| 1 | use crate::BitMapBackend; |
| 2 | use plotters_backend::DrawingBackend; |
| 3 | |
| 4 | #[inline (always)] |
| 5 | pub(super) fn blend(prev: &mut u8, new: u8, a: u64) { |
| 6 | if new > *prev { |
| 7 | *prev += (u64::from(new - *prev) * a / 256) as u8 |
| 8 | } else { |
| 9 | *prev -= (u64::from(*prev - new) * a / 256) as u8 |
| 10 | } |
| 11 | } |
| 12 | |
| 13 | /// The trait that describes some details about a particular pixel format |
| 14 | pub trait PixelFormat: Sized { |
| 15 | /// Number of bytes per pixel |
| 16 | const PIXEL_SIZE: usize; |
| 17 | |
| 18 | /// Number of effective bytes per pixel, e.g. for BGRX pixel format, the size of pixel |
| 19 | /// is 4 but the effective size is 3, since the 4th byte isn't used |
| 20 | const EFFECTIVE_PIXEL_SIZE: usize; |
| 21 | |
| 22 | /// Encoding a pixel and returns the idx-th byte for the pixel |
| 23 | fn byte_at(r: u8, g: u8, b: u8, a: u64, idx: usize) -> u8; |
| 24 | |
| 25 | /// Decode a pixel at the given location |
| 26 | fn decode_pixel(data: &[u8]) -> (u8, u8, u8, u64); |
| 27 | |
| 28 | /// The fast alpha blending algorithm for this pixel format |
| 29 | /// |
| 30 | /// - `target`: The target bitmap backend |
| 31 | /// - `upper_left`: The upper-left coord for the rect |
| 32 | /// - `bottom_right`: The bottom-right coord for the rect |
| 33 | /// - `r`, `g`, `b`, `a`: The blending color and alpha value |
| 34 | fn blend_rect_fast( |
| 35 | target: &mut BitMapBackend<'_, Self>, |
| 36 | upper_left: (i32, i32), |
| 37 | bottom_right: (i32, i32), |
| 38 | r: u8, |
| 39 | g: u8, |
| 40 | b: u8, |
| 41 | a: f64, |
| 42 | ); |
| 43 | |
| 44 | /// The fast vertical line filling algorithm |
| 45 | /// |
| 46 | /// - `target`: The target bitmap backend |
| 47 | /// - `x`: the X coordinate for the entire line |
| 48 | /// - `ys`: The range of y coord |
| 49 | /// - `r`, `g`, `b`: The blending color and alpha value |
| 50 | fn fill_vertical_line_fast( |
| 51 | target: &mut BitMapBackend<'_, Self>, |
| 52 | x: i32, |
| 53 | ys: (i32, i32), |
| 54 | r: u8, |
| 55 | g: u8, |
| 56 | b: u8, |
| 57 | ) { |
| 58 | let (w, h) = target.get_size(); |
| 59 | let w = w as i32; |
| 60 | let h = h as i32; |
| 61 | |
| 62 | // Make sure we are in the range |
| 63 | if x < 0 || x >= w { |
| 64 | return; |
| 65 | } |
| 66 | |
| 67 | let dst = target.get_raw_pixel_buffer(); |
| 68 | let (mut y0, mut y1) = ys; |
| 69 | if y0 > y1 { |
| 70 | std::mem::swap(&mut y0, &mut y1); |
| 71 | } |
| 72 | // And check the y axis isn't out of bound |
| 73 | y0 = y0.max(0); |
| 74 | y1 = y1.min(h - 1); |
| 75 | // This is ok because once y0 > y1, there won't be any iteration anymore |
| 76 | for y in y0..=y1 { |
| 77 | for idx in 0..Self::EFFECTIVE_PIXEL_SIZE { |
| 78 | dst[(y * w + x) as usize * Self::PIXEL_SIZE + idx] = Self::byte_at(r, g, b, 0, idx); |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | /// The fast rectangle filling algorithm |
| 84 | /// |
| 85 | /// - `target`: The target bitmap backend |
| 86 | /// - `upper_left`: The upper-left coord for the rect |
| 87 | /// - `bottom_right`: The bottom-right coord for the rect |
| 88 | /// - `r`, `g`, `b`: The filling color |
| 89 | fn fill_rect_fast( |
| 90 | target: &mut BitMapBackend<'_, Self>, |
| 91 | upper_left: (i32, i32), |
| 92 | bottom_right: (i32, i32), |
| 93 | r: u8, |
| 94 | g: u8, |
| 95 | b: u8, |
| 96 | ); |
| 97 | |
| 98 | #[inline (always)] |
| 99 | /// Drawing a single pixel in this format |
| 100 | /// |
| 101 | /// - `target`: The target bitmap backend |
| 102 | /// - `point`: The coord of the point |
| 103 | /// - `r`, `g`, `b`: The filling color |
| 104 | /// - `alpha`: The alpha value |
| 105 | fn draw_pixel( |
| 106 | target: &mut BitMapBackend<'_, Self>, |
| 107 | point: (i32, i32), |
| 108 | (r, g, b): (u8, u8, u8), |
| 109 | alpha: f64, |
| 110 | ) { |
| 111 | let (x, y) = (point.0 as usize, point.1 as usize); |
| 112 | let (w, _) = target.get_size(); |
| 113 | let buf = target.get_raw_pixel_buffer(); |
| 114 | let w = w as usize; |
| 115 | let base = (y * w + x) * Self::PIXEL_SIZE; |
| 116 | |
| 117 | if base < buf.len() { |
| 118 | unsafe { |
| 119 | if alpha >= 1.0 - 1.0 / 256.0 { |
| 120 | for idx in 0..Self::EFFECTIVE_PIXEL_SIZE { |
| 121 | *buf.get_unchecked_mut(base + idx) = Self::byte_at(r, g, b, 0, idx); |
| 122 | } |
| 123 | } else { |
| 124 | if alpha <= 0.0 { |
| 125 | return; |
| 126 | } |
| 127 | |
| 128 | let alpha = (alpha * 256.0).floor() as u64; |
| 129 | for idx in 0..Self::EFFECTIVE_PIXEL_SIZE { |
| 130 | blend( |
| 131 | buf.get_unchecked_mut(base + idx), |
| 132 | Self::byte_at(r, g, b, 0, idx), |
| 133 | alpha, |
| 134 | ); |
| 135 | } |
| 136 | } |
| 137 | } |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | /// Indicates if this pixel format can be saved as image. |
| 142 | /// Note: Currently we only using RGB pixel format in the image crate, but later we may lift |
| 143 | /// this restriction |
| 144 | /// |
| 145 | /// - `returns`: If the image can be saved as image file |
| 146 | fn can_be_saved() -> bool { |
| 147 | false |
| 148 | } |
| 149 | } |
| 150 | |