eq!(masked_lookup(llt, 0b01011110), (74, 8)); |
2129 | assert_eq!(masked_lookup(llt, 0b11111101), (143, 8)); |
2130 | assert_eq!(masked_lookup(llt, 0b000010011), (144, 9)); |
2131 | assert_eq!(masked_lookup(llt, 0b111111111), (255, 9)); |
2132 | assert_eq!(masked_lookup(llt, 0b00000000), (256, 7)); |
2133 | assert_eq!(masked_lookup(llt, 0b1110100), (279, 7)); |
2134 | assert_eq!(masked_lookup(llt, 0b00000011), (280, 8)); |
2135 | assert_eq!(masked_lookup(llt, 0b11100011), (287, 8)); |
2136 | |
2137 | assert_eq!(masked_lookup(dt, 0), (0, 5)); |
2138 | assert_eq!(masked_lookup(dt, 20), (5, 5)); |
2139 | } |
2140 | |
2141 | // Only run this test with alloc enabled as it uses a larger buffer. |
2142 | #[cfg (feature = "with-alloc" )] |
2143 | fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) { |
2144 | let mut r = DecompressorOxide::default(); |
2145 | let mut output_buf = vec![0; 1024 * 32]; |
2146 | let flags = if zlib { |
2147 | inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER |
2148 | } else { |
2149 | 0 |
2150 | } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
2151 | | TINFL_FLAG_HAS_MORE_INPUT; |
2152 | let (d_status, _in_bytes, _out_bytes) = |
2153 | decompress(&mut r, input, &mut output_buf, 0, flags); |
2154 | assert_eq!(expected_status, d_status); |
2155 | assert_eq!(expected_state, r.state); |
2156 | } |
2157 | |
2158 | #[cfg (feature = "with-alloc" )] |
2159 | #[test ] |
2160 | fn bogus_input() { |
2161 | use self::check_result as cr; |
2162 | const F: TINFLStatus = TINFLStatus::Failed; |
2163 | const OK: TINFLStatus = TINFLStatus::Done; |
2164 | // Bad CM. |
2165 | cr(&[0x77, 0x85], F, State::BadZlibHeader, true); |
2166 | // Bad window size (but check is correct). |
2167 | cr(&[0x88, 0x98], F, State::BadZlibHeader, true); |
2168 | // Bad check bits. |
2169 | cr(&[0x78, 0x98], F, State::BadZlibHeader, true); |
2170 | |
2171 | // Too many code lengths. (From inflate library issues) |
2172 | cr( |
2173 | b"M \xff\xffM* \xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM" , |
2174 | F, |
2175 | State::BadDistOrLiteralTableLength, |
2176 | false, |
2177 | ); |
2178 | |
2179 | // Bad CLEN (also from inflate library issues) |
2180 | cr( |
2181 | b" \xdd\xff\xff*M \x94ffffffffff" , |
2182 | F, |
2183 | State::BadDistOrLiteralTableLength, |
2184 | false, |
2185 | ); |
2186 | |
2187 | // Port of inflate coverage tests from zlib-ng |
2188 | // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c |
2189 | let c = |a, b, c| cr(a, b, c, false); |
2190 | |
2191 | // Invalid uncompressed/raw block length. |
2192 | c(&[0, 0, 0, 0, 0], F, State::BadRawLength); |
2193 | // Ok empty uncompressed block. |
2194 | c(&[3, 0], OK, State::DoneForever); |
2195 | // Invalid block type. |
2196 | c(&[6], F, State::BlockTypeUnexpected); |
2197 | // Ok uncompressed block. |
2198 | c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever); |
2199 | // Too many litlens, we handle this later than zlib, so this test won't |
2200 | // give the same result. |
2201 | // c(&[0xfc, 0, 0], F, State::BadTotalSymbols); |
2202 | // Invalid set of code lengths - TODO Check if this is the correct error for this. |
2203 | c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols); |
2204 | // Invalid repeat in list of code lengths. |
2205 | // (Try to repeat a non-existent code.) |
2206 | c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup); |
2207 | // Missing end of block code (should we have a separate error for this?) - fails on further input |
2208 | // c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols); |
2209 | // Invalid set of literals/lengths |
2210 | c( |
2211 | &[ |
2212 | 4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0, |
2213 | ], |
2214 | F, |
2215 | State::BadTotalSymbols, |
2216 | ); |
2217 | // Invalid set of distances _ needsmoreinput |
2218 | // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols); |
2219 | // Invalid distance code |
2220 | c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist); |
2221 | |
2222 | // Distance refers to position before the start |
2223 | c( |
2224 | &[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], |
2225 | F, |
2226 | State::DistanceOutOfBounds, |
2227 | ); |
2228 | |
2229 | // Trailer |
2230 | // Bad gzip trailer checksum GZip header not handled by miniz_oxide |
2231 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
2232 | // Bad gzip trailer length |
2233 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
2234 | } |
2235 | |
2236 | #[test ] |
2237 | fn empty_output_buffer_non_wrapping() { |
2238 | let encoded = [ |
2239 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
2240 | ]; |
2241 | let flags = TINFL_FLAG_COMPUTE_ADLER32 |
2242 | | TINFL_FLAG_PARSE_ZLIB_HEADER |
2243 | | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
2244 | let mut r = DecompressorOxide::new(); |
2245 | let mut output_buf: [u8; 0] = []; |
2246 | // Check that we handle an empty buffer properly and not panicking. |
2247 | // https://github.com/Frommi/miniz_oxide/issues/23 |
2248 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
2249 | assert!(res == (TINFLStatus::HasMoreOutput, 4, 0)); |
2250 | } |
2251 | |
2252 | #[test ] |
2253 | fn empty_output_buffer_wrapping() { |
2254 | let encoded = [ |
2255 | 0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00, |
2256 | ]; |
2257 | let flags = TINFL_FLAG_COMPUTE_ADLER32; |
2258 | let mut r = DecompressorOxide::new(); |
2259 | let mut output_buf: [u8; 0] = []; |
2260 | // Check that we handle an empty buffer properly and not panicking. |
2261 | // https://github.com/Frommi/miniz_oxide/issues/23 |
2262 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
2263 | assert!(res == (TINFLStatus::HasMoreOutput, 2, 0)); |
2264 | } |
2265 | |
2266 | #[test ] |
2267 | fn dist_extra_bits() { |
2268 | use self::num_extra_bits_for_distance_code; |
2269 | // Number of extra bits for each distance code. |
2270 | const DIST_EXTRA: [u8; 29] = [ |
2271 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, |
2272 | 12, 13, |
2273 | ]; |
2274 | |
2275 | for (i, &dist) in DIST_EXTRA.iter().enumerate() { |
2276 | assert_eq!(dist, num_extra_bits_for_distance_code(i as u8)); |
2277 | } |
2278 | } |
2279 | |
2280 | #[test ] |
2281 | fn check_tree() { |
2282 | let mut r = DecompressorOxide::new(); |
2283 | let mut l = LocalVars { |
2284 | bit_buf: 0, |
2285 | num_bits: 0, |
2286 | dist: 0, |
2287 | counter: 0, |
2288 | num_extra: 0, |
2289 | }; |
2290 | |
2291 | r.code_size_huffman[0] = 1; |
2292 | r.code_size_huffman[1] = 1; |
2293 | //r.code_size_huffman[2] = 3; |
2294 | //r.code_size_huffman[3] = 3; |
2295 | //r.code_size_huffman[1] = 4; |
2296 | r.block_type = HUFFLEN_TABLE as u8; |
2297 | r.table_sizes[HUFFLEN_TABLE] = 4; |
2298 | let res = init_tree(&mut r, &mut l).unwrap(); |
2299 | |
2300 | let status = match res { |
2301 | Action::Jump(s) => s, |
2302 | _ => { |
2303 | //println!("issue"); |
2304 | return; |
2305 | } |
2306 | }; |
2307 | //println!("status {:?}", status); |
2308 | assert!(status != BadTotalSymbols); |
2309 | } |
2310 | |
2311 | #[test ] |
2312 | fn reverse_bits_lookup() { |
2313 | use super::reverse_bits; |
2314 | for i in 0..512 { |
2315 | assert_eq!(reverse_bits(i), i.reverse_bits()); |
2316 | } |
2317 | } |
2318 | } |
2319 | |