1 | // Copyright 2018 Developers of the Rand project. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
6 | // option. This file may not be copied, modified, or distributed |
7 | // except according to those terms. |
8 | |
9 | //! Helper functions for implementing `RngCore` functions. |
10 | //! |
11 | //! For cross-platform reproducibility, these functions all use Little Endian: |
12 | //! least-significant part first. For example, `next_u64_via_u32` takes `u32` |
13 | //! values `x, y`, then outputs `(y << 32) | x`. To implement `next_u32` |
14 | //! from `next_u64` in little-endian order, one should use `next_u64() as u32`. |
15 | //! |
16 | //! Byte-swapping (like the std `to_le` functions) is only needed to convert |
17 | //! to/from byte sequences, and since its purpose is reproducibility, |
18 | //! non-reproducible sources (e.g. `OsRng`) need not bother with it. |
19 | |
20 | use crate::RngCore; |
21 | use core::cmp::min; |
22 | use zerocopy::{Immutable, IntoBytes}; |
23 | |
24 | /// Implement `next_u64` via `next_u32`, little-endian order. |
25 | pub fn next_u64_via_u32<R: RngCore + ?Sized>(rng: &mut R) -> u64 { |
26 | // Use LE; we explicitly generate one value before the next. |
27 | let x = u64::from(rng.next_u32()); |
28 | let y = u64::from(rng.next_u32()); |
29 | (y << 32) | x |
30 | } |
31 | |
32 | /// Implement `fill_bytes` via `next_u64` and `next_u32`, little-endian order. |
33 | /// |
34 | /// The fastest way to fill a slice is usually to work as long as possible with |
35 | /// integers. That is why this method mostly uses `next_u64`, and only when |
36 | /// there are 4 or less bytes remaining at the end of the slice it uses |
37 | /// `next_u32` once. |
38 | pub fn fill_bytes_via_next<R: RngCore + ?Sized>(rng: &mut R, dest: &mut [u8]) { |
39 | let mut left: &mut [u8] = dest; |
40 | while left.len() >= 8 { |
41 | let (l, r: &mut [u8]) = { left }.split_at_mut(8); |
42 | left = r; |
43 | let chunk: [u8; 8] = rng.next_u64().to_le_bytes(); |
44 | l.copy_from_slice(&chunk); |
45 | } |
46 | let n = left.len(); |
47 | if n > 4 { |
48 | let chunk: [u8; 8] = rng.next_u64().to_le_bytes(); |
49 | left.copy_from_slice(&chunk[..n]); |
50 | } else if n > 0 { |
51 | let chunk: [u8; 4] = rng.next_u32().to_le_bytes(); |
52 | left.copy_from_slice(&chunk[..n]); |
53 | } |
54 | } |
55 | |
56 | trait Observable: IntoBytes + Immutable + Copy { |
57 | fn to_le(self) -> Self; |
58 | } |
59 | impl Observable for u32 { |
60 | fn to_le(self) -> Self { |
61 | self.to_le() |
62 | } |
63 | } |
64 | impl Observable for u64 { |
65 | fn to_le(self) -> Self { |
66 | self.to_le() |
67 | } |
68 | } |
69 | |
70 | /// Fill dest from src |
71 | /// |
72 | /// Returns `(n, byte_len)`. `src[..n]` is consumed (and possibly mutated), |
73 | /// `dest[..byte_len]` is filled. `src[n..]` and `dest[byte_len..]` are left |
74 | /// unaltered. |
75 | fn fill_via_chunks<T: Observable>(src: &mut [T], dest: &mut [u8]) -> (usize, usize) { |
76 | let size = core::mem::size_of::<T>(); |
77 | let byte_len: usize = min(core::mem::size_of_val(src), dest.len()); |
78 | let num_chunks: usize = (byte_len + size - 1) / size; |
79 | |
80 | // Byte-swap for portability of results. This must happen before copying |
81 | // since the size of dest is not guaranteed to be a multiple of T or to be |
82 | // sufficiently aligned. |
83 | if cfg!(target_endian = "big" ) { |
84 | for x in &mut src[..num_chunks] { |
85 | *x = x.to_le(); |
86 | } |
87 | } |
88 | |
89 | dest[..byte_len].copy_from_slice(&<[T]>::as_bytes(&src[..num_chunks])[..byte_len]); |
90 | |
91 | (num_chunks, byte_len) |
92 | } |
93 | |
94 | /// Implement `fill_bytes` by reading chunks from the output buffer of a block |
95 | /// based RNG. |
96 | /// |
97 | /// The return values are `(consumed_u32, filled_u8)`. |
98 | /// |
99 | /// On big-endian systems, endianness of `src[..consumed_u32]` values is |
100 | /// swapped. No other adjustments to `src` are made. |
101 | /// |
102 | /// `filled_u8` is the number of filled bytes in `dest`, which may be less than |
103 | /// the length of `dest`. |
104 | /// `consumed_u32` is the number of words consumed from `src`, which is the same |
105 | /// as `filled_u8 / 4` rounded up. |
106 | /// |
107 | /// # Example |
108 | /// (from `IsaacRng`) |
109 | /// |
110 | /// ```ignore |
111 | /// fn fill_bytes(&mut self, dest: &mut [u8]) { |
112 | /// let mut read_len = 0; |
113 | /// while read_len < dest.len() { |
114 | /// if self.index >= self.rsl.len() { |
115 | /// self.isaac(); |
116 | /// } |
117 | /// |
118 | /// let (consumed_u32, filled_u8) = |
119 | /// impls::fill_via_u32_chunks(&mut self.rsl[self.index..], |
120 | /// &mut dest[read_len..]); |
121 | /// |
122 | /// self.index += consumed_u32; |
123 | /// read_len += filled_u8; |
124 | /// } |
125 | /// } |
126 | /// ``` |
127 | pub fn fill_via_u32_chunks(src: &mut [u32], dest: &mut [u8]) -> (usize, usize) { |
128 | fill_via_chunks(src, dest) |
129 | } |
130 | |
131 | /// Implement `fill_bytes` by reading chunks from the output buffer of a block |
132 | /// based RNG. |
133 | /// |
134 | /// The return values are `(consumed_u64, filled_u8)`. |
135 | /// |
136 | /// On big-endian systems, endianness of `src[..consumed_u64]` values is |
137 | /// swapped. No other adjustments to `src` are made. |
138 | /// |
139 | /// `filled_u8` is the number of filled bytes in `dest`, which may be less than |
140 | /// the length of `dest`. |
141 | /// `consumed_u64` is the number of words consumed from `src`, which is the same |
142 | /// as `filled_u8 / 8` rounded up. |
143 | /// |
144 | /// See `fill_via_u32_chunks` for an example. |
145 | pub fn fill_via_u64_chunks(src: &mut [u64], dest: &mut [u8]) -> (usize, usize) { |
146 | fill_via_chunks(src, dest) |
147 | } |
148 | |
149 | /// Implement `next_u32` via `fill_bytes`, little-endian order. |
150 | pub fn next_u32_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u32 { |
151 | let mut buf: [i32; 4] = [0; 4]; |
152 | rng.fill_bytes(&mut buf); |
153 | u32::from_le_bytes(buf) |
154 | } |
155 | |
156 | /// Implement `next_u64` via `fill_bytes`, little-endian order. |
157 | pub fn next_u64_via_fill<R: RngCore + ?Sized>(rng: &mut R) -> u64 { |
158 | let mut buf: [i32; 8] = [0; 8]; |
159 | rng.fill_bytes(&mut buf); |
160 | u64::from_le_bytes(buf) |
161 | } |
162 | |
163 | #[cfg (test)] |
164 | mod test { |
165 | use super::*; |
166 | |
167 | #[test] |
168 | fn test_fill_via_u32_chunks() { |
169 | let src_orig = [1, 2, 3]; |
170 | |
171 | let mut src = src_orig; |
172 | let mut dst = [0u8; 11]; |
173 | assert_eq!(fill_via_u32_chunks(&mut src, &mut dst), (3, 11)); |
174 | assert_eq!(dst, [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0]); |
175 | |
176 | let mut src = src_orig; |
177 | let mut dst = [0u8; 13]; |
178 | assert_eq!(fill_via_u32_chunks(&mut src, &mut dst), (3, 12)); |
179 | assert_eq!(dst, [1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0]); |
180 | |
181 | let mut src = src_orig; |
182 | let mut dst = [0u8; 5]; |
183 | assert_eq!(fill_via_u32_chunks(&mut src, &mut dst), (2, 5)); |
184 | assert_eq!(dst, [1, 0, 0, 0, 2]); |
185 | } |
186 | |
187 | #[test] |
188 | fn test_fill_via_u64_chunks() { |
189 | let src_orig = [1, 2]; |
190 | |
191 | let mut src = src_orig; |
192 | let mut dst = [0u8; 11]; |
193 | assert_eq!(fill_via_u64_chunks(&mut src, &mut dst), (2, 11)); |
194 | assert_eq!(dst, [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0]); |
195 | |
196 | let mut src = src_orig; |
197 | let mut dst = [0u8; 17]; |
198 | assert_eq!(fill_via_u64_chunks(&mut src, &mut dst), (2, 16)); |
199 | assert_eq!(dst, [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0]); |
200 | |
201 | let mut src = src_orig; |
202 | let mut dst = [0u8; 5]; |
203 | assert_eq!(fill_via_u64_chunks(&mut src, &mut dst), (1, 5)); |
204 | assert_eq!(dst, [1, 0, 0, 0, 0]); |
205 | } |
206 | } |
207 | |