| 1 | /*! |
| 2 | The one-dimensional coordinate system abstraction. |
| 3 | |
| 4 | Plotters build complex coordinate system with a combinator pattern and all the coordinate system is |
| 5 | built from the one dimensional coordinate system. This module defines the fundamental types used by |
| 6 | the one-dimensional coordinate system. |
| 7 | |
| 8 | The key trait for a one dimensional coordinate is [Ranged](trait.Ranged.html). This trait describes a |
| 9 | set of values which served as the 1D coordinate system in Plotters. In order to extend the coordinate system, |
| 10 | the new coordinate spec must implement this trait. |
| 11 | |
| 12 | The following example demonstrate how to make a customized coordinate specification |
| 13 | ``` |
| 14 | use plotters::coord::ranged1d::{Ranged, DefaultFormatting, KeyPointHint}; |
| 15 | use std::ops::Range; |
| 16 | |
| 17 | struct ZeroToOne; |
| 18 | |
| 19 | impl Ranged for ZeroToOne { |
| 20 | type ValueType = f64; |
| 21 | type FormatOption = DefaultFormatting; |
| 22 | |
| 23 | fn map(&self, &v: &f64, pixel_range: (i32, i32)) -> i32 { |
| 24 | let size = pixel_range.1 - pixel_range.0; |
| 25 | let v = v.min(1.0).max(0.0); |
| 26 | ((size as f64) * v).round() as i32 |
| 27 | } |
| 28 | |
| 29 | fn key_points<Hint:KeyPointHint>(&self, hint: Hint) -> Vec<f64> { |
| 30 | if hint.max_num_points() < 3 { |
| 31 | vec![] |
| 32 | } else { |
| 33 | vec![0.0, 0.5, 1.0] |
| 34 | } |
| 35 | } |
| 36 | |
| 37 | fn range(&self) -> Range<f64> { |
| 38 | 0.0..1.0 |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | use plotters::prelude::*; |
| 43 | |
| 44 | let mut buffer = vec![0; 1024 * 768 * 3]; |
| 45 | let root = BitMapBackend::with_buffer(&mut buffer, (1024, 768)).into_drawing_area(); |
| 46 | |
| 47 | let chart = ChartBuilder::on(&root) |
| 48 | .build_cartesian_2d(ZeroToOne, ZeroToOne) |
| 49 | .unwrap(); |
| 50 | |
| 51 | ``` |
| 52 | */ |
| 53 | use std::fmt::Debug; |
| 54 | use std::ops::Range; |
| 55 | |
| 56 | pub(super) mod combinators; |
| 57 | pub(super) mod types; |
| 58 | |
| 59 | mod discrete; |
| 60 | pub use discrete::{DiscreteRanged, IntoSegmentedCoord, SegmentValue, SegmentedCoord}; |
| 61 | |
| 62 | /// Since stable Rust doesn't have specialization, it's very hard to make our own trait that |
| 63 | /// automatically implemented the value formatter. This trait uses as a marker indicates if we |
| 64 | /// should automatically implement the default value formatter based on it's `Debug` trait |
| 65 | pub trait DefaultValueFormatOption {} |
| 66 | |
| 67 | /// This makes the ranged coord uses the default `Debug` based formatting |
| 68 | pub struct DefaultFormatting; |
| 69 | impl DefaultValueFormatOption for DefaultFormatting {} |
| 70 | |
| 71 | /// This markers prevent Plotters to implement the default `Debug` based formatting |
| 72 | pub struct NoDefaultFormatting; |
| 73 | impl DefaultValueFormatOption for NoDefaultFormatting {} |
| 74 | |
| 75 | /// Determine how we can format a value in a coordinate system by default |
| 76 | pub trait ValueFormatter<V> { |
| 77 | /// Format the value |
| 78 | fn format(_value: &V) -> String { |
| 79 | panic!("Unimplemented formatting method" ); |
| 80 | } |
| 81 | /// Determine how we can format a value in a coordinate system by default |
| 82 | fn format_ext(&self, value: &V) -> String { |
| 83 | Self::format(value) |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | // By default the value is formatted by the debug trait |
| 88 | impl<R: Ranged<FormatOption = DefaultFormatting>> ValueFormatter<R::ValueType> for R |
| 89 | where |
| 90 | R::ValueType: Debug, |
| 91 | { |
| 92 | fn format(value: &R::ValueType) -> String { |
| 93 | format!(" {:?}" , value) |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | /// Specify the weight of key points. |
| 98 | pub enum KeyPointWeight { |
| 99 | /// Allows only bold key points |
| 100 | Bold, |
| 101 | /// Allows any key points |
| 102 | Any, |
| 103 | } |
| 104 | |
| 105 | impl KeyPointWeight { |
| 106 | /// Check if this key point weight setting allows light point |
| 107 | pub fn allow_light_points(&self) -> bool { |
| 108 | match self { |
| 109 | KeyPointWeight::Bold => false, |
| 110 | KeyPointWeight::Any => true, |
| 111 | } |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | /// The trait for a hint provided to the key point algorithm used by the coordinate specs. |
| 116 | /// The most important constraint is the `max_num_points` which means the algorithm could emit no more than specific number of key points |
| 117 | /// `weight` is used to determine if this is used as a bold grid line or light grid line |
| 118 | /// `bold_points` returns the max number of corresponding bold grid lines |
| 119 | pub trait KeyPointHint { |
| 120 | /// Returns the max number of key points |
| 121 | fn max_num_points(&self) -> usize; |
| 122 | /// Returns the weight for this hint |
| 123 | fn weight(&self) -> KeyPointWeight; |
| 124 | /// Returns the point number constraint for the bold points |
| 125 | fn bold_points(&self) -> usize { |
| 126 | self.max_num_points() |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | impl KeyPointHint for usize { |
| 131 | fn max_num_points(&self) -> usize { |
| 132 | *self |
| 133 | } |
| 134 | |
| 135 | fn weight(&self) -> KeyPointWeight { |
| 136 | KeyPointWeight::Any |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | /// The key point hint indicates we only need key point for the bold grid lines |
| 141 | pub struct BoldPoints(pub usize); |
| 142 | |
| 143 | impl KeyPointHint for BoldPoints { |
| 144 | fn max_num_points(&self) -> usize { |
| 145 | self.0 |
| 146 | } |
| 147 | |
| 148 | fn weight(&self) -> KeyPointWeight { |
| 149 | KeyPointWeight::Bold |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | /// The key point hint indicates that we are using the key points for the light grid lines |
| 154 | pub struct LightPoints { |
| 155 | bold_points_num: usize, |
| 156 | light_limit: usize, |
| 157 | } |
| 158 | |
| 159 | impl LightPoints { |
| 160 | /// Create a new light key point hind |
| 161 | pub fn new(bold_count: usize, requested: usize) -> Self { |
| 162 | Self { |
| 163 | bold_points_num: bold_count, |
| 164 | light_limit: requested, |
| 165 | } |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | impl KeyPointHint for LightPoints { |
| 170 | fn max_num_points(&self) -> usize { |
| 171 | self.light_limit |
| 172 | } |
| 173 | |
| 174 | fn bold_points(&self) -> usize { |
| 175 | self.bold_points_num |
| 176 | } |
| 177 | |
| 178 | fn weight(&self) -> KeyPointWeight { |
| 179 | KeyPointWeight::Any |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | /// The trait that indicates we have a ordered and ranged value |
| 184 | /// Which is used to describe any 1D axis. |
| 185 | pub trait Ranged { |
| 186 | /// This marker decides if Plotters default [ValueFormatter](trait.ValueFormatter.html) implementation should be used. |
| 187 | /// This associated type can be one of the following two types: |
| 188 | /// - [DefaultFormatting](struct.DefaultFormatting.html) will allow Plotters to automatically impl |
| 189 | /// the formatter based on `Debug` trait, if `Debug` trait is not impl for the `Self::Value`, |
| 190 | /// [ValueFormatter](trait.ValueFormatter.html) will not impl unless you impl it manually. |
| 191 | /// |
| 192 | /// - [NoDefaultFormatting](struct.NoDefaultFormatting.html) Disable the automatic `Debug` |
| 193 | /// based value formatting. Thus you have to impl the |
| 194 | /// [ValueFormatter](trait.ValueFormatter.html) manually. |
| 195 | /// |
| 196 | type FormatOption: DefaultValueFormatOption; |
| 197 | |
| 198 | /// The type of this value in this range specification |
| 199 | type ValueType; |
| 200 | |
| 201 | /// This function maps the value to i32, which is the drawing coordinate |
| 202 | fn map(&self, value: &Self::ValueType, limit: (i32, i32)) -> i32; |
| 203 | |
| 204 | /// This function gives the key points that we can draw a grid based on this |
| 205 | fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType>; |
| 206 | |
| 207 | /// Get the range of this value |
| 208 | fn range(&self) -> Range<Self::ValueType>; |
| 209 | |
| 210 | /// This function provides the on-axis part of its range |
| 211 | #[allow (clippy::range_plus_one)] |
| 212 | fn axis_pixel_range(&self, limit: (i32, i32)) -> Range<i32> { |
| 213 | if limit.0 < limit.1 { |
| 214 | limit.0..limit.1 |
| 215 | } else { |
| 216 | limit.1..limit.0 |
| 217 | } |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /// The trait indicates the ranged value can be map reversely, which means |
| 222 | /// an pixel-based coordinate is given, it's possible to figure out the underlying |
| 223 | /// logic value. |
| 224 | pub trait ReversibleRanged: Ranged { |
| 225 | /// Perform the reverse mapping |
| 226 | fn unmap(&self, input: i32, limit: (i32, i32)) -> Option<Self::ValueType>; |
| 227 | } |
| 228 | |
| 229 | /// The trait for the type that can be converted into a ranged coordinate axis |
| 230 | pub trait AsRangedCoord: Sized { |
| 231 | /// Type to describe a coordinate system |
| 232 | type CoordDescType: Ranged<ValueType = Self::Value> + From<Self>; |
| 233 | /// Type for values in the given coordinate system |
| 234 | type Value; |
| 235 | } |
| 236 | |
| 237 | impl<T> AsRangedCoord for T |
| 238 | where |
| 239 | T: Ranged, |
| 240 | { |
| 241 | type CoordDescType = T; |
| 242 | type Value = T::ValueType; |
| 243 | } |
| 244 | |