| 1 | // pathfinder/geometry/src/basic/point.rs |
| 2 | // |
| 3 | // Copyright © 2019 The Pathfinder Project Developers. |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | // option. This file may not be copied, modified, or distributed |
| 9 | // except according to those terms. |
| 10 | |
| 11 | //! A SIMD-optimized point type. |
| 12 | |
| 13 | use pathfinder_simd::default::{F32x2, F32x4, I32x2}; |
| 14 | use std::hash::{Hash, Hasher}; |
| 15 | use std::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign}; |
| 16 | |
| 17 | /// 2D points with 32-bit floating point coordinates. |
| 18 | #[derive (Clone, Copy, Debug, Default)] |
| 19 | pub struct Vector2F(pub F32x2); |
| 20 | |
| 21 | impl Vector2F { |
| 22 | #[inline ] |
| 23 | pub fn new(x: f32, y: f32) -> Vector2F { |
| 24 | Vector2F(F32x2::new(x, y)) |
| 25 | } |
| 26 | |
| 27 | #[inline ] |
| 28 | pub fn splat(value: f32) -> Vector2F { |
| 29 | Vector2F(F32x2::splat(value)) |
| 30 | } |
| 31 | |
| 32 | #[inline ] |
| 33 | pub fn zero() -> Vector2F { |
| 34 | Vector2F::default() |
| 35 | } |
| 36 | |
| 37 | #[inline ] |
| 38 | pub fn to_3d(self) -> Vector3F { |
| 39 | Vector3F(self.0.to_f32x4().concat_xy_zw(F32x4::new(0.0, 0.0, 0.0, 0.0))) |
| 40 | } |
| 41 | |
| 42 | #[inline ] |
| 43 | pub fn to_4d(self) -> Vector4F { |
| 44 | Vector4F(self.0.to_f32x4().concat_xy_zw(F32x4::new(0.0, 0.0, 0.0, 1.0))) |
| 45 | } |
| 46 | |
| 47 | #[inline ] |
| 48 | pub fn x(self) -> f32 { |
| 49 | self.0[0] |
| 50 | } |
| 51 | |
| 52 | #[inline ] |
| 53 | pub fn y(self) -> f32 { |
| 54 | self.0[1] |
| 55 | } |
| 56 | |
| 57 | #[inline ] |
| 58 | pub fn set_x(&mut self, x: f32) { |
| 59 | self.0[0] = x; |
| 60 | } |
| 61 | |
| 62 | #[inline ] |
| 63 | pub fn set_y(&mut self, y: f32) { |
| 64 | self.0[1] = y; |
| 65 | } |
| 66 | |
| 67 | #[inline ] |
| 68 | pub fn min(self, other: Vector2F) -> Vector2F { |
| 69 | Vector2F(self.0.min(other.0)) |
| 70 | } |
| 71 | |
| 72 | #[inline ] |
| 73 | pub fn max(self, other: Vector2F) -> Vector2F { |
| 74 | Vector2F(self.0.max(other.0)) |
| 75 | } |
| 76 | |
| 77 | #[inline ] |
| 78 | pub fn clamp(self, min_val: Vector2F, max_val: Vector2F) -> Vector2F { |
| 79 | self.max(min_val).min(max_val) |
| 80 | } |
| 81 | |
| 82 | #[inline ] |
| 83 | pub fn det(self, other: Vector2F) -> f32 { |
| 84 | self.x() * other.y() - self.y() * other.x() |
| 85 | } |
| 86 | |
| 87 | #[inline ] |
| 88 | pub fn dot(self, other: Vector2F) -> f32 { |
| 89 | let xy = self.0 * other.0; |
| 90 | xy.x() + xy.y() |
| 91 | } |
| 92 | |
| 93 | #[inline ] |
| 94 | pub fn floor(self) -> Vector2F { |
| 95 | Vector2F(self.0.floor()) |
| 96 | } |
| 97 | |
| 98 | #[inline ] |
| 99 | pub fn ceil(self) -> Vector2F { |
| 100 | Vector2F(self.0.ceil()) |
| 101 | } |
| 102 | |
| 103 | /// Rounds both coordinates to the nearest integer. |
| 104 | #[inline ] |
| 105 | pub fn round(self) -> Vector2F { |
| 106 | Vector2F(self.0.to_i32x2().to_f32x2()) |
| 107 | } |
| 108 | |
| 109 | /// Treats this point as a vector and calculates its squared length. |
| 110 | #[inline ] |
| 111 | pub fn square_length(self) -> f32 { |
| 112 | let squared = self.0 * self.0; |
| 113 | squared[0] + squared[1] |
| 114 | } |
| 115 | |
| 116 | /// Treats this point as a vector and calculates its length. |
| 117 | #[inline ] |
| 118 | pub fn length(self) -> f32 { |
| 119 | f32::sqrt(self.square_length()) |
| 120 | } |
| 121 | |
| 122 | /// Treats this point as a vector and normalizes it. |
| 123 | #[inline ] |
| 124 | pub fn normalize(self) -> Vector2F { |
| 125 | self * (1.0 / self.length()) |
| 126 | } |
| 127 | |
| 128 | /// Swaps y and x. |
| 129 | #[inline ] |
| 130 | pub fn yx(self) -> Vector2F { |
| 131 | Vector2F(self.0.yx()) |
| 132 | } |
| 133 | |
| 134 | /// Returns the coefficient when the given vector `a` is projected onto this one. |
| 135 | /// |
| 136 | /// That is, if this vector is `v` and this function returns `c`, then `proj_v a = cv`. In |
| 137 | /// other words, this function computes `(a⋅v) / (v⋅v)`. |
| 138 | #[inline ] |
| 139 | pub fn projection_coefficient(self, a: Vector2F) -> f32 { |
| 140 | a.dot(self) / self.square_length() |
| 141 | } |
| 142 | |
| 143 | #[inline ] |
| 144 | pub fn is_zero(self) -> bool { |
| 145 | self == Vector2F::zero() |
| 146 | } |
| 147 | |
| 148 | #[inline ] |
| 149 | pub fn lerp(self, other: Vector2F, t: f32) -> Vector2F { |
| 150 | self + (other - self) * t |
| 151 | } |
| 152 | |
| 153 | #[inline ] |
| 154 | pub fn to_i32(self) -> Vector2I { |
| 155 | Vector2I(self.0.to_i32x2()) |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /// A convenience alias for `Vector2F::new()`. |
| 160 | #[inline ] |
| 161 | pub fn vec2f(x: f32, y: f32) -> Vector2F { |
| 162 | Vector2F::new(x, y) |
| 163 | } |
| 164 | |
| 165 | impl PartialEq for Vector2F { |
| 166 | #[inline ] |
| 167 | fn eq(&self, other: &Vector2F) -> bool { |
| 168 | self.0.packed_eq(other.0).all_true() |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | impl Add<Vector2F> for Vector2F { |
| 173 | type Output = Vector2F; |
| 174 | #[inline ] |
| 175 | fn add(self, other: Vector2F) -> Vector2F { |
| 176 | Vector2F(self.0 + other.0) |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | impl Add<f32> for Vector2F { |
| 181 | type Output = Vector2F; |
| 182 | #[inline ] |
| 183 | fn add(self, other: f32) -> Vector2F { |
| 184 | self + Vector2F::splat(other) |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | impl AddAssign<Vector2F> for Vector2F { |
| 189 | #[inline ] |
| 190 | fn add_assign(&mut self, other: Vector2F) { |
| 191 | *self = *self + other |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | impl Sub<Vector2F> for Vector2F { |
| 196 | type Output = Vector2F; |
| 197 | #[inline ] |
| 198 | fn sub(self, other: Vector2F) -> Vector2F { |
| 199 | Vector2F(self.0 - other.0) |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | impl Sub<f32> for Vector2F { |
| 204 | type Output = Vector2F; |
| 205 | #[inline ] |
| 206 | fn sub(self, other: f32) -> Vector2F { |
| 207 | self - Vector2F::splat(other) |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | impl SubAssign<Vector2F> for Vector2F { |
| 212 | #[inline ] |
| 213 | fn sub_assign(&mut self, other: Vector2F) { |
| 214 | *self = *self - other |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | impl Mul<Vector2F> for Vector2F { |
| 219 | type Output = Vector2F; |
| 220 | #[inline ] |
| 221 | fn mul(self, other: Vector2F) -> Vector2F { |
| 222 | Vector2F(self.0 * other.0) |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | impl Mul<f32> for Vector2F { |
| 227 | type Output = Vector2F; |
| 228 | #[inline ] |
| 229 | fn mul(self, other: f32) -> Vector2F { |
| 230 | self * Vector2F::splat(other) |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | impl MulAssign<Vector2F> for Vector2F { |
| 235 | #[inline ] |
| 236 | fn mul_assign(&mut self, other: Vector2F) { |
| 237 | *self = *self * other |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | impl MulAssign<f32> for Vector2F { |
| 242 | #[inline ] |
| 243 | fn mul_assign(&mut self, other: f32) { |
| 244 | *self = *self * other |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | impl Div<Vector2F> for Vector2F { |
| 249 | type Output = Vector2F; |
| 250 | #[inline ] |
| 251 | fn div(self, other: Vector2F) -> Vector2F { |
| 252 | Vector2F(self.0 / other.0) |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | impl Div<f32> for Vector2F { |
| 257 | type Output = Vector2F; |
| 258 | #[inline ] |
| 259 | fn div(self, other: f32) -> Vector2F { |
| 260 | self / Vector2F::splat(other) |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | impl Neg for Vector2F { |
| 265 | type Output = Vector2F; |
| 266 | #[inline ] |
| 267 | fn neg(self) -> Vector2F { |
| 268 | Vector2F(-self.0) |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /// Either a scalar or a `Vector2F`. |
| 273 | /// |
| 274 | /// Scalars will be automatically splatted (i.e. `x` becomes `vec2f(x, x)`). |
| 275 | /// |
| 276 | /// Be judicious with the use of this trait. Only use it if it will aid readability without the |
| 277 | /// potential to introduce bugs. |
| 278 | pub trait IntoVector2F { |
| 279 | fn into_vector_2f(self) -> Vector2F; |
| 280 | } |
| 281 | |
| 282 | impl IntoVector2F for Vector2F { |
| 283 | #[inline ] |
| 284 | fn into_vector_2f(self) -> Vector2F { |
| 285 | self |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | impl IntoVector2F for f32 { |
| 290 | #[inline ] |
| 291 | fn into_vector_2f(self) -> Vector2F { |
| 292 | Vector2F::splat(self) |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /// 2D points with 32-bit signed integer coordinates. |
| 297 | #[derive (Clone, Copy, Debug, Default)] |
| 298 | pub struct Vector2I(pub I32x2); |
| 299 | |
| 300 | impl Vector2I { |
| 301 | #[inline ] |
| 302 | pub fn new(x: i32, y: i32) -> Vector2I { |
| 303 | Vector2I(I32x2::new(x, y)) |
| 304 | } |
| 305 | |
| 306 | #[inline ] |
| 307 | pub fn splat(value: i32) -> Vector2I { |
| 308 | Vector2I(I32x2::splat(value)) |
| 309 | } |
| 310 | |
| 311 | #[inline ] |
| 312 | pub fn zero() -> Vector2I { |
| 313 | Vector2I::default() |
| 314 | } |
| 315 | |
| 316 | #[inline ] |
| 317 | pub fn x(self) -> i32 { |
| 318 | self.0[0] |
| 319 | } |
| 320 | |
| 321 | #[inline ] |
| 322 | pub fn y(self) -> i32 { |
| 323 | self.0[1] |
| 324 | } |
| 325 | |
| 326 | #[inline ] |
| 327 | pub fn set_x(&mut self, x: i32) { |
| 328 | self.0[0] = x; |
| 329 | } |
| 330 | |
| 331 | #[inline ] |
| 332 | pub fn set_y(&mut self, y: i32) { |
| 333 | self.0[1] = y; |
| 334 | } |
| 335 | |
| 336 | #[inline ] |
| 337 | pub fn min(self, other: Vector2I) -> Vector2I { |
| 338 | Vector2I(self.0.min(other.0)) |
| 339 | } |
| 340 | |
| 341 | #[inline ] |
| 342 | pub fn max(self, other: Vector2I) -> Vector2I { |
| 343 | Vector2I(self.0.max(other.0)) |
| 344 | } |
| 345 | |
| 346 | #[inline ] |
| 347 | pub fn to_f32(self) -> Vector2F { |
| 348 | Vector2F(self.0.to_f32x2()) |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /// A convenience alias for `Vector2I::new()`. |
| 353 | #[inline ] |
| 354 | pub fn vec2i(x: i32, y: i32) -> Vector2I { |
| 355 | Vector2I::new(x, y) |
| 356 | } |
| 357 | |
| 358 | impl Add<Vector2I> for Vector2I { |
| 359 | type Output = Vector2I; |
| 360 | #[inline ] |
| 361 | fn add(self, other: Vector2I) -> Vector2I { |
| 362 | Vector2I(self.0 + other.0) |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | impl Add<i32> for Vector2I { |
| 367 | type Output = Vector2I; |
| 368 | #[inline ] |
| 369 | fn add(self, other: i32) -> Vector2I { |
| 370 | self + Vector2I::splat(other) |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | impl AddAssign<Vector2I> for Vector2I { |
| 375 | #[inline ] |
| 376 | fn add_assign(&mut self, other: Vector2I) { |
| 377 | self.0 += other.0 |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | impl Neg for Vector2I { |
| 382 | type Output = Vector2I; |
| 383 | #[inline ] |
| 384 | fn neg(self) -> Vector2I { |
| 385 | Vector2I(-self.0) |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | impl Sub<Vector2I> for Vector2I { |
| 390 | type Output = Vector2I; |
| 391 | #[inline ] |
| 392 | fn sub(self, other: Vector2I) -> Vector2I { |
| 393 | Vector2I(self.0 - other.0) |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | impl Sub<i32> for Vector2I { |
| 398 | type Output = Vector2I; |
| 399 | #[inline ] |
| 400 | fn sub(self, other: i32) -> Vector2I { |
| 401 | self - Vector2I::splat(other) |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | impl Mul<Vector2I> for Vector2I { |
| 406 | type Output = Vector2I; |
| 407 | #[inline ] |
| 408 | fn mul(self, other: Vector2I) -> Vector2I { |
| 409 | Vector2I(self.0 * other.0) |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | impl Mul<i32> for Vector2I { |
| 414 | type Output = Vector2I; |
| 415 | #[inline ] |
| 416 | fn mul(self, other: i32) -> Vector2I { |
| 417 | self * Vector2I::splat(other) |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | impl PartialEq for Vector2I { |
| 422 | #[inline ] |
| 423 | fn eq(&self, other: &Vector2I) -> bool { |
| 424 | self.0.packed_eq(other.0).all_true() |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | impl Eq for Vector2I {} |
| 429 | |
| 430 | impl Hash for Vector2I { |
| 431 | #[inline ] |
| 432 | fn hash<H>(&self, state: &mut H) where H: Hasher { |
| 433 | self.x().hash(state); |
| 434 | self.y().hash(state); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | /// 3D points. |
| 439 | /// |
| 440 | /// The w value in the SIMD vector is always 0.0. |
| 441 | #[derive (Clone, Copy, Debug, Default, PartialEq)] |
| 442 | pub struct Vector3F(pub F32x4); |
| 443 | |
| 444 | impl Vector3F { |
| 445 | #[inline ] |
| 446 | pub fn new(x: f32, y: f32, z: f32) -> Vector3F { |
| 447 | Vector3F(F32x4::new(x, y, z, 0.0)) |
| 448 | } |
| 449 | |
| 450 | #[inline ] |
| 451 | pub fn splat(x: f32) -> Vector3F { |
| 452 | let mut vector = F32x4::splat(x); |
| 453 | vector.set_w(0.0); |
| 454 | Vector3F(vector) |
| 455 | } |
| 456 | |
| 457 | /// Truncates this vector to 2D. |
| 458 | #[inline ] |
| 459 | pub fn to_2d(self) -> Vector2F { |
| 460 | Vector2F(self.0.xy()) |
| 461 | } |
| 462 | |
| 463 | /// Converts this vector to an equivalent 3D homogeneous one with a w component of 1.0. |
| 464 | #[inline ] |
| 465 | pub fn to_4d(self) -> Vector4F { |
| 466 | let mut vector = self.0; |
| 467 | vector.set_w(1.0); |
| 468 | Vector4F(vector) |
| 469 | } |
| 470 | |
| 471 | #[inline ] |
| 472 | pub fn cross(self, other: Vector3F) -> Vector3F { |
| 473 | Vector3F(self.0.yzxw() * other.0.zxyw() - self.0.zxyw() * other.0.yzxw()) |
| 474 | } |
| 475 | |
| 476 | #[inline ] |
| 477 | pub fn square_length(self) -> f32 { |
| 478 | let squared = self.0 * self.0; |
| 479 | squared[0] + squared[1] + squared[2] |
| 480 | } |
| 481 | |
| 482 | #[inline ] |
| 483 | pub fn length(self) -> f32 { |
| 484 | f32::sqrt(self.square_length()) |
| 485 | } |
| 486 | |
| 487 | #[inline ] |
| 488 | pub fn normalize(self) -> Vector3F { |
| 489 | Vector3F(self.0 * F32x4::splat(1.0 / self.length())) |
| 490 | } |
| 491 | |
| 492 | #[inline ] |
| 493 | pub fn x(self) -> f32 { |
| 494 | self.0[0] |
| 495 | } |
| 496 | |
| 497 | #[inline ] |
| 498 | pub fn y(self) -> f32 { |
| 499 | self.0[1] |
| 500 | } |
| 501 | |
| 502 | #[inline ] |
| 503 | pub fn z(self) -> f32 { |
| 504 | self.0[2] |
| 505 | } |
| 506 | |
| 507 | #[inline ] |
| 508 | pub fn scale(self, factor: f32) -> Vector3F { |
| 509 | Vector3F(self.0 * F32x4::splat(factor)) |
| 510 | } |
| 511 | } |
| 512 | |
| 513 | impl Add<Vector3F> for Vector3F { |
| 514 | type Output = Vector3F; |
| 515 | #[inline ] |
| 516 | fn add(self, other: Vector3F) -> Vector3F { |
| 517 | Vector3F(self.0 + other.0) |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | impl AddAssign for Vector3F { |
| 522 | #[inline ] |
| 523 | fn add_assign(&mut self, other: Vector3F) { |
| 524 | self.0 += other.0 |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | impl Neg for Vector3F { |
| 529 | type Output = Vector3F; |
| 530 | #[inline ] |
| 531 | fn neg(self) -> Vector3F { |
| 532 | Vector3F(self.0 * F32x4::new(a:-1.0, b:-1.0, c:-1.0, d:0.0)) |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | impl Sub<Vector3F> for Vector3F { |
| 537 | type Output = Vector3F; |
| 538 | #[inline ] |
| 539 | fn sub(self, other: Vector3F) -> Vector3F { |
| 540 | Vector3F(self.0 - other.0) |
| 541 | } |
| 542 | } |
| 543 | |
| 544 | /// 3D homogeneous points. |
| 545 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 546 | pub struct Vector4F(pub F32x4); |
| 547 | |
| 548 | impl Vector4F { |
| 549 | #[inline ] |
| 550 | pub fn new(x: f32, y: f32, z: f32, w: f32) -> Vector4F { |
| 551 | Vector4F(F32x4::new(x, y, z, w)) |
| 552 | } |
| 553 | |
| 554 | #[inline ] |
| 555 | pub fn splat(value: f32) -> Vector4F { |
| 556 | Vector4F(F32x4::splat(value)) |
| 557 | } |
| 558 | |
| 559 | #[inline ] |
| 560 | pub fn to_2d(self) -> Vector2F { |
| 561 | self.to_3d().to_2d() |
| 562 | } |
| 563 | |
| 564 | /// Performs perspective division to convert this vector to 3D. |
| 565 | #[inline ] |
| 566 | pub fn to_3d(self) -> Vector3F { |
| 567 | let mut vector = self.0 * F32x4::splat(1.0 / self.w()); |
| 568 | vector.set_w(0.0); |
| 569 | Vector3F(vector) |
| 570 | } |
| 571 | |
| 572 | #[inline ] |
| 573 | pub fn x(self) -> f32 { |
| 574 | self.0[0] |
| 575 | } |
| 576 | |
| 577 | #[inline ] |
| 578 | pub fn y(self) -> f32 { |
| 579 | self.0[1] |
| 580 | } |
| 581 | |
| 582 | #[inline ] |
| 583 | pub fn z(self) -> f32 { |
| 584 | self.0[2] |
| 585 | } |
| 586 | |
| 587 | #[inline ] |
| 588 | pub fn w(self) -> f32 { |
| 589 | self.0[3] |
| 590 | } |
| 591 | |
| 592 | #[inline ] |
| 593 | pub fn scale(self, x: f32) -> Vector4F { |
| 594 | let mut factors = F32x4::splat(x); |
| 595 | factors[3] = 1.0; |
| 596 | Vector4F(self.0 * factors) |
| 597 | } |
| 598 | |
| 599 | #[inline ] |
| 600 | pub fn set_x(&mut self, x: f32) { |
| 601 | self.0[0] = x |
| 602 | } |
| 603 | |
| 604 | #[inline ] |
| 605 | pub fn set_y(&mut self, y: f32) { |
| 606 | self.0[1] = y |
| 607 | } |
| 608 | |
| 609 | #[inline ] |
| 610 | pub fn set_z(&mut self, z: f32) { |
| 611 | self.0[2] = z |
| 612 | } |
| 613 | |
| 614 | #[inline ] |
| 615 | pub fn set_w(&mut self, w: f32) { |
| 616 | self.0[3] = w |
| 617 | } |
| 618 | |
| 619 | #[inline ] |
| 620 | pub fn approx_eq(self, other: Vector4F, epsilon: f32) -> bool { |
| 621 | self.0.approx_eq(other.0, epsilon) |
| 622 | } |
| 623 | |
| 624 | /// Checks to see whether this *homogeneous* coordinate equals zero. |
| 625 | /// |
| 626 | /// Note that since this treats the coordinate as a homogeneous coordinate, the `w` is ignored. |
| 627 | // TODO(pcwalton): Optimize with SIMD. |
| 628 | #[inline ] |
| 629 | pub fn is_zero(self) -> bool { |
| 630 | self.x() == 0.0 && self.y() == 0.0 && self.z() == 0.0 |
| 631 | } |
| 632 | |
| 633 | #[inline ] |
| 634 | pub fn lerp(self, other: Vector4F, t: f32) -> Vector4F { |
| 635 | Vector4F(self.0 + (other.0 - self.0) * F32x4::splat(t)) |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | impl Add<Vector4F> for Vector4F { |
| 640 | type Output = Vector4F; |
| 641 | #[inline ] |
| 642 | fn add(self, other: Vector4F) -> Vector4F { |
| 643 | Vector4F(self.0 + other.0) |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | impl AddAssign for Vector4F { |
| 648 | #[inline ] |
| 649 | fn add_assign(&mut self, other: Vector4F) { |
| 650 | self.0 += other.0 |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | impl Mul<Vector4F> for Vector4F { |
| 655 | type Output = Vector4F; |
| 656 | #[inline ] |
| 657 | fn mul(self, other: Vector4F) -> Vector4F { |
| 658 | Vector4F(self.0 * other.0) |
| 659 | } |
| 660 | } |
| 661 | |
| 662 | impl Neg for Vector4F { |
| 663 | type Output = Vector4F; |
| 664 | /// NB: This does not negate w, because that is rarely what you what for homogeneous |
| 665 | /// coordinates. |
| 666 | #[inline ] |
| 667 | fn neg(self) -> Vector4F { |
| 668 | Vector4F(self.0 * F32x4::new(a:-1.0, b:-1.0, c:-1.0, d:1.0)) |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | impl Sub<Vector4F> for Vector4F { |
| 673 | type Output = Vector4F; |
| 674 | #[inline ] |
| 675 | fn sub(self, other: Vector4F) -> Vector4F { |
| 676 | Vector4F(self.0 - other.0) |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | impl Default for Vector4F { |
| 681 | #[inline ] |
| 682 | fn default() -> Vector4F { |
| 683 | let mut point: F32x4 = F32x4::default(); |
| 684 | point.set_w(1.0); |
| 685 | Vector4F(point) |
| 686 | } |
| 687 | } |
| 688 | |