1 | // Copyright 2018 The Fuchsia Authors |
2 | // |
3 | // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
4 | // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
5 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
6 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
7 | // This file may not be copied, modified, or distributed except according to |
8 | // those terms. |
9 | |
10 | // After updating the following doc comment, make sure to run the following |
11 | // command to update `README.md` based on its contents: |
12 | // |
13 | // cargo -q run --manifest-path tools/Cargo.toml -p generate-readme > README.md |
14 | |
15 | //! *<span style="font-size: 100%; color:grey;">Need more out of zerocopy? |
16 | //! Submit a [customer request issue][customer-request-issue]!</span>* |
17 | //! |
18 | //! ***<span style="font-size: 140%">Fast, safe, <span |
19 | //! style="color:red;">compile error</span>. Pick two.</span>*** |
20 | //! |
21 | //! Zerocopy makes zero-cost memory manipulation effortless. We write `unsafe` |
22 | //! so you don't have to. |
23 | //! |
24 | //! *Thanks for using zerocopy 0.8! For an overview of what changes from 0.7, |
25 | //! check out our [release notes][release-notes], which include a step-by-step |
26 | //! guide for upgrading from 0.7.* |
27 | //! |
28 | //! *Have questions? Need help? Ask the maintainers on [GitHub][github-q-a] or |
29 | //! on [Discord][discord]!* |
30 | //! |
31 | //! [customer-request-issue]: https://github.com/google/zerocopy/issues/new/choose |
32 | //! [release-notes]: https://github.com/google/zerocopy/discussions/1680 |
33 | //! [github-q-a]: https://github.com/google/zerocopy/discussions/categories/q-a |
34 | //! [discord]: https://discord.gg/MAvWH2R6zk |
35 | //! |
36 | //! # Overview |
37 | //! |
38 | //! ##### Conversion Traits |
39 | //! |
40 | //! Zerocopy provides four derivable traits for zero-cost conversions: |
41 | //! - [`TryFromBytes`] indicates that a type may safely be converted from |
42 | //! certain byte sequences (conditional on runtime checks) |
43 | //! - [`FromZeros`] indicates that a sequence of zero bytes represents a valid |
44 | //! instance of a type |
45 | //! - [`FromBytes`] indicates that a type may safely be converted from an |
46 | //! arbitrary byte sequence |
47 | //! - [`IntoBytes`] indicates that a type may safely be converted *to* a byte |
48 | //! sequence |
49 | //! |
50 | //! These traits support sized types, slices, and [slice DSTs][slice-dsts]. |
51 | //! |
52 | //! [slice-dsts]: KnownLayout#dynamically-sized-types |
53 | //! |
54 | //! ##### Marker Traits |
55 | //! |
56 | //! Zerocopy provides three derivable marker traits that do not provide any |
57 | //! functionality themselves, but are required to call certain methods provided |
58 | //! by the conversion traits: |
59 | //! - [`KnownLayout`] indicates that zerocopy can reason about certain layout |
60 | //! qualities of a type |
61 | //! - [`Immutable`] indicates that a type is free from interior mutability, |
62 | //! except by ownership or an exclusive (`&mut`) borrow |
63 | //! - [`Unaligned`] indicates that a type's alignment requirement is 1 |
64 | //! |
65 | //! You should generally derive these marker traits whenever possible. |
66 | //! |
67 | //! ##### Conversion Macros |
68 | //! |
69 | //! Zerocopy provides six macros for safe casting between types: |
70 | //! |
71 | //! - ([`try_`][try_transmute])[`transmute`] (conditionally) converts a value of |
72 | //! one type to a value of another type of the same size |
73 | //! - ([`try_`][try_transmute_mut])[`transmute_mut`] (conditionally) converts a |
74 | //! mutable reference of one type to a mutable reference of another type of |
75 | //! the same size |
76 | //! - ([`try_`][try_transmute_ref])[`transmute_ref`] (conditionally) converts a |
77 | //! mutable or immutable reference of one type to an immutable reference of |
78 | //! another type of the same size |
79 | //! |
80 | //! These macros perform *compile-time* size and alignment checks, meaning that |
81 | //! unconditional casts have zero cost at runtime. Conditional casts do not need |
82 | //! to validate size or alignment runtime, but do need to validate contents. |
83 | //! |
84 | //! These macros cannot be used in generic contexts. For generic conversions, |
85 | //! use the methods defined by the [conversion traits](#conversion-traits). |
86 | //! |
87 | //! ##### Byteorder-Aware Numerics |
88 | //! |
89 | //! Zerocopy provides byte-order aware integer types that support these |
90 | //! conversions; see the [`byteorder`] module. These types are especially useful |
91 | //! for network parsing. |
92 | //! |
93 | //! # Cargo Features |
94 | //! |
95 | //! - **`alloc`** |
96 | //! By default, `zerocopy` is `no_std`. When the `alloc` feature is enabled, |
97 | //! the `alloc` crate is added as a dependency, and some allocation-related |
98 | //! functionality is added. |
99 | //! |
100 | //! - **`std`** |
101 | //! By default, `zerocopy` is `no_std`. When the `std` feature is enabled, the |
102 | //! `std` crate is added as a dependency (ie, `no_std` is disabled), and |
103 | //! support for some `std` types is added. `std` implies `alloc`. |
104 | //! |
105 | //! - **`derive`** |
106 | //! Provides derives for the core marker traits via the `zerocopy-derive` |
107 | //! crate. These derives are re-exported from `zerocopy`, so it is not |
108 | //! necessary to depend on `zerocopy-derive` directly. |
109 | //! |
110 | //! However, you may experience better compile times if you instead directly |
111 | //! depend on both `zerocopy` and `zerocopy-derive` in your `Cargo.toml`, |
112 | //! since doing so will allow Rust to compile these crates in parallel. To do |
113 | //! so, do *not* enable the `derive` feature, and list both dependencies in |
114 | //! your `Cargo.toml` with the same leading non-zero version number; e.g: |
115 | //! |
116 | //! ```toml |
117 | //! [dependencies] |
118 | //! zerocopy = "0.X" |
119 | //! zerocopy-derive = "0.X" |
120 | //! ``` |
121 | //! |
122 | //! To avoid the risk of [duplicate import errors][duplicate-import-errors] if |
123 | //! one of your dependencies enables zerocopy's `derive` feature, import |
124 | //! derives as `use zerocopy_derive::*` rather than by name (e.g., `use |
125 | //! zerocopy_derive::FromBytes`). |
126 | //! |
127 | //! - **`simd`** |
128 | //! When the `simd` feature is enabled, `FromZeros`, `FromBytes`, and |
129 | //! `IntoBytes` impls are emitted for all stable SIMD types which exist on the |
130 | //! target platform. Note that the layout of SIMD types is not yet stabilized, |
131 | //! so these impls may be removed in the future if layout changes make them |
132 | //! invalid. For more information, see the Unsafe Code Guidelines Reference |
133 | //! page on the [layout of packed SIMD vectors][simd-layout]. |
134 | //! |
135 | //! - **`simd-nightly`** |
136 | //! Enables the `simd` feature and adds support for SIMD types which are only |
137 | //! available on nightly. Since these types are unstable, support for any type |
138 | //! may be removed at any point in the future. |
139 | //! |
140 | //! - **`float-nightly`** |
141 | //! Adds support for the unstable `f16` and `f128` types. These types are |
142 | //! not yet fully implemented and may not be supported on all platforms. |
143 | //! |
144 | //! [duplicate-import-errors]: https://github.com/google/zerocopy/issues/1587 |
145 | //! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html |
146 | //! |
147 | //! # Security Ethos |
148 | //! |
149 | //! Zerocopy is expressly designed for use in security-critical contexts. We |
150 | //! strive to ensure that that zerocopy code is sound under Rust's current |
151 | //! memory model, and *any future memory model*. We ensure this by: |
152 | //! - **...not 'guessing' about Rust's semantics.** |
153 | //! We annotate `unsafe` code with a precise rationale for its soundness that |
154 | //! cites a relevant section of Rust's official documentation. When Rust's |
155 | //! documented semantics are unclear, we work with the Rust Operational |
156 | //! Semantics Team to clarify Rust's documentation. |
157 | //! - **...rigorously testing our implementation.** |
158 | //! We run tests using [Miri], ensuring that zerocopy is sound across a wide |
159 | //! array of supported target platforms of varying endianness and pointer |
160 | //! width, and across both current and experimental memory models of Rust. |
161 | //! - **...formally proving the correctness of our implementation.** |
162 | //! We apply formal verification tools like [Kani][kani] to prove zerocopy's |
163 | //! correctness. |
164 | //! |
165 | //! For more information, see our full [soundness policy]. |
166 | //! |
167 | //! [Miri]: https://github.com/rust-lang/miri |
168 | //! [Kani]: https://github.com/model-checking/kani |
169 | //! [soundness policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#soundness |
170 | //! |
171 | //! # Relationship to Project Safe Transmute |
172 | //! |
173 | //! [Project Safe Transmute] is an official initiative of the Rust Project to |
174 | //! develop language-level support for safer transmutation. The Project consults |
175 | //! with crates like zerocopy to identify aspects of safer transmutation that |
176 | //! would benefit from compiler support, and has developed an [experimental, |
177 | //! compiler-supported analysis][mcp-transmutability] which determines whether, |
178 | //! for a given type, any value of that type may be soundly transmuted into |
179 | //! another type. Once this functionality is sufficiently mature, zerocopy |
180 | //! intends to replace its internal transmutability analysis (implemented by our |
181 | //! custom derives) with the compiler-supported one. This change will likely be |
182 | //! an implementation detail that is invisible to zerocopy's users. |
183 | //! |
184 | //! Project Safe Transmute will not replace the need for most of zerocopy's |
185 | //! higher-level abstractions. The experimental compiler analysis is a tool for |
186 | //! checking the soundness of `unsafe` code, not a tool to avoid writing |
187 | //! `unsafe` code altogether. For the foreseeable future, crates like zerocopy |
188 | //! will still be required in order to provide higher-level abstractions on top |
189 | //! of the building block provided by Project Safe Transmute. |
190 | //! |
191 | //! [Project Safe Transmute]: https://rust-lang.github.io/rfcs/2835-project-safe-transmute.html |
192 | //! [mcp-transmutability]: https://github.com/rust-lang/compiler-team/issues/411 |
193 | //! |
194 | //! # MSRV |
195 | //! |
196 | //! See our [MSRV policy]. |
197 | //! |
198 | //! [MSRV policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#msrv |
199 | //! |
200 | //! # Changelog |
201 | //! |
202 | //! Zerocopy uses [GitHub Releases]. |
203 | //! |
204 | //! [GitHub Releases]: https://github.com/google/zerocopy/releases |
205 | |
206 | // Sometimes we want to use lints which were added after our MSRV. |
207 | // `unknown_lints` is `warn` by default and we deny warnings in CI, so without |
208 | // this attribute, any unknown lint would cause a CI failure when testing with |
209 | // our MSRV. |
210 | #![allow (unknown_lints, non_local_definitions, unreachable_patterns)] |
211 | #![deny (renamed_and_removed_lints)] |
212 | #![deny ( |
213 | anonymous_parameters, |
214 | deprecated_in_future, |
215 | late_bound_lifetime_arguments, |
216 | missing_copy_implementations, |
217 | missing_debug_implementations, |
218 | missing_docs, |
219 | path_statements, |
220 | patterns_in_fns_without_body, |
221 | rust_2018_idioms, |
222 | trivial_numeric_casts, |
223 | unreachable_pub, |
224 | unsafe_op_in_unsafe_fn, |
225 | unused_extern_crates, |
226 | // We intentionally choose not to deny `unused_qualifications`. When items |
227 | // are added to the prelude (e.g., `core::mem::size_of`), this has the |
228 | // consequence of making some uses trigger this lint on the latest toolchain |
229 | // (e.g., `mem::size_of`), but fixing it (e.g. by replacing with `size_of`) |
230 | // does not work on older toolchains. |
231 | // |
232 | // We tested a more complicated fix in #1413, but ultimately decided that, |
233 | // since this lint is just a minor style lint, the complexity isn't worth it |
234 | // - it's fine to occasionally have unused qualifications slip through, |
235 | // especially since these do not affect our user-facing API in any way. |
236 | variant_size_differences |
237 | )] |
238 | #![cfg_attr ( |
239 | __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, |
240 | deny(fuzzy_provenance_casts, lossy_provenance_casts) |
241 | )] |
242 | #![deny ( |
243 | clippy::all, |
244 | clippy::alloc_instead_of_core, |
245 | clippy::arithmetic_side_effects, |
246 | clippy::as_underscore, |
247 | clippy::assertions_on_result_states, |
248 | clippy::as_conversions, |
249 | clippy::correctness, |
250 | clippy::dbg_macro, |
251 | clippy::decimal_literal_representation, |
252 | clippy::double_must_use, |
253 | clippy::get_unwrap, |
254 | clippy::indexing_slicing, |
255 | clippy::missing_inline_in_public_items, |
256 | clippy::missing_safety_doc, |
257 | clippy::must_use_candidate, |
258 | clippy::must_use_unit, |
259 | clippy::obfuscated_if_else, |
260 | clippy::perf, |
261 | clippy::print_stdout, |
262 | clippy::return_self_not_must_use, |
263 | clippy::std_instead_of_core, |
264 | clippy::style, |
265 | clippy::suspicious, |
266 | clippy::todo, |
267 | clippy::undocumented_unsafe_blocks, |
268 | clippy::unimplemented, |
269 | clippy::unnested_or_patterns, |
270 | clippy::unwrap_used, |
271 | clippy::use_debug |
272 | )] |
273 | #![allow (clippy::type_complexity)] |
274 | #![deny ( |
275 | rustdoc::bare_urls, |
276 | rustdoc::broken_intra_doc_links, |
277 | rustdoc::invalid_codeblock_attributes, |
278 | rustdoc::invalid_html_tags, |
279 | rustdoc::invalid_rust_codeblocks, |
280 | rustdoc::missing_crate_level_docs, |
281 | rustdoc::private_intra_doc_links |
282 | )] |
283 | // In test code, it makes sense to weight more heavily towards concise, readable |
284 | // code over correct or debuggable code. |
285 | #![cfg_attr (any(test, kani), allow( |
286 | // In tests, you get line numbers and have access to source code, so panic |
287 | // messages are less important. You also often unwrap a lot, which would |
288 | // make expect'ing instead very verbose. |
289 | clippy::unwrap_used, |
290 | // In tests, there's no harm to "panic risks" - the worst that can happen is |
291 | // that your test will fail, and you'll fix it. By contrast, panic risks in |
292 | // production code introduce the possibly of code panicking unexpectedly "in |
293 | // the field". |
294 | clippy::arithmetic_side_effects, |
295 | clippy::indexing_slicing, |
296 | ))] |
297 | #![cfg_attr (not(any(test, feature = "std" )), no_std)] |
298 | #![cfg_attr ( |
299 | all(feature = "simd-nightly" , any(target_arch = "x86" , target_arch = "x86_64" )), |
300 | feature(stdarch_x86_avx512) |
301 | )] |
302 | #![cfg_attr ( |
303 | all(feature = "simd-nightly" , target_arch = "arm" ), |
304 | feature(stdarch_arm_dsp, stdarch_arm_neon_intrinsics) |
305 | )] |
306 | #![cfg_attr ( |
307 | all(feature = "simd-nightly" , any(target_arch = "powerpc" , target_arch = "powerpc64" )), |
308 | feature(stdarch_powerpc) |
309 | )] |
310 | #![cfg_attr (feature = "float-nightly" , feature(f16, f128))] |
311 | #![cfg_attr (doc_cfg, feature(doc_cfg))] |
312 | #![cfg_attr ( |
313 | __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, |
314 | feature(layout_for_ptr, coverage_attribute) |
315 | )] |
316 | |
317 | // This is a hack to allow zerocopy-derive derives to work in this crate. They |
318 | // assume that zerocopy is linked as an extern crate, so they access items from |
319 | // it as `zerocopy::Xxx`. This makes that still work. |
320 | #[cfg (any(feature = "derive" , test))] |
321 | extern crate self as zerocopy; |
322 | |
323 | #[doc (hidden)] |
324 | #[macro_use ] |
325 | pub mod util; |
326 | |
327 | pub mod byte_slice; |
328 | pub mod byteorder; |
329 | mod deprecated; |
330 | // This module is `pub` so that zerocopy's error types and error handling |
331 | // documentation is grouped together in a cohesive module. In practice, we |
332 | // expect most users to use the re-export of `error`'s items to avoid identifier |
333 | // stuttering. |
334 | pub mod error; |
335 | mod impls; |
336 | #[doc (hidden)] |
337 | pub mod layout; |
338 | mod macros; |
339 | #[doc (hidden)] |
340 | pub mod pointer; |
341 | mod r#ref; |
342 | // TODO(#252): If we make this pub, come up with a better name. |
343 | mod wrappers; |
344 | |
345 | pub use crate::byte_slice::*; |
346 | pub use crate::byteorder::*; |
347 | pub use crate::error::*; |
348 | pub use crate::r#ref::*; |
349 | pub use crate::wrappers::*; |
350 | |
351 | use core::{ |
352 | cell::UnsafeCell, |
353 | cmp::Ordering, |
354 | fmt::{self, Debug, Display, Formatter}, |
355 | hash::Hasher, |
356 | marker::PhantomData, |
357 | mem::{self, ManuallyDrop, MaybeUninit as CoreMaybeUninit}, |
358 | num::{ |
359 | NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128, |
360 | NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping, |
361 | }, |
362 | ops::{Deref, DerefMut}, |
363 | ptr::{self, NonNull}, |
364 | slice, |
365 | }; |
366 | |
367 | #[cfg (feature = "std" )] |
368 | use std::io; |
369 | |
370 | use crate::pointer::{invariant, BecauseExclusive}; |
371 | |
372 | #[cfg (any(feature = "alloc" , test))] |
373 | extern crate alloc; |
374 | #[cfg (any(feature = "alloc" , test))] |
375 | use alloc::{boxed::Box, vec::Vec}; |
376 | |
377 | #[cfg (any(feature = "alloc" , test, kani))] |
378 | use core::alloc::Layout; |
379 | |
380 | // Used by `TryFromBytes::is_bit_valid`. |
381 | #[doc (hidden)] |
382 | pub use crate::pointer::{BecauseImmutable, Maybe, MaybeAligned, Ptr}; |
383 | // Used by `KnownLayout`. |
384 | #[doc (hidden)] |
385 | pub use crate::layout::*; |
386 | |
387 | // For each trait polyfill, as soon as the corresponding feature is stable, the |
388 | // polyfill import will be unused because method/function resolution will prefer |
389 | // the inherent method/function over a trait method/function. Thus, we suppress |
390 | // the `unused_imports` warning. |
391 | // |
392 | // See the documentation on `util::polyfills` for more information. |
393 | #[allow (unused_imports)] |
394 | use crate::util::polyfills::{self, NonNullExt as _, NumExt as _}; |
395 | |
396 | #[rustversion::nightly] |
397 | #[cfg (all(test, not(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)))] |
398 | const _: () = { |
399 | #[deprecated = "some tests may be skipped due to missing RUSTFLAGS= \"--cfg __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS \"" ] |
400 | const _WARNING: () = (); |
401 | #[warn (deprecated)] |
402 | _WARNING |
403 | }; |
404 | |
405 | // These exist so that code which was written against the old names will get |
406 | // less confusing error messages when they upgrade to a more recent version of |
407 | // zerocopy. On our MSRV toolchain, the error messages read, for example: |
408 | // |
409 | // error[E0603]: trait `FromZeroes` is private |
410 | // --> examples/deprecated.rs:1:15 |
411 | // | |
412 | // 1 | use zerocopy::FromZeroes; |
413 | // | ^^^^^^^^^^ private trait |
414 | // | |
415 | // note: the trait `FromZeroes` is defined here |
416 | // --> /Users/josh/workspace/zerocopy/src/lib.rs:1845:5 |
417 | // | |
418 | // 1845 | use FromZeros as FromZeroes; |
419 | // | ^^^^^^^^^^^^^^^^^^^^^^^ |
420 | // |
421 | // The "note" provides enough context to make it easy to figure out how to fix |
422 | // the error. |
423 | #[allow (unused)] |
424 | use {FromZeros as FromZeroes, IntoBytes as AsBytes, Ref as LayoutVerified}; |
425 | |
426 | /// Implements [`KnownLayout`]. |
427 | /// |
428 | /// This derive analyzes various aspects of a type's layout that are needed for |
429 | /// some of zerocopy's APIs. It can be applied to structs, enums, and unions; |
430 | /// e.g.: |
431 | /// |
432 | /// ``` |
433 | /// # use zerocopy_derive::KnownLayout; |
434 | /// #[derive(KnownLayout)] |
435 | /// struct MyStruct { |
436 | /// # /* |
437 | /// ... |
438 | /// # */ |
439 | /// } |
440 | /// |
441 | /// #[derive(KnownLayout)] |
442 | /// enum MyEnum { |
443 | /// # V00, |
444 | /// # /* |
445 | /// ... |
446 | /// # */ |
447 | /// } |
448 | /// |
449 | /// #[derive(KnownLayout)] |
450 | /// union MyUnion { |
451 | /// # variant: u8, |
452 | /// # /* |
453 | /// ... |
454 | /// # */ |
455 | /// } |
456 | /// ``` |
457 | /// |
458 | /// # Limitations |
459 | /// |
460 | /// This derive cannot currently be applied to unsized structs without an |
461 | /// explicit `repr` attribute. |
462 | /// |
463 | /// Some invocations of this derive run afoul of a [known bug] in Rust's type |
464 | /// privacy checker. For example, this code: |
465 | /// |
466 | /// ```compile_fail,E0446 |
467 | /// use zerocopy::*; |
468 | /// # use zerocopy_derive::*; |
469 | /// |
470 | /// #[derive(KnownLayout)] |
471 | /// #[repr(C)] |
472 | /// pub struct PublicType { |
473 | /// leading: Foo, |
474 | /// trailing: Bar, |
475 | /// } |
476 | /// |
477 | /// #[derive(KnownLayout)] |
478 | /// struct Foo; |
479 | /// |
480 | /// #[derive(KnownLayout)] |
481 | /// struct Bar; |
482 | /// ``` |
483 | /// |
484 | /// ...results in a compilation error: |
485 | /// |
486 | /// ```text |
487 | /// error[E0446]: private type `Bar` in public interface |
488 | /// --> examples/bug.rs:3:10 |
489 | /// | |
490 | /// 3 | #[derive(KnownLayout)] |
491 | /// | ^^^^^^^^^^^ can't leak private type |
492 | /// ... |
493 | /// 14 | struct Bar; |
494 | /// | ---------- `Bar` declared as private |
495 | /// | |
496 | /// = note: this error originates in the derive macro `KnownLayout` (in Nightly builds, run with -Z macro-backtrace for more info) |
497 | /// ``` |
498 | /// |
499 | /// This issue arises when `#[derive(KnownLayout)]` is applied to `repr(C)` |
500 | /// structs whose trailing field type is less public than the enclosing struct. |
501 | /// |
502 | /// To work around this, mark the trailing field type `pub` and annotate it with |
503 | /// `#[doc(hidden)]`; e.g.: |
504 | /// |
505 | /// ```no_run |
506 | /// use zerocopy::*; |
507 | /// # use zerocopy_derive::*; |
508 | /// |
509 | /// #[derive(KnownLayout)] |
510 | /// #[repr(C)] |
511 | /// pub struct PublicType { |
512 | /// leading: Foo, |
513 | /// trailing: Bar, |
514 | /// } |
515 | /// |
516 | /// #[derive(KnownLayout)] |
517 | /// struct Foo; |
518 | /// |
519 | /// #[doc(hidden)] |
520 | /// #[derive(KnownLayout)] |
521 | /// pub struct Bar; // <- `Bar` is now also `pub` |
522 | /// ``` |
523 | /// |
524 | /// [known bug]: https://github.com/rust-lang/rust/issues/45713 |
525 | #[cfg (any(feature = "derive" , test))] |
526 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
527 | pub use zerocopy_derive::KnownLayout; |
528 | |
529 | /// Indicates that zerocopy can reason about certain aspects of a type's layout. |
530 | /// |
531 | /// This trait is required by many of zerocopy's APIs. It supports sized types, |
532 | /// slices, and [slice DSTs](#dynamically-sized-types). |
533 | /// |
534 | /// # Implementation |
535 | /// |
536 | /// **Do not implement this trait yourself!** Instead, use |
537 | /// [`#[derive(KnownLayout)]`][derive]; e.g.: |
538 | /// |
539 | /// ``` |
540 | /// # use zerocopy_derive::KnownLayout; |
541 | /// #[derive(KnownLayout)] |
542 | /// struct MyStruct { |
543 | /// # /* |
544 | /// ... |
545 | /// # */ |
546 | /// } |
547 | /// |
548 | /// #[derive(KnownLayout)] |
549 | /// enum MyEnum { |
550 | /// # /* |
551 | /// ... |
552 | /// # */ |
553 | /// } |
554 | /// |
555 | /// #[derive(KnownLayout)] |
556 | /// union MyUnion { |
557 | /// # variant: u8, |
558 | /// # /* |
559 | /// ... |
560 | /// # */ |
561 | /// } |
562 | /// ``` |
563 | /// |
564 | /// This derive performs a sophisticated analysis to deduce the layout |
565 | /// characteristics of types. You **must** implement this trait via the derive. |
566 | /// |
567 | /// # Dynamically-sized types |
568 | /// |
569 | /// `KnownLayout` supports slice-based dynamically sized types ("slice DSTs"). |
570 | /// |
571 | /// A slice DST is a type whose trailing field is either a slice or another |
572 | /// slice DST, rather than a type with fixed size. For example: |
573 | /// |
574 | /// ``` |
575 | /// #[repr(C)] |
576 | /// struct PacketHeader { |
577 | /// # /* |
578 | /// ... |
579 | /// # */ |
580 | /// } |
581 | /// |
582 | /// #[repr(C)] |
583 | /// struct Packet { |
584 | /// header: PacketHeader, |
585 | /// body: [u8], |
586 | /// } |
587 | /// ``` |
588 | /// |
589 | /// It can be useful to think of slice DSTs as a generalization of slices - in |
590 | /// other words, a normal slice is just the special case of a slice DST with |
591 | /// zero leading fields. In particular: |
592 | /// - Like slices, slice DSTs can have different lengths at runtime |
593 | /// - Like slices, slice DSTs cannot be passed by-value, but only by reference |
594 | /// or via other indirection such as `Box` |
595 | /// - Like slices, a reference (or `Box`, or other pointer type) to a slice DST |
596 | /// encodes the number of elements in the trailing slice field |
597 | /// |
598 | /// ## Slice DST layout |
599 | /// |
600 | /// Just like other composite Rust types, the layout of a slice DST is not |
601 | /// well-defined unless it is specified using an explicit `#[repr(...)]` |
602 | /// attribute such as `#[repr(C)]`. [Other representations are |
603 | /// supported][reprs], but in this section, we'll use `#[repr(C)]` as our |
604 | /// example. |
605 | /// |
606 | /// A `#[repr(C)]` slice DST is laid out [just like sized `#[repr(C)]` |
607 | /// types][repr-c-structs], but the presenence of a variable-length field |
608 | /// introduces the possibility of *dynamic padding*. In particular, it may be |
609 | /// necessary to add trailing padding *after* the trailing slice field in order |
610 | /// to satisfy the outer type's alignment, and the amount of padding required |
611 | /// may be a function of the length of the trailing slice field. This is just a |
612 | /// natural consequence of the normal `#[repr(C)]` rules applied to slice DSTs, |
613 | /// but it can result in surprising behavior. For example, consider the |
614 | /// following type: |
615 | /// |
616 | /// ``` |
617 | /// #[repr(C)] |
618 | /// struct Foo { |
619 | /// a: u32, |
620 | /// b: u8, |
621 | /// z: [u16], |
622 | /// } |
623 | /// ``` |
624 | /// |
625 | /// Assuming that `u32` has alignment 4 (this is not true on all platforms), |
626 | /// then `Foo` has alignment 4 as well. Here is the smallest possible value for |
627 | /// `Foo`: |
628 | /// |
629 | /// ```text |
630 | /// byte offset | 01234567 |
631 | /// field | aaaab--- |
632 | /// >< |
633 | /// ``` |
634 | /// |
635 | /// In this value, `z` has length 0. Abiding by `#[repr(C)]`, the lowest offset |
636 | /// that we can place `z` at is 5, but since `z` has alignment 2, we need to |
637 | /// round up to offset 6. This means that there is one byte of padding between |
638 | /// `b` and `z`, then 0 bytes of `z` itself (denoted `><` in this diagram), and |
639 | /// then two bytes of padding after `z` in order to satisfy the overall |
640 | /// alignment of `Foo`. The size of this instance is 8 bytes. |
641 | /// |
642 | /// What about if `z` has length 1? |
643 | /// |
644 | /// ```text |
645 | /// byte offset | 01234567 |
646 | /// field | aaaab-zz |
647 | /// ``` |
648 | /// |
649 | /// In this instance, `z` has length 1, and thus takes up 2 bytes. That means |
650 | /// that we no longer need padding after `z` in order to satisfy `Foo`'s |
651 | /// alignment. We've now seen two different values of `Foo` with two different |
652 | /// lengths of `z`, but they both have the same size - 8 bytes. |
653 | /// |
654 | /// What about if `z` has length 2? |
655 | /// |
656 | /// ```text |
657 | /// byte offset | 012345678901 |
658 | /// field | aaaab-zzzz-- |
659 | /// ``` |
660 | /// |
661 | /// Now `z` has length 2, and thus takes up 4 bytes. This brings our un-padded |
662 | /// size to 10, and so we now need another 2 bytes of padding after `z` to |
663 | /// satisfy `Foo`'s alignment. |
664 | /// |
665 | /// Again, all of this is just a logical consequence of the `#[repr(C)]` rules |
666 | /// applied to slice DSTs, but it can be surprising that the amount of trailing |
667 | /// padding becomes a function of the trailing slice field's length, and thus |
668 | /// can only be computed at runtime. |
669 | /// |
670 | /// [reprs]: https://doc.rust-lang.org/reference/type-layout.html#representations |
671 | /// [repr-c-structs]: https://doc.rust-lang.org/reference/type-layout.html#reprc-structs |
672 | /// |
673 | /// ## What is a valid size? |
674 | /// |
675 | /// There are two places in zerocopy's API that we refer to "a valid size" of a |
676 | /// type. In normal casts or conversions, where the source is a byte slice, we |
677 | /// need to know whether the source byte slice is a valid size of the |
678 | /// destination type. In prefix or suffix casts, we need to know whether *there |
679 | /// exists* a valid size of the destination type which fits in the source byte |
680 | /// slice and, if so, what the largest such size is. |
681 | /// |
682 | /// As outlined above, a slice DST's size is defined by the number of elements |
683 | /// in its trailing slice field. However, there is not necessarily a 1-to-1 |
684 | /// mapping between trailing slice field length and overall size. As we saw in |
685 | /// the previous section with the type `Foo`, instances with both 0 and 1 |
686 | /// elements in the trailing `z` field result in a `Foo` whose size is 8 bytes. |
687 | /// |
688 | /// When we say "x is a valid size of `T`", we mean one of two things: |
689 | /// - If `T: Sized`, then we mean that `x == size_of::<T>()` |
690 | /// - If `T` is a slice DST, then we mean that there exists a `len` such that the instance of |
691 | /// `T` with `len` trailing slice elements has size `x` |
692 | /// |
693 | /// When we say "largest possible size of `T` that fits in a byte slice", we |
694 | /// mean one of two things: |
695 | /// - If `T: Sized`, then we mean `size_of::<T>()` if the byte slice is at least |
696 | /// `size_of::<T>()` bytes long |
697 | /// - If `T` is a slice DST, then we mean to consider all values, `len`, such |
698 | /// that the instance of `T` with `len` trailing slice elements fits in the |
699 | /// byte slice, and to choose the largest such `len`, if any |
700 | /// |
701 | /// |
702 | /// # Safety |
703 | /// |
704 | /// This trait does not convey any safety guarantees to code outside this crate. |
705 | /// |
706 | /// You must not rely on the `#[doc(hidden)]` internals of `KnownLayout`. Future |
707 | /// releases of zerocopy may make backwards-breaking changes to these items, |
708 | /// including changes that only affect soundness, which may cause code which |
709 | /// uses those items to silently become unsound. |
710 | /// |
711 | #[cfg_attr (feature = "derive" , doc = "[derive]: zerocopy_derive::KnownLayout" )] |
712 | #[cfg_attr ( |
713 | not(feature = "derive" ), |
714 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.KnownLayout.html" ), |
715 | )] |
716 | #[cfg_attr ( |
717 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
718 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(KnownLayout)]` to `{Self}`" ) |
719 | )] |
720 | pub unsafe trait KnownLayout { |
721 | // The `Self: Sized` bound makes it so that `KnownLayout` can still be |
722 | // object safe. It's not currently object safe thanks to `const LAYOUT`, and |
723 | // it likely won't be in the future, but there's no reason not to be |
724 | // forwards-compatible with object safety. |
725 | #[doc (hidden)] |
726 | fn only_derive_is_allowed_to_implement_this_trait() |
727 | where |
728 | Self: Sized; |
729 | |
730 | /// The type of metadata stored in a pointer to `Self`. |
731 | /// |
732 | /// This is `()` for sized types and `usize` for slice DSTs. |
733 | type PointerMetadata: PointerMetadata; |
734 | |
735 | /// A maybe-uninitialized analog of `Self` |
736 | /// |
737 | /// # Safety |
738 | /// |
739 | /// `Self::LAYOUT` and `Self::MaybeUninit::LAYOUT` are identical. |
740 | /// `Self::MaybeUninit` admits uninitialized bytes in all positions. |
741 | #[doc (hidden)] |
742 | type MaybeUninit: ?Sized + KnownLayout<PointerMetadata = Self::PointerMetadata>; |
743 | |
744 | /// The layout of `Self`. |
745 | /// |
746 | /// # Safety |
747 | /// |
748 | /// Callers may assume that `LAYOUT` accurately reflects the layout of |
749 | /// `Self`. In particular: |
750 | /// - `LAYOUT.align` is equal to `Self`'s alignment |
751 | /// - If `Self: Sized`, then `LAYOUT.size_info == SizeInfo::Sized { size }` |
752 | /// where `size == size_of::<Self>()` |
753 | /// - If `Self` is a slice DST, then `LAYOUT.size_info == |
754 | /// SizeInfo::SliceDst(slice_layout)` where: |
755 | /// - The size, `size`, of an instance of `Self` with `elems` trailing |
756 | /// slice elements is equal to `slice_layout.offset + |
757 | /// slice_layout.elem_size * elems` rounded up to the nearest multiple |
758 | /// of `LAYOUT.align` |
759 | /// - For such an instance, any bytes in the range `[slice_layout.offset + |
760 | /// slice_layout.elem_size * elems, size)` are padding and must not be |
761 | /// assumed to be initialized |
762 | #[doc (hidden)] |
763 | const LAYOUT: DstLayout; |
764 | |
765 | /// SAFETY: The returned pointer has the same address and provenance as |
766 | /// `bytes`. If `Self` is a DST, the returned pointer's referent has `elems` |
767 | /// elements in its trailing slice. |
768 | #[doc (hidden)] |
769 | fn raw_from_ptr_len(bytes: NonNull<u8>, meta: Self::PointerMetadata) -> NonNull<Self>; |
770 | |
771 | /// Extracts the metadata from a pointer to `Self`. |
772 | /// |
773 | /// # Safety |
774 | /// |
775 | /// `pointer_to_metadata` always returns the correct metadata stored in |
776 | /// `ptr`. |
777 | #[doc (hidden)] |
778 | fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata; |
779 | |
780 | /// Computes the length of the byte range addressed by `ptr`. |
781 | /// |
782 | /// Returns `None` if the resulting length would not fit in an `usize`. |
783 | /// |
784 | /// # Safety |
785 | /// |
786 | /// Callers may assume that `size_of_val_raw` always returns the correct |
787 | /// size. |
788 | /// |
789 | /// Callers may assume that, if `ptr` addresses a byte range whose length |
790 | /// fits in an `usize`, this will return `Some`. |
791 | #[doc (hidden)] |
792 | #[must_use ] |
793 | #[inline (always)] |
794 | fn size_of_val_raw(ptr: NonNull<Self>) -> Option<usize> { |
795 | let meta = Self::pointer_to_metadata(ptr.as_ptr()); |
796 | // SAFETY: `size_for_metadata` promises to only return `None` if the |
797 | // resulting size would not fit in a `usize`. |
798 | meta.size_for_metadata(Self::LAYOUT) |
799 | } |
800 | } |
801 | |
802 | /// The metadata associated with a [`KnownLayout`] type. |
803 | #[doc (hidden)] |
804 | pub trait PointerMetadata: Copy + Eq + Debug { |
805 | /// Constructs a `Self` from an element count. |
806 | /// |
807 | /// If `Self = ()`, this returns `()`. If `Self = usize`, this returns |
808 | /// `elems`. No other types are currently supported. |
809 | fn from_elem_count(elems: usize) -> Self; |
810 | |
811 | /// Computes the size of the object with the given layout and pointer |
812 | /// metadata. |
813 | /// |
814 | /// # Panics |
815 | /// |
816 | /// If `Self = ()`, `layout` must describe a sized type. If `Self = usize`, |
817 | /// `layout` must describe a slice DST. Otherwise, `size_for_metadata` may |
818 | /// panic. |
819 | /// |
820 | /// # Safety |
821 | /// |
822 | /// `size_for_metadata` promises to only return `None` if the resulting size |
823 | /// would not fit in a `usize`. |
824 | fn size_for_metadata(&self, layout: DstLayout) -> Option<usize>; |
825 | } |
826 | |
827 | impl PointerMetadata for () { |
828 | #[inline ] |
829 | #[allow (clippy::unused_unit)] |
830 | fn from_elem_count(_elems: usize) -> () {} |
831 | |
832 | #[inline ] |
833 | fn size_for_metadata(&self, layout: DstLayout) -> Option<usize> { |
834 | match layout.size_info { |
835 | SizeInfo::Sized { size: usize } => Some(size), |
836 | // NOTE: This branch is unreachable, but we return `None` rather |
837 | // than `unreachable!()` to avoid generating panic paths. |
838 | SizeInfo::SliceDst(_) => None, |
839 | } |
840 | } |
841 | } |
842 | |
843 | impl PointerMetadata for usize { |
844 | #[inline ] |
845 | fn from_elem_count(elems: usize) -> usize { |
846 | elems |
847 | } |
848 | |
849 | #[inline ] |
850 | fn size_for_metadata(&self, layout: DstLayout) -> Option<usize> { |
851 | match layout.size_info { |
852 | SizeInfo::SliceDst(TrailingSliceLayout { offset: usize, elem_size: usize }) => { |
853 | let slice_len: ! = elem_size.checked_mul(*self)?; |
854 | let without_padding: usize = offset.checked_add(slice_len)?; |
855 | without_padding.checked_add(util::padding_needed_for(len:without_padding, layout.align)) |
856 | } |
857 | // NOTE: This branch is unreachable, but we return `None` rather |
858 | // than `unreachable!()` to avoid generating panic paths. |
859 | SizeInfo::Sized { .. } => None, |
860 | } |
861 | } |
862 | } |
863 | |
864 | // SAFETY: Delegates safety to `DstLayout::for_slice`. |
865 | unsafe impl<T> KnownLayout for [T] { |
866 | #[allow (clippy::missing_inline_in_public_items)] |
867 | #[cfg_attr ( |
868 | all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), |
869 | coverage(off) |
870 | )] |
871 | fn only_derive_is_allowed_to_implement_this_trait() |
872 | where |
873 | Self: Sized, |
874 | { |
875 | } |
876 | |
877 | type PointerMetadata = usize; |
878 | |
879 | // SAFETY: `CoreMaybeUninit<T>::LAYOUT` and `T::LAYOUT` are identical |
880 | // because `CoreMaybeUninit<T>` has the same size and alignment as `T` [1]. |
881 | // Consequently, `[CoreMaybeUninit<T>]::LAYOUT` and `[T]::LAYOUT` are |
882 | // identical, because they both lack a fixed-sized prefix and because they |
883 | // inherit the alignments of their inner element type (which are identical) |
884 | // [2][3]. |
885 | // |
886 | // `[CoreMaybeUninit<T>]` admits uninitialized bytes at all positions |
887 | // because `CoreMaybeUninit<T>` admits uninitialized bytes at all positions |
888 | // and because the inner elements of `[CoreMaybeUninit<T>]` are laid out |
889 | // back-to-back [2][3]. |
890 | // |
891 | // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1: |
892 | // |
893 | // `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as |
894 | // `T` |
895 | // |
896 | // [2] Per https://doc.rust-lang.org/1.82.0/reference/type-layout.html#slice-layout: |
897 | // |
898 | // Slices have the same layout as the section of the array they slice. |
899 | // |
900 | // [3] Per https://doc.rust-lang.org/1.82.0/reference/type-layout.html#array-layout: |
901 | // |
902 | // An array of `[T; N]` has a size of `size_of::<T>() * N` and the same |
903 | // alignment of `T`. Arrays are laid out so that the zero-based `nth` |
904 | // element of the array is offset from the start of the array by `n * |
905 | // size_of::<T>()` bytes. |
906 | type MaybeUninit = [CoreMaybeUninit<T>]; |
907 | |
908 | const LAYOUT: DstLayout = DstLayout::for_slice::<T>(); |
909 | |
910 | // SAFETY: `.cast` preserves address and provenance. The returned pointer |
911 | // refers to an object with `elems` elements by construction. |
912 | #[inline (always)] |
913 | fn raw_from_ptr_len(data: NonNull<u8>, elems: usize) -> NonNull<Self> { |
914 | // TODO(#67): Remove this allow. See NonNullExt for more details. |
915 | #[allow (unstable_name_collisions)] |
916 | NonNull::slice_from_raw_parts(data.cast::<T>(), elems) |
917 | } |
918 | |
919 | #[inline (always)] |
920 | fn pointer_to_metadata(ptr: *mut [T]) -> usize { |
921 | #[allow (clippy::as_conversions)] |
922 | let slc = ptr as *const [()]; |
923 | |
924 | // SAFETY: |
925 | // - `()` has alignment 1, so `slc` is trivially aligned. |
926 | // - `slc` was derived from a non-null pointer. |
927 | // - The size is 0 regardless of the length, so it is sound to |
928 | // materialize a reference regardless of location. |
929 | // - By invariant, `self.ptr` has valid provenance. |
930 | let slc = unsafe { &*slc }; |
931 | |
932 | // This is correct because the preceding `as` cast preserves the number |
933 | // of slice elements. [1] |
934 | // |
935 | // [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast: |
936 | // |
937 | // For slice types like `[T]` and `[U]`, the raw pointer types `*const |
938 | // [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode the number of |
939 | // elements in this slice. Casts between these raw pointer types |
940 | // preserve the number of elements. ... The same holds for `str` and |
941 | // any compound type whose unsized tail is a slice type, such as |
942 | // struct `Foo(i32, [u8])` or `(u64, Foo)`. |
943 | slc.len() |
944 | } |
945 | } |
946 | |
947 | #[rustfmt::skip] |
948 | impl_known_layout!( |
949 | (), |
950 | u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64, |
951 | bool, char, |
952 | NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, NonZeroI32, |
953 | NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, NonZeroUsize, NonZeroIsize |
954 | ); |
955 | #[rustfmt::skip] |
956 | #[cfg (feature = "float-nightly" )] |
957 | impl_known_layout!( |
958 | #[cfg_attr(doc_cfg, doc(cfg(feature = "float-nightly" )))] |
959 | f16, |
960 | #[cfg_attr(doc_cfg, doc(cfg(feature = "float-nightly" )))] |
961 | f128 |
962 | ); |
963 | #[rustfmt::skip] |
964 | impl_known_layout!( |
965 | T => Option<T>, |
966 | T: ?Sized => PhantomData<T>, |
967 | T => Wrapping<T>, |
968 | T => CoreMaybeUninit<T>, |
969 | T: ?Sized => *const T, |
970 | T: ?Sized => *mut T, |
971 | T: ?Sized => &'_ T, |
972 | T: ?Sized => &'_ mut T, |
973 | ); |
974 | impl_known_layout!(const N: usize, T => [T; N]); |
975 | |
976 | safety_comment! { |
977 | /// SAFETY: |
978 | /// `str`, `ManuallyDrop<[T]>` [1], and `UnsafeCell<T>` [2] have the same |
979 | /// representations as `[u8]`, `[T]`, and `T` repsectively. `str` has |
980 | /// different bit validity than `[u8]`, but that doesn't affect the |
981 | /// soundness of this impl. |
982 | /// |
983 | /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html: |
984 | /// |
985 | /// `ManuallyDrop<T>` is guaranteed to have the same layout and bit |
986 | /// validity as `T` |
987 | /// |
988 | /// [2] Per https://doc.rust-lang.org/core/cell/struct.UnsafeCell.html#memory-layout: |
989 | /// |
990 | /// `UnsafeCell<T>` has the same in-memory representation as its inner |
991 | /// type `T`. |
992 | /// |
993 | /// TODO(#429): |
994 | /// - Add quotes from docs. |
995 | /// - Once [1] (added in |
996 | /// https://github.com/rust-lang/rust/pull/115522) is available on stable, |
997 | /// quote the stable docs instead of the nightly docs. |
998 | unsafe_impl_known_layout!(#[repr([u8])] str); |
999 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ManuallyDrop<T>); |
1000 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] UnsafeCell<T>); |
1001 | } |
1002 | |
1003 | safety_comment! { |
1004 | /// SAFETY: |
1005 | /// - By consequence of the invariant on `T::MaybeUninit` that `T::LAYOUT` |
1006 | /// and `T::MaybeUninit::LAYOUT` are equal, `T` and `T::MaybeUninit` |
1007 | /// have the same: |
1008 | /// - Fixed prefix size |
1009 | /// - Alignment |
1010 | /// - (For DSTs) trailing slice element size |
1011 | /// - By consequence of the above, referents `T::MaybeUninit` and `T` have |
1012 | /// the require the same kind of pointer metadata, and thus it is valid to |
1013 | /// perform an `as` cast from `*mut T` and `*mut T::MaybeUninit`, and this |
1014 | /// operation preserves referent size (ie, `size_of_val_raw`). |
1015 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T::MaybeUninit)] MaybeUninit<T>); |
1016 | } |
1017 | |
1018 | /// Analyzes whether a type is [`FromZeros`]. |
1019 | /// |
1020 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
1021 | /// the [safety conditions] of `FromZeros` and implements `FromZeros` and its |
1022 | /// supertraits if it is sound to do so. This derive can be applied to structs, |
1023 | /// enums, and unions; e.g.: |
1024 | /// |
1025 | /// ``` |
1026 | /// # use zerocopy_derive::{FromZeros, Immutable}; |
1027 | /// #[derive(FromZeros)] |
1028 | /// struct MyStruct { |
1029 | /// # /* |
1030 | /// ... |
1031 | /// # */ |
1032 | /// } |
1033 | /// |
1034 | /// #[derive(FromZeros)] |
1035 | /// #[repr(u8)] |
1036 | /// enum MyEnum { |
1037 | /// # Variant0, |
1038 | /// # /* |
1039 | /// ... |
1040 | /// # */ |
1041 | /// } |
1042 | /// |
1043 | /// #[derive(FromZeros, Immutable)] |
1044 | /// union MyUnion { |
1045 | /// # variant: u8, |
1046 | /// # /* |
1047 | /// ... |
1048 | /// # */ |
1049 | /// } |
1050 | /// ``` |
1051 | /// |
1052 | /// [safety conditions]: trait@FromZeros#safety |
1053 | /// |
1054 | /// # Analysis |
1055 | /// |
1056 | /// *This section describes, roughly, the analysis performed by this derive to |
1057 | /// determine whether it is sound to implement `FromZeros` for a given type. |
1058 | /// Unless you are modifying the implementation of this derive, or attempting to |
1059 | /// manually implement `FromZeros` for a type yourself, you don't need to read |
1060 | /// this section.* |
1061 | /// |
1062 | /// If a type has the following properties, then this derive can implement |
1063 | /// `FromZeros` for that type: |
1064 | /// |
1065 | /// - If the type is a struct, all of its fields must be `FromZeros`. |
1066 | /// - If the type is an enum: |
1067 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
1068 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
1069 | /// - It must have a variant with a discriminant/tag of `0`, and its fields |
1070 | /// must be `FromZeros`. See [the reference] for a description of |
1071 | /// discriminant values are specified. |
1072 | /// - The fields of that variant must be `FromZeros`. |
1073 | /// |
1074 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
1075 | /// documented [safety conditions] of `FromZeros`, and must *not* rely on the |
1076 | /// implementation details of this derive. |
1077 | /// |
1078 | /// [the reference]: https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations |
1079 | /// |
1080 | /// ## Why isn't an explicit representation required for structs? |
1081 | /// |
1082 | /// Neither this derive, nor the [safety conditions] of `FromZeros`, requires |
1083 | /// that structs are marked with `#[repr(C)]`. |
1084 | /// |
1085 | /// Per the [Rust reference](reference), |
1086 | /// |
1087 | /// > The representation of a type can change the padding between fields, but |
1088 | /// > does not change the layout of the fields themselves. |
1089 | /// |
1090 | /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
1091 | /// |
1092 | /// Since the layout of structs only consists of padding bytes and field bytes, |
1093 | /// a struct is soundly `FromZeros` if: |
1094 | /// 1. its padding is soundly `FromZeros`, and |
1095 | /// 2. its fields are soundly `FromZeros`. |
1096 | /// |
1097 | /// The answer to the first question is always yes: padding bytes do not have |
1098 | /// any validity constraints. A [discussion] of this question in the Unsafe Code |
1099 | /// Guidelines Working Group concluded that it would be virtually unimaginable |
1100 | /// for future versions of rustc to add validity constraints to padding bytes. |
1101 | /// |
1102 | /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
1103 | /// |
1104 | /// Whether a struct is soundly `FromZeros` therefore solely depends on whether |
1105 | /// its fields are `FromZeros`. |
1106 | // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
1107 | // attribute. |
1108 | #[cfg (any(feature = "derive" , test))] |
1109 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
1110 | pub use zerocopy_derive::FromZeros; |
1111 | |
1112 | /// Analyzes whether a type is [`Immutable`]. |
1113 | /// |
1114 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
1115 | /// the [safety conditions] of `Immutable` and implements `Immutable` if it is |
1116 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
1117 | /// e.g.: |
1118 | /// |
1119 | /// ``` |
1120 | /// # use zerocopy_derive::Immutable; |
1121 | /// #[derive(Immutable)] |
1122 | /// struct MyStruct { |
1123 | /// # /* |
1124 | /// ... |
1125 | /// # */ |
1126 | /// } |
1127 | /// |
1128 | /// #[derive(Immutable)] |
1129 | /// enum MyEnum { |
1130 | /// # Variant0, |
1131 | /// # /* |
1132 | /// ... |
1133 | /// # */ |
1134 | /// } |
1135 | /// |
1136 | /// #[derive(Immutable)] |
1137 | /// union MyUnion { |
1138 | /// # variant: u8, |
1139 | /// # /* |
1140 | /// ... |
1141 | /// # */ |
1142 | /// } |
1143 | /// ``` |
1144 | /// |
1145 | /// # Analysis |
1146 | /// |
1147 | /// *This section describes, roughly, the analysis performed by this derive to |
1148 | /// determine whether it is sound to implement `Immutable` for a given type. |
1149 | /// Unless you are modifying the implementation of this derive, you don't need |
1150 | /// to read this section.* |
1151 | /// |
1152 | /// If a type has the following properties, then this derive can implement |
1153 | /// `Immutable` for that type: |
1154 | /// |
1155 | /// - All fields must be `Immutable`. |
1156 | /// |
1157 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
1158 | /// documented [safety conditions] of `Immutable`, and must *not* rely on the |
1159 | /// implementation details of this derive. |
1160 | /// |
1161 | /// [safety conditions]: trait@Immutable#safety |
1162 | #[cfg (any(feature = "derive" , test))] |
1163 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
1164 | pub use zerocopy_derive::Immutable; |
1165 | |
1166 | /// Types which are free from interior mutability. |
1167 | /// |
1168 | /// `T: Immutable` indicates that `T` does not permit interior mutation, except |
1169 | /// by ownership or an exclusive (`&mut`) borrow. |
1170 | /// |
1171 | /// # Implementation |
1172 | /// |
1173 | /// **Do not implement this trait yourself!** Instead, use |
1174 | /// [`#[derive(Immutable)]`][derive] (requires the `derive` Cargo feature); |
1175 | /// e.g.: |
1176 | /// |
1177 | /// ``` |
1178 | /// # use zerocopy_derive::Immutable; |
1179 | /// #[derive(Immutable)] |
1180 | /// struct MyStruct { |
1181 | /// # /* |
1182 | /// ... |
1183 | /// # */ |
1184 | /// } |
1185 | /// |
1186 | /// #[derive(Immutable)] |
1187 | /// enum MyEnum { |
1188 | /// # /* |
1189 | /// ... |
1190 | /// # */ |
1191 | /// } |
1192 | /// |
1193 | /// #[derive(Immutable)] |
1194 | /// union MyUnion { |
1195 | /// # variant: u8, |
1196 | /// # /* |
1197 | /// ... |
1198 | /// # */ |
1199 | /// } |
1200 | /// ``` |
1201 | /// |
1202 | /// This derive performs a sophisticated, compile-time safety analysis to |
1203 | /// determine whether a type is `Immutable`. |
1204 | /// |
1205 | /// # Safety |
1206 | /// |
1207 | /// Unsafe code outside of this crate must not make any assumptions about `T` |
1208 | /// based on `T: Immutable`. We reserve the right to relax the requirements for |
1209 | /// `Immutable` in the future, and if unsafe code outside of this crate makes |
1210 | /// assumptions based on `T: Immutable`, future relaxations may cause that code |
1211 | /// to become unsound. |
1212 | /// |
1213 | // # Safety (Internal) |
1214 | // |
1215 | // If `T: Immutable`, unsafe code *inside of this crate* may assume that, given |
1216 | // `t: &T`, `t` does not contain any [`UnsafeCell`]s at any byte location |
1217 | // within the byte range addressed by `t`. This includes ranges of length 0 |
1218 | // (e.g., `UnsafeCell<()>` and `[UnsafeCell<u8>; 0]`). If a type implements |
1219 | // `Immutable` which violates this assumptions, it may cause this crate to |
1220 | // exhibit [undefined behavior]. |
1221 | // |
1222 | // [`UnsafeCell`]: core::cell::UnsafeCell |
1223 | // [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html |
1224 | #[cfg_attr ( |
1225 | feature = "derive" , |
1226 | doc = "[derive]: zerocopy_derive::Immutable" , |
1227 | doc = "[derive-analysis]: zerocopy_derive::Immutable#analysis" |
1228 | )] |
1229 | #[cfg_attr ( |
1230 | not(feature = "derive" ), |
1231 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Immutable.html" ), |
1232 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Immutable.html#analysis" ), |
1233 | )] |
1234 | #[cfg_attr ( |
1235 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
1236 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(Immutable)]` to `{Self}`" ) |
1237 | )] |
1238 | pub unsafe trait Immutable { |
1239 | // The `Self: Sized` bound makes it so that `Immutable` is still object |
1240 | // safe. |
1241 | #[doc (hidden)] |
1242 | fn only_derive_is_allowed_to_implement_this_trait() |
1243 | where |
1244 | Self: Sized; |
1245 | } |
1246 | |
1247 | /// Implements [`TryFromBytes`]. |
1248 | /// |
1249 | /// This derive synthesizes the runtime checks required to check whether a |
1250 | /// sequence of initialized bytes corresponds to a valid instance of a type. |
1251 | /// This derive can be applied to structs, enums, and unions; e.g.: |
1252 | /// |
1253 | /// ``` |
1254 | /// # use zerocopy_derive::{TryFromBytes, Immutable}; |
1255 | /// #[derive(TryFromBytes)] |
1256 | /// struct MyStruct { |
1257 | /// # /* |
1258 | /// ... |
1259 | /// # */ |
1260 | /// } |
1261 | /// |
1262 | /// #[derive(TryFromBytes)] |
1263 | /// #[repr(u8)] |
1264 | /// enum MyEnum { |
1265 | /// # V00, |
1266 | /// # /* |
1267 | /// ... |
1268 | /// # */ |
1269 | /// } |
1270 | /// |
1271 | /// #[derive(TryFromBytes, Immutable)] |
1272 | /// union MyUnion { |
1273 | /// # variant: u8, |
1274 | /// # /* |
1275 | /// ... |
1276 | /// # */ |
1277 | /// } |
1278 | /// ``` |
1279 | /// |
1280 | /// [safety conditions]: trait@TryFromBytes#safety |
1281 | #[cfg (any(feature = "derive" , test))] |
1282 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
1283 | pub use zerocopy_derive::TryFromBytes; |
1284 | |
1285 | /// Types for which some bit patterns are valid. |
1286 | /// |
1287 | /// A memory region of the appropriate length which contains initialized bytes |
1288 | /// can be viewed as a `TryFromBytes` type so long as the runtime value of those |
1289 | /// bytes corresponds to a [*valid instance*] of that type. For example, |
1290 | /// [`bool`] is `TryFromBytes`, so zerocopy can transmute a [`u8`] into a |
1291 | /// [`bool`] so long as it first checks that the value of the [`u8`] is `0` or |
1292 | /// `1`. |
1293 | /// |
1294 | /// # Implementation |
1295 | /// |
1296 | /// **Do not implement this trait yourself!** Instead, use |
1297 | /// [`#[derive(TryFromBytes)]`][derive]; e.g.: |
1298 | /// |
1299 | /// ``` |
1300 | /// # use zerocopy_derive::{TryFromBytes, Immutable}; |
1301 | /// #[derive(TryFromBytes)] |
1302 | /// struct MyStruct { |
1303 | /// # /* |
1304 | /// ... |
1305 | /// # */ |
1306 | /// } |
1307 | /// |
1308 | /// #[derive(TryFromBytes)] |
1309 | /// #[repr(u8)] |
1310 | /// enum MyEnum { |
1311 | /// # V00, |
1312 | /// # /* |
1313 | /// ... |
1314 | /// # */ |
1315 | /// } |
1316 | /// |
1317 | /// #[derive(TryFromBytes, Immutable)] |
1318 | /// union MyUnion { |
1319 | /// # variant: u8, |
1320 | /// # /* |
1321 | /// ... |
1322 | /// # */ |
1323 | /// } |
1324 | /// ``` |
1325 | /// |
1326 | /// This derive ensures that the runtime check of whether bytes correspond to a |
1327 | /// valid instance is sound. You **must** implement this trait via the derive. |
1328 | /// |
1329 | /// # What is a "valid instance"? |
1330 | /// |
1331 | /// In Rust, each type has *bit validity*, which refers to the set of bit |
1332 | /// patterns which may appear in an instance of that type. It is impossible for |
1333 | /// safe Rust code to produce values which violate bit validity (ie, values |
1334 | /// outside of the "valid" set of bit patterns). If `unsafe` code produces an |
1335 | /// invalid value, this is considered [undefined behavior]. |
1336 | /// |
1337 | /// Rust's bit validity rules are currently being decided, which means that some |
1338 | /// types have three classes of bit patterns: those which are definitely valid, |
1339 | /// and whose validity is documented in the language; those which may or may not |
1340 | /// be considered valid at some point in the future; and those which are |
1341 | /// definitely invalid. |
1342 | /// |
1343 | /// Zerocopy takes a conservative approach, and only considers a bit pattern to |
1344 | /// be valid if its validity is a documenteed guarantee provided by the |
1345 | /// language. |
1346 | /// |
1347 | /// For most use cases, Rust's current guarantees align with programmers' |
1348 | /// intuitions about what ought to be valid. As a result, zerocopy's |
1349 | /// conservatism should not affect most users. |
1350 | /// |
1351 | /// If you are negatively affected by lack of support for a particular type, |
1352 | /// we encourage you to let us know by [filing an issue][github-repo]. |
1353 | /// |
1354 | /// # `TryFromBytes` is not symmetrical with [`IntoBytes`] |
1355 | /// |
1356 | /// There are some types which implement both `TryFromBytes` and [`IntoBytes`], |
1357 | /// but for which `TryFromBytes` is not guaranteed to accept all byte sequences |
1358 | /// produced by `IntoBytes`. In other words, for some `T: TryFromBytes + |
1359 | /// IntoBytes`, there exist values of `t: T` such that |
1360 | /// `TryFromBytes::try_ref_from_bytes(t.as_bytes()) == None`. Code should not |
1361 | /// generally assume that values produced by `IntoBytes` will necessarily be |
1362 | /// accepted as valid by `TryFromBytes`. |
1363 | /// |
1364 | /// # Safety |
1365 | /// |
1366 | /// On its own, `T: TryFromBytes` does not make any guarantees about the layout |
1367 | /// or representation of `T`. It merely provides the ability to perform a |
1368 | /// validity check at runtime via methods like [`try_ref_from_bytes`]. |
1369 | /// |
1370 | /// You must not rely on the `#[doc(hidden)]` internals of `TryFromBytes`. |
1371 | /// Future releases of zerocopy may make backwards-breaking changes to these |
1372 | /// items, including changes that only affect soundness, which may cause code |
1373 | /// which uses those items to silently become unsound. |
1374 | /// |
1375 | /// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html |
1376 | /// [github-repo]: https://github.com/google/zerocopy |
1377 | /// [`try_ref_from_bytes`]: TryFromBytes::try_ref_from_bytes |
1378 | /// [*valid instance*]: #what-is-a-valid-instance |
1379 | #[cfg_attr (feature = "derive" , doc = "[derive]: zerocopy_derive::TryFromBytes" )] |
1380 | #[cfg_attr ( |
1381 | not(feature = "derive" ), |
1382 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.TryFromBytes.html" ), |
1383 | )] |
1384 | #[cfg_attr ( |
1385 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
1386 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(TryFromBytes)]` to `{Self}`" ) |
1387 | )] |
1388 | pub unsafe trait TryFromBytes { |
1389 | // The `Self: Sized` bound makes it so that `TryFromBytes` is still object |
1390 | // safe. |
1391 | #[doc (hidden)] |
1392 | fn only_derive_is_allowed_to_implement_this_trait() |
1393 | where |
1394 | Self: Sized; |
1395 | |
1396 | /// Does a given memory range contain a valid instance of `Self`? |
1397 | /// |
1398 | /// # Safety |
1399 | /// |
1400 | /// Unsafe code may assume that, if `is_bit_valid(candidate)` returns true, |
1401 | /// `*candidate` contains a valid `Self`. |
1402 | /// |
1403 | /// # Panics |
1404 | /// |
1405 | /// `is_bit_valid` may panic. Callers are responsible for ensuring that any |
1406 | /// `unsafe` code remains sound even in the face of `is_bit_valid` |
1407 | /// panicking. (We support user-defined validation routines; so long as |
1408 | /// these routines are not required to be `unsafe`, there is no way to |
1409 | /// ensure that these do not generate panics.) |
1410 | /// |
1411 | /// Besides user-defined validation routines panicking, `is_bit_valid` will |
1412 | /// either panic or fail to compile if called on a pointer with [`Shared`] |
1413 | /// aliasing when `Self: !Immutable`. |
1414 | /// |
1415 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
1416 | /// [`Shared`]: invariant::Shared |
1417 | #[doc (hidden)] |
1418 | fn is_bit_valid<A: invariant::Aliasing + invariant::AtLeast<invariant::Shared>>( |
1419 | candidate: Maybe<'_, Self, A>, |
1420 | ) -> bool; |
1421 | |
1422 | /// Attempts to interpret the given `source` as a `&Self`. |
1423 | /// |
1424 | /// If the bytes of `source` are a valid instance of `Self`, this method |
1425 | /// returns a reference to those bytes interpreted as a `Self`. If the |
1426 | /// length of `source` is not a [valid size of `Self`][valid-size], or if |
1427 | /// `source` is not appropriately aligned, or if `source` is not a valid |
1428 | /// instance of `Self`, this returns `Err`. If [`Self: |
1429 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
1430 | /// error][ConvertError::from]. |
1431 | /// |
1432 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1433 | /// |
1434 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1435 | /// [self-unaligned]: Unaligned |
1436 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1437 | /// |
1438 | /// # Compile-Time Assertions |
1439 | /// |
1440 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1441 | /// component is zero-sized. Attempting to use this method on such types |
1442 | /// results in a compile-time assertion error; e.g.: |
1443 | /// |
1444 | /// ```compile_fail,E0080 |
1445 | /// use zerocopy::*; |
1446 | /// # use zerocopy_derive::*; |
1447 | /// |
1448 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
1449 | /// #[repr(C)] |
1450 | /// struct ZSTy { |
1451 | /// leading_sized: u16, |
1452 | /// trailing_dst: [()], |
1453 | /// } |
1454 | /// |
1455 | /// let _ = ZSTy::try_ref_from_bytes(0u16.as_bytes()); // âš Compile Error! |
1456 | /// ``` |
1457 | /// |
1458 | /// # Examples |
1459 | /// |
1460 | /// ``` |
1461 | /// use zerocopy::TryFromBytes; |
1462 | /// # use zerocopy_derive::*; |
1463 | /// |
1464 | /// // The only valid value of this type is the byte `0xC0` |
1465 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1466 | /// #[repr(u8)] |
1467 | /// enum C0 { xC0 = 0xC0 } |
1468 | /// |
1469 | /// // The only valid value of this type is the byte sequence `0xC0C0`. |
1470 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1471 | /// #[repr(C)] |
1472 | /// struct C0C0(C0, C0); |
1473 | /// |
1474 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1475 | /// #[repr(C)] |
1476 | /// struct Packet { |
1477 | /// magic_number: C0C0, |
1478 | /// mug_size: u8, |
1479 | /// temperature: u8, |
1480 | /// marshmallows: [[u8; 2]], |
1481 | /// } |
1482 | /// |
1483 | /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..]; |
1484 | /// |
1485 | /// let packet = Packet::try_ref_from_bytes(bytes).unwrap(); |
1486 | /// |
1487 | /// assert_eq!(packet.mug_size, 240); |
1488 | /// assert_eq!(packet.temperature, 77); |
1489 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1490 | /// |
1491 | /// // These bytes are not valid instance of `Packet`. |
1492 | /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..]; |
1493 | /// assert!(Packet::try_ref_from_bytes(bytes).is_err()); |
1494 | /// ``` |
1495 | #[must_use = "has no side effects" ] |
1496 | #[inline ] |
1497 | fn try_ref_from_bytes(source: &[u8]) -> Result<&Self, TryCastError<&[u8], Self>> |
1498 | where |
1499 | Self: KnownLayout + Immutable, |
1500 | { |
1501 | static_assert_dst_is_not_zst!(Self); |
1502 | match Ptr::from_ref(source).try_cast_into_no_leftover::<Self, BecauseImmutable>(None) { |
1503 | Ok(source) => { |
1504 | // This call may panic. If that happens, it doesn't cause any soundness |
1505 | // issues, as we have not generated any invalid state which we need to |
1506 | // fix before returning. |
1507 | // |
1508 | // Note that one panic or post-monomorphization error condition is |
1509 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
1510 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
1511 | // condition will not happen. |
1512 | match source.try_into_valid() { |
1513 | Ok(valid) => Ok(valid.as_ref()), |
1514 | Err(e) => { |
1515 | Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into()) |
1516 | } |
1517 | } |
1518 | } |
1519 | Err(e) => Err(e.map_src(Ptr::as_ref).into()), |
1520 | } |
1521 | } |
1522 | |
1523 | /// Attempts to interpret the prefix of the given `source` as a `&Self`. |
1524 | /// |
1525 | /// This method computes the [largest possible size of `Self`][valid-size] |
1526 | /// that can fit in the leading bytes of `source`. If that prefix is a valid |
1527 | /// instance of `Self`, this method returns a reference to those bytes |
1528 | /// interpreted as `Self`, and a reference to the remaining bytes. If there |
1529 | /// are insufficient bytes, or if `source` is not appropriately aligned, or |
1530 | /// if those bytes are not a valid instance of `Self`, this returns `Err`. |
1531 | /// If [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
1532 | /// alignment error][ConvertError::from]. |
1533 | /// |
1534 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1535 | /// |
1536 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1537 | /// [self-unaligned]: Unaligned |
1538 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1539 | /// |
1540 | /// # Compile-Time Assertions |
1541 | /// |
1542 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1543 | /// component is zero-sized. Attempting to use this method on such types |
1544 | /// results in a compile-time assertion error; e.g.: |
1545 | /// |
1546 | /// ```compile_fail,E0080 |
1547 | /// use zerocopy::*; |
1548 | /// # use zerocopy_derive::*; |
1549 | /// |
1550 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
1551 | /// #[repr(C)] |
1552 | /// struct ZSTy { |
1553 | /// leading_sized: u16, |
1554 | /// trailing_dst: [()], |
1555 | /// } |
1556 | /// |
1557 | /// let _ = ZSTy::try_ref_from_prefix(0u16.as_bytes()); // âš Compile Error! |
1558 | /// ``` |
1559 | /// |
1560 | /// # Examples |
1561 | /// |
1562 | /// ``` |
1563 | /// use zerocopy::TryFromBytes; |
1564 | /// # use zerocopy_derive::*; |
1565 | /// |
1566 | /// // The only valid value of this type is the byte `0xC0` |
1567 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1568 | /// #[repr(u8)] |
1569 | /// enum C0 { xC0 = 0xC0 } |
1570 | /// |
1571 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1572 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1573 | /// #[repr(C)] |
1574 | /// struct C0C0(C0, C0); |
1575 | /// |
1576 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1577 | /// #[repr(C)] |
1578 | /// struct Packet { |
1579 | /// magic_number: C0C0, |
1580 | /// mug_size: u8, |
1581 | /// temperature: u8, |
1582 | /// marshmallows: [[u8; 2]], |
1583 | /// } |
1584 | /// |
1585 | /// // These are more bytes than are needed to encode a `Packet`. |
1586 | /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1587 | /// |
1588 | /// let (packet, suffix) = Packet::try_ref_from_prefix(bytes).unwrap(); |
1589 | /// |
1590 | /// assert_eq!(packet.mug_size, 240); |
1591 | /// assert_eq!(packet.temperature, 77); |
1592 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1593 | /// assert_eq!(suffix, &[6u8][..]); |
1594 | /// |
1595 | /// // These bytes are not valid instance of `Packet`. |
1596 | /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1597 | /// assert!(Packet::try_ref_from_prefix(bytes).is_err()); |
1598 | /// ``` |
1599 | #[must_use = "has no side effects" ] |
1600 | #[inline ] |
1601 | fn try_ref_from_prefix(source: &[u8]) -> Result<(&Self, &[u8]), TryCastError<&[u8], Self>> |
1602 | where |
1603 | Self: KnownLayout + Immutable, |
1604 | { |
1605 | static_assert_dst_is_not_zst!(Self); |
1606 | try_ref_from_prefix_suffix(source, CastType::Prefix, None) |
1607 | } |
1608 | |
1609 | /// Attempts to interpret the suffix of the given `source` as a `&Self`. |
1610 | /// |
1611 | /// This method computes the [largest possible size of `Self`][valid-size] |
1612 | /// that can fit in the trailing bytes of `source`. If that suffix is a |
1613 | /// valid instance of `Self`, this method returns a reference to those bytes |
1614 | /// interpreted as `Self`, and a reference to the preceding bytes. If there |
1615 | /// are insufficient bytes, or if the suffix of `source` would not be |
1616 | /// appropriately aligned, or if the suffix is not a valid instance of |
1617 | /// `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], you |
1618 | /// can [infallibly discard the alignment error][ConvertError::from]. |
1619 | /// |
1620 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1621 | /// |
1622 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1623 | /// [self-unaligned]: Unaligned |
1624 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1625 | /// |
1626 | /// # Compile-Time Assertions |
1627 | /// |
1628 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1629 | /// component is zero-sized. Attempting to use this method on such types |
1630 | /// results in a compile-time assertion error; e.g.: |
1631 | /// |
1632 | /// ```compile_fail,E0080 |
1633 | /// use zerocopy::*; |
1634 | /// # use zerocopy_derive::*; |
1635 | /// |
1636 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
1637 | /// #[repr(C)] |
1638 | /// struct ZSTy { |
1639 | /// leading_sized: u16, |
1640 | /// trailing_dst: [()], |
1641 | /// } |
1642 | /// |
1643 | /// let _ = ZSTy::try_ref_from_suffix(0u16.as_bytes()); // âš Compile Error! |
1644 | /// ``` |
1645 | /// |
1646 | /// # Examples |
1647 | /// |
1648 | /// ``` |
1649 | /// use zerocopy::TryFromBytes; |
1650 | /// # use zerocopy_derive::*; |
1651 | /// |
1652 | /// // The only valid value of this type is the byte `0xC0` |
1653 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1654 | /// #[repr(u8)] |
1655 | /// enum C0 { xC0 = 0xC0 } |
1656 | /// |
1657 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1658 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1659 | /// #[repr(C)] |
1660 | /// struct C0C0(C0, C0); |
1661 | /// |
1662 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1663 | /// #[repr(C)] |
1664 | /// struct Packet { |
1665 | /// magic_number: C0C0, |
1666 | /// mug_size: u8, |
1667 | /// temperature: u8, |
1668 | /// marshmallows: [[u8; 2]], |
1669 | /// } |
1670 | /// |
1671 | /// // These are more bytes than are needed to encode a `Packet`. |
1672 | /// let bytes = &[0, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
1673 | /// |
1674 | /// let (prefix, packet) = Packet::try_ref_from_suffix(bytes).unwrap(); |
1675 | /// |
1676 | /// assert_eq!(packet.mug_size, 240); |
1677 | /// assert_eq!(packet.temperature, 77); |
1678 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
1679 | /// assert_eq!(prefix, &[0u8][..]); |
1680 | /// |
1681 | /// // These bytes are not valid instance of `Packet`. |
1682 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0x10][..]; |
1683 | /// assert!(Packet::try_ref_from_suffix(bytes).is_err()); |
1684 | /// ``` |
1685 | #[must_use = "has no side effects" ] |
1686 | #[inline ] |
1687 | fn try_ref_from_suffix(source: &[u8]) -> Result<(&[u8], &Self), TryCastError<&[u8], Self>> |
1688 | where |
1689 | Self: KnownLayout + Immutable, |
1690 | { |
1691 | static_assert_dst_is_not_zst!(Self); |
1692 | try_ref_from_prefix_suffix(source, CastType::Suffix, None).map(swap) |
1693 | } |
1694 | |
1695 | /// Attempts to interpret the given `source` as a `&mut Self` without |
1696 | /// copying. |
1697 | /// |
1698 | /// If the bytes of `source` are a valid instance of `Self`, this method |
1699 | /// returns a reference to those bytes interpreted as a `Self`. If the |
1700 | /// length of `source` is not a [valid size of `Self`][valid-size], or if |
1701 | /// `source` is not appropriately aligned, or if `source` is not a valid |
1702 | /// instance of `Self`, this returns `Err`. If [`Self: |
1703 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
1704 | /// error][ConvertError::from]. |
1705 | /// |
1706 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1707 | /// |
1708 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1709 | /// [self-unaligned]: Unaligned |
1710 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1711 | /// |
1712 | /// # Compile-Time Assertions |
1713 | /// |
1714 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1715 | /// component is zero-sized. Attempting to use this method on such types |
1716 | /// results in a compile-time assertion error; e.g.: |
1717 | /// |
1718 | /// ```compile_fail,E0080 |
1719 | /// use zerocopy::*; |
1720 | /// # use zerocopy_derive::*; |
1721 | /// |
1722 | /// #[derive(TryFromBytes, KnownLayout)] |
1723 | /// #[repr(C)] |
1724 | /// struct ZSTy { |
1725 | /// leading_sized: [u8; 2], |
1726 | /// trailing_dst: [()], |
1727 | /// } |
1728 | /// |
1729 | /// let mut source = [85, 85]; |
1730 | /// let _ = ZSTy::try_mut_from_bytes(&mut source[..]); // âš Compile Error! |
1731 | /// ``` |
1732 | /// |
1733 | /// # Examples |
1734 | /// |
1735 | /// ``` |
1736 | /// use zerocopy::TryFromBytes; |
1737 | /// # use zerocopy_derive::*; |
1738 | /// |
1739 | /// // The only valid value of this type is the byte `0xC0` |
1740 | /// #[derive(TryFromBytes, KnownLayout)] |
1741 | /// #[repr(u8)] |
1742 | /// enum C0 { xC0 = 0xC0 } |
1743 | /// |
1744 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1745 | /// #[derive(TryFromBytes, KnownLayout)] |
1746 | /// #[repr(C)] |
1747 | /// struct C0C0(C0, C0); |
1748 | /// |
1749 | /// #[derive(TryFromBytes, KnownLayout)] |
1750 | /// #[repr(C)] |
1751 | /// struct Packet { |
1752 | /// magic_number: C0C0, |
1753 | /// mug_size: u8, |
1754 | /// temperature: u8, |
1755 | /// marshmallows: [[u8; 2]], |
1756 | /// } |
1757 | /// |
1758 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..]; |
1759 | /// |
1760 | /// let packet = Packet::try_mut_from_bytes(bytes).unwrap(); |
1761 | /// |
1762 | /// assert_eq!(packet.mug_size, 240); |
1763 | /// assert_eq!(packet.temperature, 77); |
1764 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1765 | /// |
1766 | /// packet.temperature = 111; |
1767 | /// |
1768 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 0, 1, 2, 3, 4, 5]); |
1769 | /// |
1770 | /// // These bytes are not valid instance of `Packet`. |
1771 | /// let bytes = &mut [0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1772 | /// assert!(Packet::try_mut_from_bytes(bytes).is_err()); |
1773 | /// ``` |
1774 | #[must_use = "has no side effects" ] |
1775 | #[inline ] |
1776 | fn try_mut_from_bytes(bytes: &mut [u8]) -> Result<&mut Self, TryCastError<&mut [u8], Self>> |
1777 | where |
1778 | Self: KnownLayout, |
1779 | { |
1780 | static_assert_dst_is_not_zst!(Self); |
1781 | match Ptr::from_mut(bytes).try_cast_into_no_leftover::<Self, BecauseExclusive>(None) { |
1782 | Ok(source) => { |
1783 | // This call may panic. If that happens, it doesn't cause any soundness |
1784 | // issues, as we have not generated any invalid state which we need to |
1785 | // fix before returning. |
1786 | // |
1787 | // Note that one panic or post-monomorphization error condition is |
1788 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
1789 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
1790 | // condition will not happen. |
1791 | match source.try_into_valid() { |
1792 | Ok(source) => Ok(source.as_mut()), |
1793 | Err(e) => { |
1794 | Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into()) |
1795 | } |
1796 | } |
1797 | } |
1798 | Err(e) => Err(e.map_src(Ptr::as_mut).into()), |
1799 | } |
1800 | } |
1801 | |
1802 | /// Attempts to interpret the prefix of the given `source` as a `&mut |
1803 | /// Self`. |
1804 | /// |
1805 | /// This method computes the [largest possible size of `Self`][valid-size] |
1806 | /// that can fit in the leading bytes of `source`. If that prefix is a valid |
1807 | /// instance of `Self`, this method returns a reference to those bytes |
1808 | /// interpreted as `Self`, and a reference to the remaining bytes. If there |
1809 | /// are insufficient bytes, or if `source` is not appropriately aligned, or |
1810 | /// if the bytes are not a valid instance of `Self`, this returns `Err`. If |
1811 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
1812 | /// alignment error][ConvertError::from]. |
1813 | /// |
1814 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1815 | /// |
1816 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1817 | /// [self-unaligned]: Unaligned |
1818 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1819 | /// |
1820 | /// # Compile-Time Assertions |
1821 | /// |
1822 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1823 | /// component is zero-sized. Attempting to use this method on such types |
1824 | /// results in a compile-time assertion error; e.g.: |
1825 | /// |
1826 | /// ```compile_fail,E0080 |
1827 | /// use zerocopy::*; |
1828 | /// # use zerocopy_derive::*; |
1829 | /// |
1830 | /// #[derive(TryFromBytes, KnownLayout)] |
1831 | /// #[repr(C)] |
1832 | /// struct ZSTy { |
1833 | /// leading_sized: [u8; 2], |
1834 | /// trailing_dst: [()], |
1835 | /// } |
1836 | /// |
1837 | /// let mut source = [85, 85]; |
1838 | /// let _ = ZSTy::try_mut_from_prefix(&mut source[..]); // âš Compile Error! |
1839 | /// ``` |
1840 | /// |
1841 | /// # Examples |
1842 | /// |
1843 | /// ``` |
1844 | /// use zerocopy::TryFromBytes; |
1845 | /// # use zerocopy_derive::*; |
1846 | /// |
1847 | /// // The only valid value of this type is the byte `0xC0` |
1848 | /// #[derive(TryFromBytes, KnownLayout)] |
1849 | /// #[repr(u8)] |
1850 | /// enum C0 { xC0 = 0xC0 } |
1851 | /// |
1852 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1853 | /// #[derive(TryFromBytes, KnownLayout)] |
1854 | /// #[repr(C)] |
1855 | /// struct C0C0(C0, C0); |
1856 | /// |
1857 | /// #[derive(TryFromBytes, KnownLayout)] |
1858 | /// #[repr(C)] |
1859 | /// struct Packet { |
1860 | /// magic_number: C0C0, |
1861 | /// mug_size: u8, |
1862 | /// temperature: u8, |
1863 | /// marshmallows: [[u8; 2]], |
1864 | /// } |
1865 | /// |
1866 | /// // These are more bytes than are needed to encode a `Packet`. |
1867 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1868 | /// |
1869 | /// let (packet, suffix) = Packet::try_mut_from_prefix(bytes).unwrap(); |
1870 | /// |
1871 | /// assert_eq!(packet.mug_size, 240); |
1872 | /// assert_eq!(packet.temperature, 77); |
1873 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1874 | /// assert_eq!(suffix, &[6u8][..]); |
1875 | /// |
1876 | /// packet.temperature = 111; |
1877 | /// suffix[0] = 222; |
1878 | /// |
1879 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 0, 1, 2, 3, 4, 5, 222]); |
1880 | /// |
1881 | /// // These bytes are not valid instance of `Packet`. |
1882 | /// let bytes = &mut [0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1883 | /// assert!(Packet::try_mut_from_prefix(bytes).is_err()); |
1884 | /// ``` |
1885 | #[must_use = "has no side effects" ] |
1886 | #[inline ] |
1887 | fn try_mut_from_prefix( |
1888 | source: &mut [u8], |
1889 | ) -> Result<(&mut Self, &mut [u8]), TryCastError<&mut [u8], Self>> |
1890 | where |
1891 | Self: KnownLayout, |
1892 | { |
1893 | static_assert_dst_is_not_zst!(Self); |
1894 | try_mut_from_prefix_suffix(source, CastType::Prefix, None) |
1895 | } |
1896 | |
1897 | /// Attempts to interpret the suffix of the given `source` as a `&mut |
1898 | /// Self`. |
1899 | /// |
1900 | /// This method computes the [largest possible size of `Self`][valid-size] |
1901 | /// that can fit in the trailing bytes of `source`. If that suffix is a |
1902 | /// valid instance of `Self`, this method returns a reference to those bytes |
1903 | /// interpreted as `Self`, and a reference to the preceding bytes. If there |
1904 | /// are insufficient bytes, or if the suffix of `source` would not be |
1905 | /// appropriately aligned, or if the suffix is not a valid instance of |
1906 | /// `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], you |
1907 | /// can [infallibly discard the alignment error][ConvertError::from]. |
1908 | /// |
1909 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1910 | /// |
1911 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1912 | /// [self-unaligned]: Unaligned |
1913 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1914 | /// |
1915 | /// # Compile-Time Assertions |
1916 | /// |
1917 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1918 | /// component is zero-sized. Attempting to use this method on such types |
1919 | /// results in a compile-time assertion error; e.g.: |
1920 | /// |
1921 | /// ```compile_fail,E0080 |
1922 | /// use zerocopy::*; |
1923 | /// # use zerocopy_derive::*; |
1924 | /// |
1925 | /// #[derive(TryFromBytes, KnownLayout)] |
1926 | /// #[repr(C)] |
1927 | /// struct ZSTy { |
1928 | /// leading_sized: u16, |
1929 | /// trailing_dst: [()], |
1930 | /// } |
1931 | /// |
1932 | /// let mut source = [85, 85]; |
1933 | /// let _ = ZSTy::try_mut_from_suffix(&mut source[..]); // âš Compile Error! |
1934 | /// ``` |
1935 | /// |
1936 | /// # Examples |
1937 | /// |
1938 | /// ``` |
1939 | /// use zerocopy::TryFromBytes; |
1940 | /// # use zerocopy_derive::*; |
1941 | /// |
1942 | /// // The only valid value of this type is the byte `0xC0` |
1943 | /// #[derive(TryFromBytes, KnownLayout)] |
1944 | /// #[repr(u8)] |
1945 | /// enum C0 { xC0 = 0xC0 } |
1946 | /// |
1947 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1948 | /// #[derive(TryFromBytes, KnownLayout)] |
1949 | /// #[repr(C)] |
1950 | /// struct C0C0(C0, C0); |
1951 | /// |
1952 | /// #[derive(TryFromBytes, KnownLayout)] |
1953 | /// #[repr(C)] |
1954 | /// struct Packet { |
1955 | /// magic_number: C0C0, |
1956 | /// mug_size: u8, |
1957 | /// temperature: u8, |
1958 | /// marshmallows: [[u8; 2]], |
1959 | /// } |
1960 | /// |
1961 | /// // These are more bytes than are needed to encode a `Packet`. |
1962 | /// let bytes = &mut [0, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
1963 | /// |
1964 | /// let (prefix, packet) = Packet::try_mut_from_suffix(bytes).unwrap(); |
1965 | /// |
1966 | /// assert_eq!(packet.mug_size, 240); |
1967 | /// assert_eq!(packet.temperature, 77); |
1968 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
1969 | /// assert_eq!(prefix, &[0u8][..]); |
1970 | /// |
1971 | /// prefix[0] = 111; |
1972 | /// packet.temperature = 222; |
1973 | /// |
1974 | /// assert_eq!(bytes, [111, 0xC0, 0xC0, 240, 222, 2, 3, 4, 5, 6, 7]); |
1975 | /// |
1976 | /// // These bytes are not valid instance of `Packet`. |
1977 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0x10][..]; |
1978 | /// assert!(Packet::try_mut_from_suffix(bytes).is_err()); |
1979 | /// ``` |
1980 | #[must_use = "has no side effects" ] |
1981 | #[inline ] |
1982 | fn try_mut_from_suffix( |
1983 | source: &mut [u8], |
1984 | ) -> Result<(&mut [u8], &mut Self), TryCastError<&mut [u8], Self>> |
1985 | where |
1986 | Self: KnownLayout, |
1987 | { |
1988 | static_assert_dst_is_not_zst!(Self); |
1989 | try_mut_from_prefix_suffix(source, CastType::Suffix, None).map(swap) |
1990 | } |
1991 | |
1992 | /// Attempts to interpret the given `source` as a `&Self` with a DST length |
1993 | /// equal to `count`. |
1994 | /// |
1995 | /// This method attempts to return a reference to `source` interpreted as a |
1996 | /// `Self` with `count` trailing elements. If the length of `source` is not |
1997 | /// equal to the size of `Self` with `count` elements, if `source` is not |
1998 | /// appropriately aligned, or if `source` does not contain a valid instance |
1999 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2000 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2001 | /// |
2002 | /// [self-unaligned]: Unaligned |
2003 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2004 | /// |
2005 | /// # Examples |
2006 | /// |
2007 | /// ``` |
2008 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2009 | /// use zerocopy::TryFromBytes; |
2010 | /// # use zerocopy_derive::*; |
2011 | /// |
2012 | /// // The only valid value of this type is the byte `0xC0` |
2013 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2014 | /// #[repr(u8)] |
2015 | /// enum C0 { xC0 = 0xC0 } |
2016 | /// |
2017 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2018 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2019 | /// #[repr(C)] |
2020 | /// struct C0C0(C0, C0); |
2021 | /// |
2022 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2023 | /// #[repr(C)] |
2024 | /// struct Packet { |
2025 | /// magic_number: C0C0, |
2026 | /// mug_size: u8, |
2027 | /// temperature: u8, |
2028 | /// marshmallows: [[u8; 2]], |
2029 | /// } |
2030 | /// |
2031 | /// let bytes = &[0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2032 | /// |
2033 | /// let packet = Packet::try_ref_from_bytes_with_elems(bytes, 3).unwrap(); |
2034 | /// |
2035 | /// assert_eq!(packet.mug_size, 240); |
2036 | /// assert_eq!(packet.temperature, 77); |
2037 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2038 | /// |
2039 | /// // These bytes are not valid instance of `Packet`. |
2040 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0xC0][..]; |
2041 | /// assert!(Packet::try_ref_from_bytes_with_elems(bytes, 3).is_err()); |
2042 | /// ``` |
2043 | /// |
2044 | /// Since an explicit `count` is provided, this method supports types with |
2045 | /// zero-sized trailing slice elements. Methods such as [`try_ref_from_bytes`] |
2046 | /// which do not take an explicit count do not support such types. |
2047 | /// |
2048 | /// ``` |
2049 | /// use core::num::NonZeroU16; |
2050 | /// use zerocopy::*; |
2051 | /// # use zerocopy_derive::*; |
2052 | /// |
2053 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
2054 | /// #[repr(C)] |
2055 | /// struct ZSTy { |
2056 | /// leading_sized: NonZeroU16, |
2057 | /// trailing_dst: [()], |
2058 | /// } |
2059 | /// |
2060 | /// let src = 0xCAFEu16.as_bytes(); |
2061 | /// let zsty = ZSTy::try_ref_from_bytes_with_elems(src, 42).unwrap(); |
2062 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2063 | /// ``` |
2064 | /// |
2065 | /// [`try_ref_from_bytes`]: TryFromBytes::try_ref_from_bytes |
2066 | #[must_use = "has no side effects" ] |
2067 | #[inline ] |
2068 | fn try_ref_from_bytes_with_elems( |
2069 | source: &[u8], |
2070 | count: usize, |
2071 | ) -> Result<&Self, TryCastError<&[u8], Self>> |
2072 | where |
2073 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
2074 | { |
2075 | match Ptr::from_ref(source).try_cast_into_no_leftover::<Self, BecauseImmutable>(Some(count)) |
2076 | { |
2077 | Ok(source) => { |
2078 | // This call may panic. If that happens, it doesn't cause any soundness |
2079 | // issues, as we have not generated any invalid state which we need to |
2080 | // fix before returning. |
2081 | // |
2082 | // Note that one panic or post-monomorphization error condition is |
2083 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2084 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2085 | // condition will not happen. |
2086 | match source.try_into_valid() { |
2087 | Ok(source) => Ok(source.as_ref()), |
2088 | Err(e) => { |
2089 | Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into()) |
2090 | } |
2091 | } |
2092 | } |
2093 | Err(e) => Err(e.map_src(Ptr::as_ref).into()), |
2094 | } |
2095 | } |
2096 | |
2097 | /// Attempts to interpret the prefix of the given `source` as a `&Self` with |
2098 | /// a DST length equal to `count`. |
2099 | /// |
2100 | /// This method attempts to return a reference to the prefix of `source` |
2101 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2102 | /// to the remaining bytes. If the length of `source` is less than the size |
2103 | /// of `Self` with `count` elements, if `source` is not appropriately |
2104 | /// aligned, or if the prefix of `source` does not contain a valid instance |
2105 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2106 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2107 | /// |
2108 | /// [self-unaligned]: Unaligned |
2109 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2110 | /// |
2111 | /// # Examples |
2112 | /// |
2113 | /// ``` |
2114 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2115 | /// use zerocopy::TryFromBytes; |
2116 | /// # use zerocopy_derive::*; |
2117 | /// |
2118 | /// // The only valid value of this type is the byte `0xC0` |
2119 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2120 | /// #[repr(u8)] |
2121 | /// enum C0 { xC0 = 0xC0 } |
2122 | /// |
2123 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2124 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2125 | /// #[repr(C)] |
2126 | /// struct C0C0(C0, C0); |
2127 | /// |
2128 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2129 | /// #[repr(C)] |
2130 | /// struct Packet { |
2131 | /// magic_number: C0C0, |
2132 | /// mug_size: u8, |
2133 | /// temperature: u8, |
2134 | /// marshmallows: [[u8; 2]], |
2135 | /// } |
2136 | /// |
2137 | /// let bytes = &[0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7, 8][..]; |
2138 | /// |
2139 | /// let (packet, suffix) = Packet::try_ref_from_prefix_with_elems(bytes, 3).unwrap(); |
2140 | /// |
2141 | /// assert_eq!(packet.mug_size, 240); |
2142 | /// assert_eq!(packet.temperature, 77); |
2143 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2144 | /// assert_eq!(suffix, &[8u8][..]); |
2145 | /// |
2146 | /// // These bytes are not valid instance of `Packet`. |
2147 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2148 | /// assert!(Packet::try_ref_from_prefix_with_elems(bytes, 3).is_err()); |
2149 | /// ``` |
2150 | /// |
2151 | /// Since an explicit `count` is provided, this method supports types with |
2152 | /// zero-sized trailing slice elements. Methods such as [`try_ref_from_prefix`] |
2153 | /// which do not take an explicit count do not support such types. |
2154 | /// |
2155 | /// ``` |
2156 | /// use core::num::NonZeroU16; |
2157 | /// use zerocopy::*; |
2158 | /// # use zerocopy_derive::*; |
2159 | /// |
2160 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
2161 | /// #[repr(C)] |
2162 | /// struct ZSTy { |
2163 | /// leading_sized: NonZeroU16, |
2164 | /// trailing_dst: [()], |
2165 | /// } |
2166 | /// |
2167 | /// let src = 0xCAFEu16.as_bytes(); |
2168 | /// let (zsty, _) = ZSTy::try_ref_from_prefix_with_elems(src, 42).unwrap(); |
2169 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2170 | /// ``` |
2171 | /// |
2172 | /// [`try_ref_from_prefix`]: TryFromBytes::try_ref_from_prefix |
2173 | #[must_use = "has no side effects" ] |
2174 | #[inline ] |
2175 | fn try_ref_from_prefix_with_elems( |
2176 | source: &[u8], |
2177 | count: usize, |
2178 | ) -> Result<(&Self, &[u8]), TryCastError<&[u8], Self>> |
2179 | where |
2180 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
2181 | { |
2182 | try_ref_from_prefix_suffix(source, CastType::Prefix, Some(count)) |
2183 | } |
2184 | |
2185 | /// Attempts to interpret the suffix of the given `source` as a `&Self` with |
2186 | /// a DST length equal to `count`. |
2187 | /// |
2188 | /// This method attempts to return a reference to the suffix of `source` |
2189 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2190 | /// to the preceding bytes. If the length of `source` is less than the size |
2191 | /// of `Self` with `count` elements, if the suffix of `source` is not |
2192 | /// appropriately aligned, or if the suffix of `source` does not contain a |
2193 | /// valid instance of `Self`, this returns `Err`. If [`Self: |
2194 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
2195 | /// error][ConvertError::from]. |
2196 | /// |
2197 | /// [self-unaligned]: Unaligned |
2198 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2199 | /// |
2200 | /// # Examples |
2201 | /// |
2202 | /// ``` |
2203 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2204 | /// use zerocopy::TryFromBytes; |
2205 | /// # use zerocopy_derive::*; |
2206 | /// |
2207 | /// // The only valid value of this type is the byte `0xC0` |
2208 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2209 | /// #[repr(u8)] |
2210 | /// enum C0 { xC0 = 0xC0 } |
2211 | /// |
2212 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2213 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2214 | /// #[repr(C)] |
2215 | /// struct C0C0(C0, C0); |
2216 | /// |
2217 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2218 | /// #[repr(C)] |
2219 | /// struct Packet { |
2220 | /// magic_number: C0C0, |
2221 | /// mug_size: u8, |
2222 | /// temperature: u8, |
2223 | /// marshmallows: [[u8; 2]], |
2224 | /// } |
2225 | /// |
2226 | /// let bytes = &[123, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2227 | /// |
2228 | /// let (prefix, packet) = Packet::try_ref_from_suffix_with_elems(bytes, 3).unwrap(); |
2229 | /// |
2230 | /// assert_eq!(packet.mug_size, 240); |
2231 | /// assert_eq!(packet.temperature, 77); |
2232 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2233 | /// assert_eq!(prefix, &[123u8][..]); |
2234 | /// |
2235 | /// // These bytes are not valid instance of `Packet`. |
2236 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2237 | /// assert!(Packet::try_ref_from_suffix_with_elems(bytes, 3).is_err()); |
2238 | /// ``` |
2239 | /// |
2240 | /// Since an explicit `count` is provided, this method supports types with |
2241 | /// zero-sized trailing slice elements. Methods such as [`try_ref_from_prefix`] |
2242 | /// which do not take an explicit count do not support such types. |
2243 | /// |
2244 | /// ``` |
2245 | /// use core::num::NonZeroU16; |
2246 | /// use zerocopy::*; |
2247 | /// # use zerocopy_derive::*; |
2248 | /// |
2249 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
2250 | /// #[repr(C)] |
2251 | /// struct ZSTy { |
2252 | /// leading_sized: NonZeroU16, |
2253 | /// trailing_dst: [()], |
2254 | /// } |
2255 | /// |
2256 | /// let src = 0xCAFEu16.as_bytes(); |
2257 | /// let (_, zsty) = ZSTy::try_ref_from_suffix_with_elems(src, 42).unwrap(); |
2258 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2259 | /// ``` |
2260 | /// |
2261 | /// [`try_ref_from_prefix`]: TryFromBytes::try_ref_from_prefix |
2262 | #[must_use = "has no side effects" ] |
2263 | #[inline ] |
2264 | fn try_ref_from_suffix_with_elems( |
2265 | source: &[u8], |
2266 | count: usize, |
2267 | ) -> Result<(&[u8], &Self), TryCastError<&[u8], Self>> |
2268 | where |
2269 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
2270 | { |
2271 | try_ref_from_prefix_suffix(source, CastType::Suffix, Some(count)).map(swap) |
2272 | } |
2273 | |
2274 | /// Attempts to interpret the given `source` as a `&mut Self` with a DST |
2275 | /// length equal to `count`. |
2276 | /// |
2277 | /// This method attempts to return a reference to `source` interpreted as a |
2278 | /// `Self` with `count` trailing elements. If the length of `source` is not |
2279 | /// equal to the size of `Self` with `count` elements, if `source` is not |
2280 | /// appropriately aligned, or if `source` does not contain a valid instance |
2281 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2282 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2283 | /// |
2284 | /// [self-unaligned]: Unaligned |
2285 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2286 | /// |
2287 | /// # Examples |
2288 | /// |
2289 | /// ``` |
2290 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2291 | /// use zerocopy::TryFromBytes; |
2292 | /// # use zerocopy_derive::*; |
2293 | /// |
2294 | /// // The only valid value of this type is the byte `0xC0` |
2295 | /// #[derive(TryFromBytes, KnownLayout)] |
2296 | /// #[repr(u8)] |
2297 | /// enum C0 { xC0 = 0xC0 } |
2298 | /// |
2299 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2300 | /// #[derive(TryFromBytes, KnownLayout)] |
2301 | /// #[repr(C)] |
2302 | /// struct C0C0(C0, C0); |
2303 | /// |
2304 | /// #[derive(TryFromBytes, KnownLayout)] |
2305 | /// #[repr(C)] |
2306 | /// struct Packet { |
2307 | /// magic_number: C0C0, |
2308 | /// mug_size: u8, |
2309 | /// temperature: u8, |
2310 | /// marshmallows: [[u8; 2]], |
2311 | /// } |
2312 | /// |
2313 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2314 | /// |
2315 | /// let packet = Packet::try_mut_from_bytes_with_elems(bytes, 3).unwrap(); |
2316 | /// |
2317 | /// assert_eq!(packet.mug_size, 240); |
2318 | /// assert_eq!(packet.temperature, 77); |
2319 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2320 | /// |
2321 | /// packet.temperature = 111; |
2322 | /// |
2323 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 2, 3, 4, 5, 6, 7]); |
2324 | /// |
2325 | /// // These bytes are not valid instance of `Packet`. |
2326 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0xC0][..]; |
2327 | /// assert!(Packet::try_mut_from_bytes_with_elems(bytes, 3).is_err()); |
2328 | /// ``` |
2329 | /// |
2330 | /// Since an explicit `count` is provided, this method supports types with |
2331 | /// zero-sized trailing slice elements. Methods such as [`try_mut_from_bytes`] |
2332 | /// which do not take an explicit count do not support such types. |
2333 | /// |
2334 | /// ``` |
2335 | /// use core::num::NonZeroU16; |
2336 | /// use zerocopy::*; |
2337 | /// # use zerocopy_derive::*; |
2338 | /// |
2339 | /// #[derive(TryFromBytes, KnownLayout)] |
2340 | /// #[repr(C)] |
2341 | /// struct ZSTy { |
2342 | /// leading_sized: NonZeroU16, |
2343 | /// trailing_dst: [()], |
2344 | /// } |
2345 | /// |
2346 | /// let mut src = 0xCAFEu16; |
2347 | /// let src = src.as_mut_bytes(); |
2348 | /// let zsty = ZSTy::try_mut_from_bytes_with_elems(src, 42).unwrap(); |
2349 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2350 | /// ``` |
2351 | /// |
2352 | /// [`try_mut_from_bytes`]: TryFromBytes::try_mut_from_bytes |
2353 | #[must_use = "has no side effects" ] |
2354 | #[inline ] |
2355 | fn try_mut_from_bytes_with_elems( |
2356 | source: &mut [u8], |
2357 | count: usize, |
2358 | ) -> Result<&mut Self, TryCastError<&mut [u8], Self>> |
2359 | where |
2360 | Self: KnownLayout<PointerMetadata = usize>, |
2361 | { |
2362 | match Ptr::from_mut(source).try_cast_into_no_leftover::<Self, BecauseExclusive>(Some(count)) |
2363 | { |
2364 | Ok(source) => { |
2365 | // This call may panic. If that happens, it doesn't cause any soundness |
2366 | // issues, as we have not generated any invalid state which we need to |
2367 | // fix before returning. |
2368 | // |
2369 | // Note that one panic or post-monomorphization error condition is |
2370 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2371 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2372 | // condition will not happen. |
2373 | match source.try_into_valid() { |
2374 | Ok(source) => Ok(source.as_mut()), |
2375 | Err(e) => { |
2376 | Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into()) |
2377 | } |
2378 | } |
2379 | } |
2380 | Err(e) => Err(e.map_src(Ptr::as_mut).into()), |
2381 | } |
2382 | } |
2383 | |
2384 | /// Attempts to interpret the prefix of the given `source` as a `&mut Self` |
2385 | /// with a DST length equal to `count`. |
2386 | /// |
2387 | /// This method attempts to return a reference to the prefix of `source` |
2388 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2389 | /// to the remaining bytes. If the length of `source` is less than the size |
2390 | /// of `Self` with `count` elements, if `source` is not appropriately |
2391 | /// aligned, or if the prefix of `source` does not contain a valid instance |
2392 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2393 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2394 | /// |
2395 | /// [self-unaligned]: Unaligned |
2396 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2397 | /// |
2398 | /// # Examples |
2399 | /// |
2400 | /// ``` |
2401 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2402 | /// use zerocopy::TryFromBytes; |
2403 | /// # use zerocopy_derive::*; |
2404 | /// |
2405 | /// // The only valid value of this type is the byte `0xC0` |
2406 | /// #[derive(TryFromBytes, KnownLayout)] |
2407 | /// #[repr(u8)] |
2408 | /// enum C0 { xC0 = 0xC0 } |
2409 | /// |
2410 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2411 | /// #[derive(TryFromBytes, KnownLayout)] |
2412 | /// #[repr(C)] |
2413 | /// struct C0C0(C0, C0); |
2414 | /// |
2415 | /// #[derive(TryFromBytes, KnownLayout)] |
2416 | /// #[repr(C)] |
2417 | /// struct Packet { |
2418 | /// magic_number: C0C0, |
2419 | /// mug_size: u8, |
2420 | /// temperature: u8, |
2421 | /// marshmallows: [[u8; 2]], |
2422 | /// } |
2423 | /// |
2424 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7, 8][..]; |
2425 | /// |
2426 | /// let (packet, suffix) = Packet::try_mut_from_prefix_with_elems(bytes, 3).unwrap(); |
2427 | /// |
2428 | /// assert_eq!(packet.mug_size, 240); |
2429 | /// assert_eq!(packet.temperature, 77); |
2430 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2431 | /// assert_eq!(suffix, &[8u8][..]); |
2432 | /// |
2433 | /// packet.temperature = 111; |
2434 | /// suffix[0] = 222; |
2435 | /// |
2436 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 2, 3, 4, 5, 6, 7, 222]); |
2437 | /// |
2438 | /// // These bytes are not valid instance of `Packet`. |
2439 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2440 | /// assert!(Packet::try_mut_from_prefix_with_elems(bytes, 3).is_err()); |
2441 | /// ``` |
2442 | /// |
2443 | /// Since an explicit `count` is provided, this method supports types with |
2444 | /// zero-sized trailing slice elements. Methods such as [`try_mut_from_prefix`] |
2445 | /// which do not take an explicit count do not support such types. |
2446 | /// |
2447 | /// ``` |
2448 | /// use core::num::NonZeroU16; |
2449 | /// use zerocopy::*; |
2450 | /// # use zerocopy_derive::*; |
2451 | /// |
2452 | /// #[derive(TryFromBytes, KnownLayout)] |
2453 | /// #[repr(C)] |
2454 | /// struct ZSTy { |
2455 | /// leading_sized: NonZeroU16, |
2456 | /// trailing_dst: [()], |
2457 | /// } |
2458 | /// |
2459 | /// let mut src = 0xCAFEu16; |
2460 | /// let src = src.as_mut_bytes(); |
2461 | /// let (zsty, _) = ZSTy::try_mut_from_prefix_with_elems(src, 42).unwrap(); |
2462 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2463 | /// ``` |
2464 | /// |
2465 | /// [`try_mut_from_prefix`]: TryFromBytes::try_mut_from_prefix |
2466 | #[must_use = "has no side effects" ] |
2467 | #[inline ] |
2468 | fn try_mut_from_prefix_with_elems( |
2469 | source: &mut [u8], |
2470 | count: usize, |
2471 | ) -> Result<(&mut Self, &mut [u8]), TryCastError<&mut [u8], Self>> |
2472 | where |
2473 | Self: KnownLayout<PointerMetadata = usize>, |
2474 | { |
2475 | try_mut_from_prefix_suffix(source, CastType::Prefix, Some(count)) |
2476 | } |
2477 | |
2478 | /// Attempts to interpret the suffix of the given `source` as a `&mut Self` |
2479 | /// with a DST length equal to `count`. |
2480 | /// |
2481 | /// This method attempts to return a reference to the suffix of `source` |
2482 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2483 | /// to the preceding bytes. If the length of `source` is less than the size |
2484 | /// of `Self` with `count` elements, if the suffix of `source` is not |
2485 | /// appropriately aligned, or if the suffix of `source` does not contain a |
2486 | /// valid instance of `Self`, this returns `Err`. If [`Self: |
2487 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
2488 | /// error][ConvertError::from]. |
2489 | /// |
2490 | /// [self-unaligned]: Unaligned |
2491 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2492 | /// |
2493 | /// # Examples |
2494 | /// |
2495 | /// ``` |
2496 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2497 | /// use zerocopy::TryFromBytes; |
2498 | /// # use zerocopy_derive::*; |
2499 | /// |
2500 | /// // The only valid value of this type is the byte `0xC0` |
2501 | /// #[derive(TryFromBytes, KnownLayout)] |
2502 | /// #[repr(u8)] |
2503 | /// enum C0 { xC0 = 0xC0 } |
2504 | /// |
2505 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2506 | /// #[derive(TryFromBytes, KnownLayout)] |
2507 | /// #[repr(C)] |
2508 | /// struct C0C0(C0, C0); |
2509 | /// |
2510 | /// #[derive(TryFromBytes, KnownLayout)] |
2511 | /// #[repr(C)] |
2512 | /// struct Packet { |
2513 | /// magic_number: C0C0, |
2514 | /// mug_size: u8, |
2515 | /// temperature: u8, |
2516 | /// marshmallows: [[u8; 2]], |
2517 | /// } |
2518 | /// |
2519 | /// let bytes = &mut [123, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2520 | /// |
2521 | /// let (prefix, packet) = Packet::try_mut_from_suffix_with_elems(bytes, 3).unwrap(); |
2522 | /// |
2523 | /// assert_eq!(packet.mug_size, 240); |
2524 | /// assert_eq!(packet.temperature, 77); |
2525 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2526 | /// assert_eq!(prefix, &[123u8][..]); |
2527 | /// |
2528 | /// prefix[0] = 111; |
2529 | /// packet.temperature = 222; |
2530 | /// |
2531 | /// assert_eq!(bytes, [111, 0xC0, 0xC0, 240, 222, 2, 3, 4, 5, 6, 7]); |
2532 | /// |
2533 | /// // These bytes are not valid instance of `Packet`. |
2534 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2535 | /// assert!(Packet::try_mut_from_suffix_with_elems(bytes, 3).is_err()); |
2536 | /// ``` |
2537 | /// |
2538 | /// Since an explicit `count` is provided, this method supports types with |
2539 | /// zero-sized trailing slice elements. Methods such as [`try_mut_from_prefix`] |
2540 | /// which do not take an explicit count do not support such types. |
2541 | /// |
2542 | /// ``` |
2543 | /// use core::num::NonZeroU16; |
2544 | /// use zerocopy::*; |
2545 | /// # use zerocopy_derive::*; |
2546 | /// |
2547 | /// #[derive(TryFromBytes, KnownLayout)] |
2548 | /// #[repr(C)] |
2549 | /// struct ZSTy { |
2550 | /// leading_sized: NonZeroU16, |
2551 | /// trailing_dst: [()], |
2552 | /// } |
2553 | /// |
2554 | /// let mut src = 0xCAFEu16; |
2555 | /// let src = src.as_mut_bytes(); |
2556 | /// let (_, zsty) = ZSTy::try_mut_from_suffix_with_elems(src, 42).unwrap(); |
2557 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2558 | /// ``` |
2559 | /// |
2560 | /// [`try_mut_from_prefix`]: TryFromBytes::try_mut_from_prefix |
2561 | #[must_use = "has no side effects" ] |
2562 | #[inline ] |
2563 | fn try_mut_from_suffix_with_elems( |
2564 | source: &mut [u8], |
2565 | count: usize, |
2566 | ) -> Result<(&mut [u8], &mut Self), TryCastError<&mut [u8], Self>> |
2567 | where |
2568 | Self: KnownLayout<PointerMetadata = usize>, |
2569 | { |
2570 | try_mut_from_prefix_suffix(source, CastType::Suffix, Some(count)).map(swap) |
2571 | } |
2572 | |
2573 | /// Attempts to read the given `source` as a `Self`. |
2574 | /// |
2575 | /// If `source.len() != size_of::<Self>()` or the bytes are not a valid |
2576 | /// instance of `Self`, this returns `Err`. |
2577 | /// |
2578 | /// # Examples |
2579 | /// |
2580 | /// ``` |
2581 | /// use zerocopy::TryFromBytes; |
2582 | /// # use zerocopy_derive::*; |
2583 | /// |
2584 | /// // The only valid value of this type is the byte `0xC0` |
2585 | /// #[derive(TryFromBytes)] |
2586 | /// #[repr(u8)] |
2587 | /// enum C0 { xC0 = 0xC0 } |
2588 | /// |
2589 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2590 | /// #[derive(TryFromBytes)] |
2591 | /// #[repr(C)] |
2592 | /// struct C0C0(C0, C0); |
2593 | /// |
2594 | /// #[derive(TryFromBytes)] |
2595 | /// #[repr(C)] |
2596 | /// struct Packet { |
2597 | /// magic_number: C0C0, |
2598 | /// mug_size: u8, |
2599 | /// temperature: u8, |
2600 | /// } |
2601 | /// |
2602 | /// let bytes = &[0xC0, 0xC0, 240, 77][..]; |
2603 | /// |
2604 | /// let packet = Packet::try_read_from_bytes(bytes).unwrap(); |
2605 | /// |
2606 | /// assert_eq!(packet.mug_size, 240); |
2607 | /// assert_eq!(packet.temperature, 77); |
2608 | /// |
2609 | /// // These bytes are not valid instance of `Packet`. |
2610 | /// let bytes = &mut [0x10, 0xC0, 240, 77][..]; |
2611 | /// assert!(Packet::try_read_from_bytes(bytes).is_err()); |
2612 | /// ``` |
2613 | #[must_use = "has no side effects" ] |
2614 | #[inline ] |
2615 | fn try_read_from_bytes(source: &[u8]) -> Result<Self, TryReadError<&[u8], Self>> |
2616 | where |
2617 | Self: Sized, |
2618 | { |
2619 | let candidate = match CoreMaybeUninit::<Self>::read_from_bytes(source) { |
2620 | Ok(candidate) => candidate, |
2621 | Err(e) => { |
2622 | return Err(TryReadError::Size(e.with_dst())); |
2623 | } |
2624 | }; |
2625 | // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of |
2626 | // its bytes are initialized. |
2627 | unsafe { try_read_from(source, candidate) } |
2628 | } |
2629 | |
2630 | /// Attempts to read a `Self` from the prefix of the given `source`. |
2631 | /// |
2632 | /// This attempts to read a `Self` from the first `size_of::<Self>()` bytes |
2633 | /// of `source`, returning that `Self` and any remaining bytes. If |
2634 | /// `source.len() < size_of::<Self>()` or the bytes are not a valid instance |
2635 | /// of `Self`, it returns `Err`. |
2636 | /// |
2637 | /// # Examples |
2638 | /// |
2639 | /// ``` |
2640 | /// use zerocopy::TryFromBytes; |
2641 | /// # use zerocopy_derive::*; |
2642 | /// |
2643 | /// // The only valid value of this type is the byte `0xC0` |
2644 | /// #[derive(TryFromBytes)] |
2645 | /// #[repr(u8)] |
2646 | /// enum C0 { xC0 = 0xC0 } |
2647 | /// |
2648 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2649 | /// #[derive(TryFromBytes)] |
2650 | /// #[repr(C)] |
2651 | /// struct C0C0(C0, C0); |
2652 | /// |
2653 | /// #[derive(TryFromBytes)] |
2654 | /// #[repr(C)] |
2655 | /// struct Packet { |
2656 | /// magic_number: C0C0, |
2657 | /// mug_size: u8, |
2658 | /// temperature: u8, |
2659 | /// } |
2660 | /// |
2661 | /// // These are more bytes than are needed to encode a `Packet`. |
2662 | /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
2663 | /// |
2664 | /// let (packet, suffix) = Packet::try_read_from_prefix(bytes).unwrap(); |
2665 | /// |
2666 | /// assert_eq!(packet.mug_size, 240); |
2667 | /// assert_eq!(packet.temperature, 77); |
2668 | /// assert_eq!(suffix, &[0u8, 1, 2, 3, 4, 5, 6][..]); |
2669 | /// |
2670 | /// // These bytes are not valid instance of `Packet`. |
2671 | /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
2672 | /// assert!(Packet::try_read_from_prefix(bytes).is_err()); |
2673 | /// ``` |
2674 | #[must_use = "has no side effects" ] |
2675 | #[inline ] |
2676 | fn try_read_from_prefix(source: &[u8]) -> Result<(Self, &[u8]), TryReadError<&[u8], Self>> |
2677 | where |
2678 | Self: Sized, |
2679 | { |
2680 | let (candidate, suffix) = match CoreMaybeUninit::<Self>::read_from_prefix(source) { |
2681 | Ok(candidate) => candidate, |
2682 | Err(e) => { |
2683 | return Err(TryReadError::Size(e.with_dst())); |
2684 | } |
2685 | }; |
2686 | // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of |
2687 | // its bytes are initialized. |
2688 | unsafe { try_read_from(source, candidate).map(|slf| (slf, suffix)) } |
2689 | } |
2690 | |
2691 | /// Attempts to read a `Self` from the suffix of the given `source`. |
2692 | /// |
2693 | /// This attempts to read a `Self` from the last `size_of::<Self>()` bytes |
2694 | /// of `source`, returning that `Self` and any preceding bytes. If |
2695 | /// `source.len() < size_of::<Self>()` or the bytes are not a valid instance |
2696 | /// of `Self`, it returns `Err`. |
2697 | /// |
2698 | /// # Examples |
2699 | /// |
2700 | /// ``` |
2701 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2702 | /// use zerocopy::TryFromBytes; |
2703 | /// # use zerocopy_derive::*; |
2704 | /// |
2705 | /// // The only valid value of this type is the byte `0xC0` |
2706 | /// #[derive(TryFromBytes)] |
2707 | /// #[repr(u8)] |
2708 | /// enum C0 { xC0 = 0xC0 } |
2709 | /// |
2710 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2711 | /// #[derive(TryFromBytes)] |
2712 | /// #[repr(C)] |
2713 | /// struct C0C0(C0, C0); |
2714 | /// |
2715 | /// #[derive(TryFromBytes)] |
2716 | /// #[repr(C)] |
2717 | /// struct Packet { |
2718 | /// magic_number: C0C0, |
2719 | /// mug_size: u8, |
2720 | /// temperature: u8, |
2721 | /// } |
2722 | /// |
2723 | /// // These are more bytes than are needed to encode a `Packet`. |
2724 | /// let bytes = &[0, 1, 2, 3, 4, 5, 0xC0, 0xC0, 240, 77][..]; |
2725 | /// |
2726 | /// let (prefix, packet) = Packet::try_read_from_suffix(bytes).unwrap(); |
2727 | /// |
2728 | /// assert_eq!(packet.mug_size, 240); |
2729 | /// assert_eq!(packet.temperature, 77); |
2730 | /// assert_eq!(prefix, &[0u8, 1, 2, 3, 4, 5][..]); |
2731 | /// |
2732 | /// // These bytes are not valid instance of `Packet`. |
2733 | /// let bytes = &[0, 1, 2, 3, 4, 5, 0x10, 0xC0, 240, 77][..]; |
2734 | /// assert!(Packet::try_read_from_suffix(bytes).is_err()); |
2735 | /// ``` |
2736 | #[must_use = "has no side effects" ] |
2737 | #[inline ] |
2738 | fn try_read_from_suffix(source: &[u8]) -> Result<(&[u8], Self), TryReadError<&[u8], Self>> |
2739 | where |
2740 | Self: Sized, |
2741 | { |
2742 | let (prefix, candidate) = match CoreMaybeUninit::<Self>::read_from_suffix(source) { |
2743 | Ok(candidate) => candidate, |
2744 | Err(e) => { |
2745 | return Err(TryReadError::Size(e.with_dst())); |
2746 | } |
2747 | }; |
2748 | // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of |
2749 | // its bytes are initialized. |
2750 | unsafe { try_read_from(source, candidate).map(|slf| (prefix, slf)) } |
2751 | } |
2752 | } |
2753 | |
2754 | #[inline (always)] |
2755 | fn try_ref_from_prefix_suffix<T: TryFromBytes + KnownLayout + Immutable + ?Sized>( |
2756 | source: &[u8], |
2757 | cast_type: CastType, |
2758 | meta: Option<T::PointerMetadata>, |
2759 | ) -> Result<(&T, &[u8]), TryCastError<&[u8], T>> { |
2760 | match Ptr::from_ref(ptr:source).try_cast_into::<T, BecauseImmutable>(cast_type, meta) { |
2761 | Ok((source, prefix_suffix)) => { |
2762 | // This call may panic. If that happens, it doesn't cause any soundness |
2763 | // issues, as we have not generated any invalid state which we need to |
2764 | // fix before returning. |
2765 | // |
2766 | // Note that one panic or post-monomorphization error condition is |
2767 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2768 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2769 | // condition will not happen. |
2770 | match source.try_into_valid() { |
2771 | Ok(valid) => Ok((valid.as_ref(), prefix_suffix.as_ref())), |
2772 | Err(e) => Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into()), |
2773 | } |
2774 | } |
2775 | Err(e) => Err(e.map_src(Ptr::as_ref).into()), |
2776 | } |
2777 | } |
2778 | |
2779 | #[inline (always)] |
2780 | fn try_mut_from_prefix_suffix<T: TryFromBytes + KnownLayout + ?Sized>( |
2781 | candidate: &mut [u8], |
2782 | cast_type: CastType, |
2783 | meta: Option<T::PointerMetadata>, |
2784 | ) -> Result<(&mut T, &mut [u8]), TryCastError<&mut [u8], T>> { |
2785 | match Ptr::from_mut(ptr:candidate).try_cast_into::<T, BecauseExclusive>(cast_type, meta) { |
2786 | Ok((candidate, prefix_suffix)) => { |
2787 | // This call may panic. If that happens, it doesn't cause any soundness |
2788 | // issues, as we have not generated any invalid state which we need to |
2789 | // fix before returning. |
2790 | // |
2791 | // Note that one panic or post-monomorphization error condition is |
2792 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2793 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2794 | // condition will not happen. |
2795 | match candidate.try_into_valid() { |
2796 | Ok(valid) => Ok((valid.as_mut(), prefix_suffix.as_mut())), |
2797 | Err(e) => Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into()), |
2798 | } |
2799 | } |
2800 | Err(e) => Err(e.map_src(Ptr::as_mut).into()), |
2801 | } |
2802 | } |
2803 | |
2804 | #[inline (always)] |
2805 | fn swap<T, U>((t: T, u: U): (T, U)) -> (U, T) { |
2806 | (u, t) |
2807 | } |
2808 | |
2809 | /// # Safety |
2810 | /// |
2811 | /// All bytes of `candidate` must be initialized. |
2812 | #[inline (always)] |
2813 | unsafe fn try_read_from<S, T: TryFromBytes>( |
2814 | source: S, |
2815 | mut candidate: CoreMaybeUninit<T>, |
2816 | ) -> Result<T, TryReadError<S, T>> { |
2817 | // We use `from_mut` despite not mutating via `c_ptr` so that we don't need |
2818 | // to add a `T: Immutable` bound. |
2819 | let c_ptr: Ptr<'_, {unknown}, (Exclusive, …)> = Ptr::from_mut(&mut candidate); |
2820 | let c_ptr: Ptr<'_, T, (Exclusive, {unknown}, …)> = c_ptr.transparent_wrapper_into_inner(); |
2821 | // SAFETY: `c_ptr` has no uninitialized sub-ranges because it derived from |
2822 | // `candidate`, which the caller promises is entirely initialized. |
2823 | let c_ptr: Ptr<'_, T, (Exclusive, {unknown}, …)> = unsafe { c_ptr.assume_validity::<invariant::Initialized>() }; |
2824 | |
2825 | // This call may panic. If that happens, it doesn't cause any soundness |
2826 | // issues, as we have not generated any invalid state which we need to |
2827 | // fix before returning. |
2828 | // |
2829 | // Note that one panic or post-monomorphization error condition is |
2830 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2831 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2832 | // condition will not happen. |
2833 | if !T::is_bit_valid(candidate:c_ptr.forget_aligned()) { |
2834 | return Err(ValidityError::new(src:source).into()); |
2835 | } |
2836 | |
2837 | // SAFETY: We just validated that `candidate` contains a valid `T`. |
2838 | Ok(unsafe { candidate.assume_init() }) |
2839 | } |
2840 | |
2841 | /// Types for which a sequence of bytes all set to zero represents a valid |
2842 | /// instance of the type. |
2843 | /// |
2844 | /// Any memory region of the appropriate length which is guaranteed to contain |
2845 | /// only zero bytes can be viewed as any `FromZeros` type with no runtime |
2846 | /// overhead. This is useful whenever memory is known to be in a zeroed state, |
2847 | /// such memory returned from some allocation routines. |
2848 | /// |
2849 | /// # Warning: Padding bytes |
2850 | /// |
2851 | /// Note that, when a value is moved or copied, only the non-padding bytes of |
2852 | /// that value are guaranteed to be preserved. It is unsound to assume that |
2853 | /// values written to padding bytes are preserved after a move or copy. For more |
2854 | /// details, see the [`FromBytes` docs][frombytes-warning-padding-bytes]. |
2855 | /// |
2856 | /// [frombytes-warning-padding-bytes]: FromBytes#warning-padding-bytes |
2857 | /// |
2858 | /// # Implementation |
2859 | /// |
2860 | /// **Do not implement this trait yourself!** Instead, use |
2861 | /// [`#[derive(FromZeros)]`][derive]; e.g.: |
2862 | /// |
2863 | /// ``` |
2864 | /// # use zerocopy_derive::{FromZeros, Immutable}; |
2865 | /// #[derive(FromZeros)] |
2866 | /// struct MyStruct { |
2867 | /// # /* |
2868 | /// ... |
2869 | /// # */ |
2870 | /// } |
2871 | /// |
2872 | /// #[derive(FromZeros)] |
2873 | /// #[repr(u8)] |
2874 | /// enum MyEnum { |
2875 | /// # Variant0, |
2876 | /// # /* |
2877 | /// ... |
2878 | /// # */ |
2879 | /// } |
2880 | /// |
2881 | /// #[derive(FromZeros, Immutable)] |
2882 | /// union MyUnion { |
2883 | /// # variant: u8, |
2884 | /// # /* |
2885 | /// ... |
2886 | /// # */ |
2887 | /// } |
2888 | /// ``` |
2889 | /// |
2890 | /// This derive performs a sophisticated, compile-time safety analysis to |
2891 | /// determine whether a type is `FromZeros`. |
2892 | /// |
2893 | /// # Safety |
2894 | /// |
2895 | /// *This section describes what is required in order for `T: FromZeros`, and |
2896 | /// what unsafe code may assume of such types. If you don't plan on implementing |
2897 | /// `FromZeros` manually, and you don't plan on writing unsafe code that |
2898 | /// operates on `FromZeros` types, then you don't need to read this section.* |
2899 | /// |
2900 | /// If `T: FromZeros`, then unsafe code may assume that it is sound to produce a |
2901 | /// `T` whose bytes are all initialized to zero. If a type is marked as |
2902 | /// `FromZeros` which violates this contract, it may cause undefined behavior. |
2903 | /// |
2904 | /// `#[derive(FromZeros)]` only permits [types which satisfy these |
2905 | /// requirements][derive-analysis]. |
2906 | /// |
2907 | #[cfg_attr ( |
2908 | feature = "derive" , |
2909 | doc = "[derive]: zerocopy_derive::FromZeros" , |
2910 | doc = "[derive-analysis]: zerocopy_derive::FromZeros#analysis" |
2911 | )] |
2912 | #[cfg_attr ( |
2913 | not(feature = "derive" ), |
2914 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromZeros.html" ), |
2915 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromZeros.html#analysis" ), |
2916 | )] |
2917 | #[cfg_attr ( |
2918 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
2919 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(FromZeros)]` to `{Self}`" ) |
2920 | )] |
2921 | pub unsafe trait FromZeros: TryFromBytes { |
2922 | // The `Self: Sized` bound makes it so that `FromZeros` is still object |
2923 | // safe. |
2924 | #[doc (hidden)] |
2925 | fn only_derive_is_allowed_to_implement_this_trait() |
2926 | where |
2927 | Self: Sized; |
2928 | |
2929 | /// Overwrites `self` with zeros. |
2930 | /// |
2931 | /// Sets every byte in `self` to 0. While this is similar to doing `*self = |
2932 | /// Self::new_zeroed()`, it differs in that `zero` does not semantically |
2933 | /// drop the current value and replace it with a new one — it simply |
2934 | /// modifies the bytes of the existing value. |
2935 | /// |
2936 | /// # Examples |
2937 | /// |
2938 | /// ``` |
2939 | /// # use zerocopy::FromZeros; |
2940 | /// # use zerocopy_derive::*; |
2941 | /// # |
2942 | /// #[derive(FromZeros)] |
2943 | /// #[repr(C)] |
2944 | /// struct PacketHeader { |
2945 | /// src_port: [u8; 2], |
2946 | /// dst_port: [u8; 2], |
2947 | /// length: [u8; 2], |
2948 | /// checksum: [u8; 2], |
2949 | /// } |
2950 | /// |
2951 | /// let mut header = PacketHeader { |
2952 | /// src_port: 100u16.to_be_bytes(), |
2953 | /// dst_port: 200u16.to_be_bytes(), |
2954 | /// length: 300u16.to_be_bytes(), |
2955 | /// checksum: 400u16.to_be_bytes(), |
2956 | /// }; |
2957 | /// |
2958 | /// header.zero(); |
2959 | /// |
2960 | /// assert_eq!(header.src_port, [0, 0]); |
2961 | /// assert_eq!(header.dst_port, [0, 0]); |
2962 | /// assert_eq!(header.length, [0, 0]); |
2963 | /// assert_eq!(header.checksum, [0, 0]); |
2964 | /// ``` |
2965 | #[inline (always)] |
2966 | fn zero(&mut self) { |
2967 | let slf: *mut Self = self; |
2968 | let len = mem::size_of_val(self); |
2969 | // SAFETY: |
2970 | // - `self` is guaranteed by the type system to be valid for writes of |
2971 | // size `size_of_val(self)`. |
2972 | // - `u8`'s alignment is 1, and thus `self` is guaranteed to be aligned |
2973 | // as required by `u8`. |
2974 | // - Since `Self: FromZeros`, the all-zeros instance is a valid instance |
2975 | // of `Self.` |
2976 | // |
2977 | // TODO(#429): Add references to docs and quotes. |
2978 | unsafe { ptr::write_bytes(slf.cast::<u8>(), 0, len) }; |
2979 | } |
2980 | |
2981 | /// Creates an instance of `Self` from zeroed bytes. |
2982 | /// |
2983 | /// # Examples |
2984 | /// |
2985 | /// ``` |
2986 | /// # use zerocopy::FromZeros; |
2987 | /// # use zerocopy_derive::*; |
2988 | /// # |
2989 | /// #[derive(FromZeros)] |
2990 | /// #[repr(C)] |
2991 | /// struct PacketHeader { |
2992 | /// src_port: [u8; 2], |
2993 | /// dst_port: [u8; 2], |
2994 | /// length: [u8; 2], |
2995 | /// checksum: [u8; 2], |
2996 | /// } |
2997 | /// |
2998 | /// let header: PacketHeader = FromZeros::new_zeroed(); |
2999 | /// |
3000 | /// assert_eq!(header.src_port, [0, 0]); |
3001 | /// assert_eq!(header.dst_port, [0, 0]); |
3002 | /// assert_eq!(header.length, [0, 0]); |
3003 | /// assert_eq!(header.checksum, [0, 0]); |
3004 | /// ``` |
3005 | #[must_use = "has no side effects" ] |
3006 | #[inline (always)] |
3007 | fn new_zeroed() -> Self |
3008 | where |
3009 | Self: Sized, |
3010 | { |
3011 | // SAFETY: `FromZeros` says that the all-zeros bit pattern is legal. |
3012 | unsafe { mem::zeroed() } |
3013 | } |
3014 | |
3015 | /// Creates a `Box<Self>` from zeroed bytes. |
3016 | /// |
3017 | /// This function is useful for allocating large values on the heap and |
3018 | /// zero-initializing them, without ever creating a temporary instance of |
3019 | /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()` |
3020 | /// will allocate `[u8; 1048576]` directly on the heap; it does not require |
3021 | /// storing `[u8; 1048576]` in a temporary variable on the stack. |
3022 | /// |
3023 | /// On systems that use a heap implementation that supports allocating from |
3024 | /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may |
3025 | /// have performance benefits. |
3026 | /// |
3027 | /// # Errors |
3028 | /// |
3029 | /// Returns an error on allocation failure. Allocation failure is guaranteed |
3030 | /// never to cause a panic or an abort. |
3031 | #[must_use = "has no side effects (other than allocation)" ] |
3032 | #[cfg (any(feature = "alloc" , test))] |
3033 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3034 | #[inline ] |
3035 | fn new_box_zeroed() -> Result<Box<Self>, AllocError> |
3036 | where |
3037 | Self: Sized, |
3038 | { |
3039 | // If `T` is a ZST, then return a proper boxed instance of it. There is |
3040 | // no allocation, but `Box` does require a correct dangling pointer. |
3041 | let layout = Layout::new::<Self>(); |
3042 | if layout.size() == 0 { |
3043 | // Construct the `Box` from a dangling pointer to avoid calling |
3044 | // `Self::new_zeroed`. This ensures that stack space is never |
3045 | // allocated for `Self` even on lower opt-levels where this branch |
3046 | // might not get optimized out. |
3047 | |
3048 | // SAFETY: Per [1], when `T` is a ZST, `Box<T>`'s only validity |
3049 | // requirements are that the pointer is non-null and sufficiently |
3050 | // aligned. Per [2], `NonNull::dangling` produces a pointer which |
3051 | // is sufficiently aligned. Since the produced pointer is a |
3052 | // `NonNull`, it is non-null. |
3053 | // |
3054 | // [1] Per https://doc.rust-lang.org/nightly/std/boxed/index.html#memory-layout: |
3055 | // |
3056 | // For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. |
3057 | // |
3058 | // [2] Per https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.dangling: |
3059 | // |
3060 | // Creates a new `NonNull` that is dangling, but well-aligned. |
3061 | return Ok(unsafe { Box::from_raw(NonNull::dangling().as_ptr()) }); |
3062 | } |
3063 | |
3064 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
3065 | #[allow (clippy::undocumented_unsafe_blocks)] |
3066 | let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() }; |
3067 | if ptr.is_null() { |
3068 | return Err(AllocError); |
3069 | } |
3070 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
3071 | #[allow (clippy::undocumented_unsafe_blocks)] |
3072 | Ok(unsafe { Box::from_raw(ptr) }) |
3073 | } |
3074 | |
3075 | /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes. |
3076 | /// |
3077 | /// This function is useful for allocating large values of `[Self]` on the |
3078 | /// heap and zero-initializing them, without ever creating a temporary |
3079 | /// instance of `[Self; _]` on the stack. For example, |
3080 | /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on |
3081 | /// the heap; it does not require storing the slice on the stack. |
3082 | /// |
3083 | /// On systems that use a heap implementation that supports allocating from |
3084 | /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance |
3085 | /// benefits. |
3086 | /// |
3087 | /// If `Self` is a zero-sized type, then this function will return a |
3088 | /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any |
3089 | /// actual information, but its `len()` property will report the correct |
3090 | /// value. |
3091 | /// |
3092 | /// # Errors |
3093 | /// |
3094 | /// Returns an error on allocation failure. Allocation failure is |
3095 | /// guaranteed never to cause a panic or an abort. |
3096 | #[must_use = "has no side effects (other than allocation)" ] |
3097 | #[cfg (feature = "alloc" )] |
3098 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3099 | #[inline ] |
3100 | fn new_box_zeroed_with_elems(count: usize) -> Result<Box<Self>, AllocError> |
3101 | where |
3102 | Self: KnownLayout<PointerMetadata = usize>, |
3103 | { |
3104 | // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of |
3105 | // `new_box`. The referent of the pointer returned by `alloc_zeroed` |
3106 | // (and, consequently, the `Box` derived from it) is a valid instance of |
3107 | // `Self`, because `Self` is `FromZeros`. |
3108 | unsafe { crate::util::new_box(count, alloc::alloc::alloc_zeroed) } |
3109 | } |
3110 | |
3111 | #[deprecated (since = "0.8.0" , note = "renamed to `FromZeros::new_box_zeroed_with_elems`" )] |
3112 | #[doc (hidden)] |
3113 | #[cfg (feature = "alloc" )] |
3114 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3115 | #[must_use = "has no side effects (other than allocation)" ] |
3116 | #[inline (always)] |
3117 | fn new_box_slice_zeroed(len: usize) -> Result<Box<[Self]>, AllocError> |
3118 | where |
3119 | Self: Sized, |
3120 | { |
3121 | <[Self]>::new_box_zeroed_with_elems(len) |
3122 | } |
3123 | |
3124 | /// Creates a `Vec<Self>` from zeroed bytes. |
3125 | /// |
3126 | /// This function is useful for allocating large values of `Vec`s and |
3127 | /// zero-initializing them, without ever creating a temporary instance of |
3128 | /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For |
3129 | /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the |
3130 | /// heap; it does not require storing intermediate values on the stack. |
3131 | /// |
3132 | /// On systems that use a heap implementation that supports allocating from |
3133 | /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits. |
3134 | /// |
3135 | /// If `Self` is a zero-sized type, then this function will return a |
3136 | /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any |
3137 | /// actual information, but its `len()` property will report the correct |
3138 | /// value. |
3139 | /// |
3140 | /// # Errors |
3141 | /// |
3142 | /// Returns an error on allocation failure. Allocation failure is |
3143 | /// guaranteed never to cause a panic or an abort. |
3144 | #[must_use = "has no side effects (other than allocation)" ] |
3145 | #[cfg (feature = "alloc" )] |
3146 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3147 | #[inline (always)] |
3148 | fn new_vec_zeroed(len: usize) -> Result<Vec<Self>, AllocError> |
3149 | where |
3150 | Self: Sized, |
3151 | { |
3152 | <[Self]>::new_box_zeroed_with_elems(len).map(Into::into) |
3153 | } |
3154 | |
3155 | /// Extends a `Vec<Self>` by pushing `additional` new items onto the end of |
3156 | /// the vector. The new items are initialized with zeros. |
3157 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
3158 | #[cfg (feature = "alloc" )] |
3159 | #[cfg_attr (doc_cfg, doc(cfg(all(rust = "1.57.0" , feature = "alloc" ))))] |
3160 | #[inline (always)] |
3161 | fn extend_vec_zeroed(v: &mut Vec<Self>, additional: usize) -> Result<(), AllocError> |
3162 | where |
3163 | Self: Sized, |
3164 | { |
3165 | // PANICS: We pass `v.len()` for `position`, so the `position > v.len()` |
3166 | // panic condition is not satisfied. |
3167 | <Self as FromZeros>::insert_vec_zeroed(v, v.len(), additional) |
3168 | } |
3169 | |
3170 | /// Inserts `additional` new items into `Vec<Self>` at `position`. The new |
3171 | /// items are initialized with zeros. |
3172 | /// |
3173 | /// # Panics |
3174 | /// |
3175 | /// Panics if `position > v.len()`. |
3176 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
3177 | #[cfg (feature = "alloc" )] |
3178 | #[cfg_attr (doc_cfg, doc(cfg(all(rust = "1.57.0" , feature = "alloc" ))))] |
3179 | #[inline ] |
3180 | fn insert_vec_zeroed( |
3181 | v: &mut Vec<Self>, |
3182 | position: usize, |
3183 | additional: usize, |
3184 | ) -> Result<(), AllocError> |
3185 | where |
3186 | Self: Sized, |
3187 | { |
3188 | assert!(position <= v.len()); |
3189 | // We only conditionally compile on versions on which `try_reserve` is |
3190 | // stable; the Clippy lint is a false positive. |
3191 | #[allow (clippy::incompatible_msrv)] |
3192 | v.try_reserve(additional).map_err(|_| AllocError)?; |
3193 | // SAFETY: The `try_reserve` call guarantees that these cannot overflow: |
3194 | // * `ptr.add(position)` |
3195 | // * `position + additional` |
3196 | // * `v.len() + additional` |
3197 | // |
3198 | // `v.len() - position` cannot overflow because we asserted that |
3199 | // `position <= v.len()`. |
3200 | unsafe { |
3201 | // This is a potentially overlapping copy. |
3202 | let ptr = v.as_mut_ptr(); |
3203 | #[allow (clippy::arithmetic_side_effects)] |
3204 | ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position); |
3205 | ptr.add(position).write_bytes(0, additional); |
3206 | #[allow (clippy::arithmetic_side_effects)] |
3207 | v.set_len(v.len() + additional); |
3208 | } |
3209 | |
3210 | Ok(()) |
3211 | } |
3212 | } |
3213 | |
3214 | /// Analyzes whether a type is [`FromBytes`]. |
3215 | /// |
3216 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
3217 | /// the [safety conditions] of `FromBytes` and implements `FromBytes` and its |
3218 | /// supertraits if it is sound to do so. This derive can be applied to structs, |
3219 | /// enums, and unions; |
3220 | /// e.g.: |
3221 | /// |
3222 | /// ``` |
3223 | /// # use zerocopy_derive::{FromBytes, FromZeros, Immutable}; |
3224 | /// #[derive(FromBytes)] |
3225 | /// struct MyStruct { |
3226 | /// # /* |
3227 | /// ... |
3228 | /// # */ |
3229 | /// } |
3230 | /// |
3231 | /// #[derive(FromBytes)] |
3232 | /// #[repr(u8)] |
3233 | /// enum MyEnum { |
3234 | /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
3235 | /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
3236 | /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
3237 | /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
3238 | /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
3239 | /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
3240 | /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
3241 | /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
3242 | /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
3243 | /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
3244 | /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
3245 | /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
3246 | /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
3247 | /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
3248 | /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
3249 | /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
3250 | /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
3251 | /// # VFF, |
3252 | /// # /* |
3253 | /// ... |
3254 | /// # */ |
3255 | /// } |
3256 | /// |
3257 | /// #[derive(FromBytes, Immutable)] |
3258 | /// union MyUnion { |
3259 | /// # variant: u8, |
3260 | /// # /* |
3261 | /// ... |
3262 | /// # */ |
3263 | /// } |
3264 | /// ``` |
3265 | /// |
3266 | /// [safety conditions]: trait@FromBytes#safety |
3267 | /// |
3268 | /// # Analysis |
3269 | /// |
3270 | /// *This section describes, roughly, the analysis performed by this derive to |
3271 | /// determine whether it is sound to implement `FromBytes` for a given type. |
3272 | /// Unless you are modifying the implementation of this derive, or attempting to |
3273 | /// manually implement `FromBytes` for a type yourself, you don't need to read |
3274 | /// this section.* |
3275 | /// |
3276 | /// If a type has the following properties, then this derive can implement |
3277 | /// `FromBytes` for that type: |
3278 | /// |
3279 | /// - If the type is a struct, all of its fields must be `FromBytes`. |
3280 | /// - If the type is an enum: |
3281 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
3282 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
3283 | /// - The maximum number of discriminants must be used (so that every possible |
3284 | /// bit pattern is a valid one). Be very careful when using the `C`, |
3285 | /// `usize`, or `isize` representations, as their size is |
3286 | /// platform-dependent. |
3287 | /// - Its fields must be `FromBytes`. |
3288 | /// |
3289 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
3290 | /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
3291 | /// implementation details of this derive. |
3292 | /// |
3293 | /// ## Why isn't an explicit representation required for structs? |
3294 | /// |
3295 | /// Neither this derive, nor the [safety conditions] of `FromBytes`, requires |
3296 | /// that structs are marked with `#[repr(C)]`. |
3297 | /// |
3298 | /// Per the [Rust reference](reference), |
3299 | /// |
3300 | /// > The representation of a type can change the padding between fields, but |
3301 | /// > does not change the layout of the fields themselves. |
3302 | /// |
3303 | /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
3304 | /// |
3305 | /// Since the layout of structs only consists of padding bytes and field bytes, |
3306 | /// a struct is soundly `FromBytes` if: |
3307 | /// 1. its padding is soundly `FromBytes`, and |
3308 | /// 2. its fields are soundly `FromBytes`. |
3309 | /// |
3310 | /// The answer to the first question is always yes: padding bytes do not have |
3311 | /// any validity constraints. A [discussion] of this question in the Unsafe Code |
3312 | /// Guidelines Working Group concluded that it would be virtually unimaginable |
3313 | /// for future versions of rustc to add validity constraints to padding bytes. |
3314 | /// |
3315 | /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
3316 | /// |
3317 | /// Whether a struct is soundly `FromBytes` therefore solely depends on whether |
3318 | /// its fields are `FromBytes`. |
3319 | // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
3320 | // attribute. |
3321 | #[cfg (any(feature = "derive" , test))] |
3322 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
3323 | pub use zerocopy_derive::FromBytes; |
3324 | |
3325 | /// Types for which any bit pattern is valid. |
3326 | /// |
3327 | /// Any memory region of the appropriate length which contains initialized bytes |
3328 | /// can be viewed as any `FromBytes` type with no runtime overhead. This is |
3329 | /// useful for efficiently parsing bytes as structured data. |
3330 | /// |
3331 | /// # Warning: Padding bytes |
3332 | /// |
3333 | /// Note that, when a value is moved or copied, only the non-padding bytes of |
3334 | /// that value are guaranteed to be preserved. It is unsound to assume that |
3335 | /// values written to padding bytes are preserved after a move or copy. For |
3336 | /// example, the following is unsound: |
3337 | /// |
3338 | /// ```rust,no_run |
3339 | /// use core::mem::{size_of, transmute}; |
3340 | /// use zerocopy::FromZeros; |
3341 | /// # use zerocopy_derive::*; |
3342 | /// |
3343 | /// // Assume `Foo` is a type with padding bytes. |
3344 | /// #[derive(FromZeros, Default)] |
3345 | /// struct Foo { |
3346 | /// # /* |
3347 | /// ... |
3348 | /// # */ |
3349 | /// } |
3350 | /// |
3351 | /// let mut foo: Foo = Foo::default(); |
3352 | /// FromZeros::zero(&mut foo); |
3353 | /// // UNSOUND: Although `FromZeros::zero` writes zeros to all bytes of `foo`, |
3354 | /// // those writes are not guaranteed to be preserved in padding bytes when |
3355 | /// // `foo` is moved, so this may expose padding bytes as `u8`s. |
3356 | /// let foo_bytes: [u8; size_of::<Foo>()] = unsafe { transmute(foo) }; |
3357 | /// ``` |
3358 | /// |
3359 | /// # Implementation |
3360 | /// |
3361 | /// **Do not implement this trait yourself!** Instead, use |
3362 | /// [`#[derive(FromBytes)]`][derive]; e.g.: |
3363 | /// |
3364 | /// ``` |
3365 | /// # use zerocopy_derive::{FromBytes, Immutable}; |
3366 | /// #[derive(FromBytes)] |
3367 | /// struct MyStruct { |
3368 | /// # /* |
3369 | /// ... |
3370 | /// # */ |
3371 | /// } |
3372 | /// |
3373 | /// #[derive(FromBytes)] |
3374 | /// #[repr(u8)] |
3375 | /// enum MyEnum { |
3376 | /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
3377 | /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
3378 | /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
3379 | /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
3380 | /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
3381 | /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
3382 | /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
3383 | /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
3384 | /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
3385 | /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
3386 | /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
3387 | /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
3388 | /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
3389 | /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
3390 | /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
3391 | /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
3392 | /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
3393 | /// # VFF, |
3394 | /// # /* |
3395 | /// ... |
3396 | /// # */ |
3397 | /// } |
3398 | /// |
3399 | /// #[derive(FromBytes, Immutable)] |
3400 | /// union MyUnion { |
3401 | /// # variant: u8, |
3402 | /// # /* |
3403 | /// ... |
3404 | /// # */ |
3405 | /// } |
3406 | /// ``` |
3407 | /// |
3408 | /// This derive performs a sophisticated, compile-time safety analysis to |
3409 | /// determine whether a type is `FromBytes`. |
3410 | /// |
3411 | /// # Safety |
3412 | /// |
3413 | /// *This section describes what is required in order for `T: FromBytes`, and |
3414 | /// what unsafe code may assume of such types. If you don't plan on implementing |
3415 | /// `FromBytes` manually, and you don't plan on writing unsafe code that |
3416 | /// operates on `FromBytes` types, then you don't need to read this section.* |
3417 | /// |
3418 | /// If `T: FromBytes`, then unsafe code may assume that it is sound to produce a |
3419 | /// `T` whose bytes are initialized to any sequence of valid `u8`s (in other |
3420 | /// words, any byte value which is not uninitialized). If a type is marked as |
3421 | /// `FromBytes` which violates this contract, it may cause undefined behavior. |
3422 | /// |
3423 | /// `#[derive(FromBytes)]` only permits [types which satisfy these |
3424 | /// requirements][derive-analysis]. |
3425 | /// |
3426 | #[cfg_attr ( |
3427 | feature = "derive" , |
3428 | doc = "[derive]: zerocopy_derive::FromBytes" , |
3429 | doc = "[derive-analysis]: zerocopy_derive::FromBytes#analysis" |
3430 | )] |
3431 | #[cfg_attr ( |
3432 | not(feature = "derive" ), |
3433 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromBytes.html" ), |
3434 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromBytes.html#analysis" ), |
3435 | )] |
3436 | #[cfg_attr ( |
3437 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
3438 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(FromBytes)]` to `{Self}`" ) |
3439 | )] |
3440 | pub unsafe trait FromBytes: FromZeros { |
3441 | // The `Self: Sized` bound makes it so that `FromBytes` is still object |
3442 | // safe. |
3443 | #[doc (hidden)] |
3444 | fn only_derive_is_allowed_to_implement_this_trait() |
3445 | where |
3446 | Self: Sized; |
3447 | |
3448 | /// Interprets the given `source` as a `&Self`. |
3449 | /// |
3450 | /// This method attempts to return a reference to `source` interpreted as a |
3451 | /// `Self`. If the length of `source` is not a [valid size of |
3452 | /// `Self`][valid-size], or if `source` is not appropriately aligned, this |
3453 | /// returns `Err`. If [`Self: Unaligned`][self-unaligned], you can |
3454 | /// [infallibly discard the alignment error][size-error-from]. |
3455 | /// |
3456 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3457 | /// |
3458 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3459 | /// [self-unaligned]: Unaligned |
3460 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3461 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3462 | /// |
3463 | /// # Compile-Time Assertions |
3464 | /// |
3465 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3466 | /// component is zero-sized. Attempting to use this method on such types |
3467 | /// results in a compile-time assertion error; e.g.: |
3468 | /// |
3469 | /// ```compile_fail,E0080 |
3470 | /// use zerocopy::*; |
3471 | /// # use zerocopy_derive::*; |
3472 | /// |
3473 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3474 | /// #[repr(C)] |
3475 | /// struct ZSTy { |
3476 | /// leading_sized: u16, |
3477 | /// trailing_dst: [()], |
3478 | /// } |
3479 | /// |
3480 | /// let _ = ZSTy::ref_from_bytes(0u16.as_bytes()); // âš Compile Error! |
3481 | /// ``` |
3482 | /// |
3483 | /// # Examples |
3484 | /// |
3485 | /// ``` |
3486 | /// use zerocopy::FromBytes; |
3487 | /// # use zerocopy_derive::*; |
3488 | /// |
3489 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3490 | /// #[repr(C)] |
3491 | /// struct PacketHeader { |
3492 | /// src_port: [u8; 2], |
3493 | /// dst_port: [u8; 2], |
3494 | /// length: [u8; 2], |
3495 | /// checksum: [u8; 2], |
3496 | /// } |
3497 | /// |
3498 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3499 | /// #[repr(C)] |
3500 | /// struct Packet { |
3501 | /// header: PacketHeader, |
3502 | /// body: [u8], |
3503 | /// } |
3504 | /// |
3505 | /// // These bytes encode a `Packet`. |
3506 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11][..]; |
3507 | /// |
3508 | /// let packet = Packet::ref_from_bytes(bytes).unwrap(); |
3509 | /// |
3510 | /// assert_eq!(packet.header.src_port, [0, 1]); |
3511 | /// assert_eq!(packet.header.dst_port, [2, 3]); |
3512 | /// assert_eq!(packet.header.length, [4, 5]); |
3513 | /// assert_eq!(packet.header.checksum, [6, 7]); |
3514 | /// assert_eq!(packet.body, [8, 9, 10, 11]); |
3515 | /// ``` |
3516 | #[must_use = "has no side effects" ] |
3517 | #[inline ] |
3518 | fn ref_from_bytes(source: &[u8]) -> Result<&Self, CastError<&[u8], Self>> |
3519 | where |
3520 | Self: KnownLayout + Immutable, |
3521 | { |
3522 | static_assert_dst_is_not_zst!(Self); |
3523 | match Ptr::from_ref(source).try_cast_into_no_leftover::<_, BecauseImmutable>(None) { |
3524 | Ok(ptr) => Ok(ptr.bikeshed_recall_valid().as_ref()), |
3525 | Err(err) => Err(err.map_src(|src| src.as_ref())), |
3526 | } |
3527 | } |
3528 | |
3529 | /// Interprets the prefix of the given `source` as a `&Self` without |
3530 | /// copying. |
3531 | /// |
3532 | /// This method computes the [largest possible size of `Self`][valid-size] |
3533 | /// that can fit in the leading bytes of `source`, then attempts to return |
3534 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3535 | /// to the remaining bytes. If there are insufficient bytes, or if `source` |
3536 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
3537 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
3538 | /// error][size-error-from]. |
3539 | /// |
3540 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3541 | /// |
3542 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3543 | /// [self-unaligned]: Unaligned |
3544 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3545 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3546 | /// |
3547 | /// # Compile-Time Assertions |
3548 | /// |
3549 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3550 | /// component is zero-sized. See [`ref_from_prefix_with_elems`], which does |
3551 | /// support such types. Attempting to use this method on such types results |
3552 | /// in a compile-time assertion error; e.g.: |
3553 | /// |
3554 | /// ```compile_fail,E0080 |
3555 | /// use zerocopy::*; |
3556 | /// # use zerocopy_derive::*; |
3557 | /// |
3558 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3559 | /// #[repr(C)] |
3560 | /// struct ZSTy { |
3561 | /// leading_sized: u16, |
3562 | /// trailing_dst: [()], |
3563 | /// } |
3564 | /// |
3565 | /// let _ = ZSTy::ref_from_prefix(0u16.as_bytes()); // âš Compile Error! |
3566 | /// ``` |
3567 | /// |
3568 | /// [`ref_from_prefix_with_elems`]: FromBytes::ref_from_prefix_with_elems |
3569 | /// |
3570 | /// # Examples |
3571 | /// |
3572 | /// ``` |
3573 | /// use zerocopy::FromBytes; |
3574 | /// # use zerocopy_derive::*; |
3575 | /// |
3576 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3577 | /// #[repr(C)] |
3578 | /// struct PacketHeader { |
3579 | /// src_port: [u8; 2], |
3580 | /// dst_port: [u8; 2], |
3581 | /// length: [u8; 2], |
3582 | /// checksum: [u8; 2], |
3583 | /// } |
3584 | /// |
3585 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3586 | /// #[repr(C)] |
3587 | /// struct Packet { |
3588 | /// header: PacketHeader, |
3589 | /// body: [[u8; 2]], |
3590 | /// } |
3591 | /// |
3592 | /// // These are more bytes than are needed to encode a `Packet`. |
3593 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14][..]; |
3594 | /// |
3595 | /// let (packet, suffix) = Packet::ref_from_prefix(bytes).unwrap(); |
3596 | /// |
3597 | /// assert_eq!(packet.header.src_port, [0, 1]); |
3598 | /// assert_eq!(packet.header.dst_port, [2, 3]); |
3599 | /// assert_eq!(packet.header.length, [4, 5]); |
3600 | /// assert_eq!(packet.header.checksum, [6, 7]); |
3601 | /// assert_eq!(packet.body, [[8, 9], [10, 11], [12, 13]]); |
3602 | /// assert_eq!(suffix, &[14u8][..]); |
3603 | /// ``` |
3604 | #[must_use = "has no side effects" ] |
3605 | #[inline ] |
3606 | fn ref_from_prefix(source: &[u8]) -> Result<(&Self, &[u8]), CastError<&[u8], Self>> |
3607 | where |
3608 | Self: KnownLayout + Immutable, |
3609 | { |
3610 | static_assert_dst_is_not_zst!(Self); |
3611 | ref_from_prefix_suffix(source, None, CastType::Prefix) |
3612 | } |
3613 | |
3614 | /// Interprets the suffix of the given bytes as a `&Self`. |
3615 | /// |
3616 | /// This method computes the [largest possible size of `Self`][valid-size] |
3617 | /// that can fit in the trailing bytes of `source`, then attempts to return |
3618 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3619 | /// to the preceding bytes. If there are insufficient bytes, or if that |
3620 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
3621 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
3622 | /// alignment error][size-error-from]. |
3623 | /// |
3624 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3625 | /// |
3626 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3627 | /// [self-unaligned]: Unaligned |
3628 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3629 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3630 | /// |
3631 | /// # Compile-Time Assertions |
3632 | /// |
3633 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3634 | /// component is zero-sized. See [`ref_from_suffix_with_elems`], which does |
3635 | /// support such types. Attempting to use this method on such types results |
3636 | /// in a compile-time assertion error; e.g.: |
3637 | /// |
3638 | /// ```compile_fail,E0080 |
3639 | /// use zerocopy::*; |
3640 | /// # use zerocopy_derive::*; |
3641 | /// |
3642 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3643 | /// #[repr(C)] |
3644 | /// struct ZSTy { |
3645 | /// leading_sized: u16, |
3646 | /// trailing_dst: [()], |
3647 | /// } |
3648 | /// |
3649 | /// let _ = ZSTy::ref_from_suffix(0u16.as_bytes()); // âš Compile Error! |
3650 | /// ``` |
3651 | /// |
3652 | /// [`ref_from_suffix_with_elems`]: FromBytes::ref_from_suffix_with_elems |
3653 | /// |
3654 | /// # Examples |
3655 | /// |
3656 | /// ``` |
3657 | /// use zerocopy::FromBytes; |
3658 | /// # use zerocopy_derive::*; |
3659 | /// |
3660 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3661 | /// #[repr(C)] |
3662 | /// struct PacketTrailer { |
3663 | /// frame_check_sequence: [u8; 4], |
3664 | /// } |
3665 | /// |
3666 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
3667 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
3668 | /// |
3669 | /// let (prefix, trailer) = PacketTrailer::ref_from_suffix(bytes).unwrap(); |
3670 | /// |
3671 | /// assert_eq!(prefix, &[0, 1, 2, 3, 4, 5][..]); |
3672 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
3673 | /// ``` |
3674 | #[must_use = "has no side effects" ] |
3675 | #[inline ] |
3676 | fn ref_from_suffix(source: &[u8]) -> Result<(&[u8], &Self), CastError<&[u8], Self>> |
3677 | where |
3678 | Self: Immutable + KnownLayout, |
3679 | { |
3680 | static_assert_dst_is_not_zst!(Self); |
3681 | ref_from_prefix_suffix(source, None, CastType::Suffix).map(swap) |
3682 | } |
3683 | |
3684 | /// Interprets the given `source` as a `&mut Self`. |
3685 | /// |
3686 | /// This method attempts to return a reference to `source` interpreted as a |
3687 | /// `Self`. If the length of `source` is not a [valid size of |
3688 | /// `Self`][valid-size], or if `source` is not appropriately aligned, this |
3689 | /// returns `Err`. If [`Self: Unaligned`][self-unaligned], you can |
3690 | /// [infallibly discard the alignment error][size-error-from]. |
3691 | /// |
3692 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3693 | /// |
3694 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3695 | /// [self-unaligned]: Unaligned |
3696 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3697 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3698 | /// |
3699 | /// # Compile-Time Assertions |
3700 | /// |
3701 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3702 | /// component is zero-sized. See [`mut_from_prefix_with_elems`], which does |
3703 | /// support such types. Attempting to use this method on such types results |
3704 | /// in a compile-time assertion error; e.g.: |
3705 | /// |
3706 | /// ```compile_fail,E0080 |
3707 | /// use zerocopy::*; |
3708 | /// # use zerocopy_derive::*; |
3709 | /// |
3710 | /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)] |
3711 | /// #[repr(C, packed)] |
3712 | /// struct ZSTy { |
3713 | /// leading_sized: [u8; 2], |
3714 | /// trailing_dst: [()], |
3715 | /// } |
3716 | /// |
3717 | /// let mut source = [85, 85]; |
3718 | /// let _ = ZSTy::mut_from_bytes(&mut source[..]); // âš Compile Error! |
3719 | /// ``` |
3720 | /// |
3721 | /// [`mut_from_prefix_with_elems`]: FromBytes::mut_from_prefix_with_elems |
3722 | /// |
3723 | /// # Examples |
3724 | /// |
3725 | /// ``` |
3726 | /// use zerocopy::FromBytes; |
3727 | /// # use zerocopy_derive::*; |
3728 | /// |
3729 | /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)] |
3730 | /// #[repr(C)] |
3731 | /// struct PacketHeader { |
3732 | /// src_port: [u8; 2], |
3733 | /// dst_port: [u8; 2], |
3734 | /// length: [u8; 2], |
3735 | /// checksum: [u8; 2], |
3736 | /// } |
3737 | /// |
3738 | /// // These bytes encode a `PacketHeader`. |
3739 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
3740 | /// |
3741 | /// let header = PacketHeader::mut_from_bytes(bytes).unwrap(); |
3742 | /// |
3743 | /// assert_eq!(header.src_port, [0, 1]); |
3744 | /// assert_eq!(header.dst_port, [2, 3]); |
3745 | /// assert_eq!(header.length, [4, 5]); |
3746 | /// assert_eq!(header.checksum, [6, 7]); |
3747 | /// |
3748 | /// header.checksum = [0, 0]; |
3749 | /// |
3750 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0]); |
3751 | /// ``` |
3752 | #[must_use = "has no side effects" ] |
3753 | #[inline ] |
3754 | fn mut_from_bytes(source: &mut [u8]) -> Result<&mut Self, CastError<&mut [u8], Self>> |
3755 | where |
3756 | Self: IntoBytes + KnownLayout, |
3757 | { |
3758 | static_assert_dst_is_not_zst!(Self); |
3759 | match Ptr::from_mut(source).try_cast_into_no_leftover::<_, BecauseExclusive>(None) { |
3760 | Ok(ptr) => Ok(ptr.bikeshed_recall_valid().as_mut()), |
3761 | Err(err) => Err(err.map_src(|src| src.as_mut())), |
3762 | } |
3763 | } |
3764 | |
3765 | /// Interprets the prefix of the given `source` as a `&mut Self` without |
3766 | /// copying. |
3767 | /// |
3768 | /// This method computes the [largest possible size of `Self`][valid-size] |
3769 | /// that can fit in the leading bytes of `source`, then attempts to return |
3770 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3771 | /// to the remaining bytes. If there are insufficient bytes, or if `source` |
3772 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
3773 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
3774 | /// error][size-error-from]. |
3775 | /// |
3776 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3777 | /// |
3778 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3779 | /// [self-unaligned]: Unaligned |
3780 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3781 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3782 | /// |
3783 | /// # Compile-Time Assertions |
3784 | /// |
3785 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3786 | /// component is zero-sized. See [`mut_from_suffix_with_elems`], which does |
3787 | /// support such types. Attempting to use this method on such types results |
3788 | /// in a compile-time assertion error; e.g.: |
3789 | /// |
3790 | /// ```compile_fail,E0080 |
3791 | /// use zerocopy::*; |
3792 | /// # use zerocopy_derive::*; |
3793 | /// |
3794 | /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)] |
3795 | /// #[repr(C, packed)] |
3796 | /// struct ZSTy { |
3797 | /// leading_sized: [u8; 2], |
3798 | /// trailing_dst: [()], |
3799 | /// } |
3800 | /// |
3801 | /// let mut source = [85, 85]; |
3802 | /// let _ = ZSTy::mut_from_prefix(&mut source[..]); // âš Compile Error! |
3803 | /// ``` |
3804 | /// |
3805 | /// [`mut_from_suffix_with_elems`]: FromBytes::mut_from_suffix_with_elems |
3806 | /// |
3807 | /// # Examples |
3808 | /// |
3809 | /// ``` |
3810 | /// use zerocopy::FromBytes; |
3811 | /// # use zerocopy_derive::*; |
3812 | /// |
3813 | /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)] |
3814 | /// #[repr(C)] |
3815 | /// struct PacketHeader { |
3816 | /// src_port: [u8; 2], |
3817 | /// dst_port: [u8; 2], |
3818 | /// length: [u8; 2], |
3819 | /// checksum: [u8; 2], |
3820 | /// } |
3821 | /// |
3822 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
3823 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
3824 | /// |
3825 | /// let (header, body) = PacketHeader::mut_from_prefix(bytes).unwrap(); |
3826 | /// |
3827 | /// assert_eq!(header.src_port, [0, 1]); |
3828 | /// assert_eq!(header.dst_port, [2, 3]); |
3829 | /// assert_eq!(header.length, [4, 5]); |
3830 | /// assert_eq!(header.checksum, [6, 7]); |
3831 | /// assert_eq!(body, &[8, 9][..]); |
3832 | /// |
3833 | /// header.checksum = [0, 0]; |
3834 | /// body.fill(1); |
3835 | /// |
3836 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 1, 1]); |
3837 | /// ``` |
3838 | #[must_use = "has no side effects" ] |
3839 | #[inline ] |
3840 | fn mut_from_prefix( |
3841 | source: &mut [u8], |
3842 | ) -> Result<(&mut Self, &mut [u8]), CastError<&mut [u8], Self>> |
3843 | where |
3844 | Self: IntoBytes + KnownLayout, |
3845 | { |
3846 | static_assert_dst_is_not_zst!(Self); |
3847 | mut_from_prefix_suffix(source, None, CastType::Prefix) |
3848 | } |
3849 | |
3850 | /// Interprets the suffix of the given `source` as a `&mut Self` without |
3851 | /// copying. |
3852 | /// |
3853 | /// This method computes the [largest possible size of `Self`][valid-size] |
3854 | /// that can fit in the trailing bytes of `source`, then attempts to return |
3855 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3856 | /// to the preceding bytes. If there are insufficient bytes, or if that |
3857 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
3858 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
3859 | /// alignment error][size-error-from]. |
3860 | /// |
3861 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3862 | /// |
3863 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3864 | /// [self-unaligned]: Unaligned |
3865 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3866 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3867 | /// |
3868 | /// # Compile-Time Assertions |
3869 | /// |
3870 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3871 | /// component is zero-sized. Attempting to use this method on such types |
3872 | /// results in a compile-time assertion error; e.g.: |
3873 | /// |
3874 | /// ```compile_fail,E0080 |
3875 | /// use zerocopy::*; |
3876 | /// # use zerocopy_derive::*; |
3877 | /// |
3878 | /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)] |
3879 | /// #[repr(C, packed)] |
3880 | /// struct ZSTy { |
3881 | /// leading_sized: [u8; 2], |
3882 | /// trailing_dst: [()], |
3883 | /// } |
3884 | /// |
3885 | /// let mut source = [85, 85]; |
3886 | /// let _ = ZSTy::mut_from_suffix(&mut source[..]); // âš Compile Error! |
3887 | /// ``` |
3888 | /// |
3889 | /// # Examples |
3890 | /// |
3891 | /// ``` |
3892 | /// use zerocopy::FromBytes; |
3893 | /// # use zerocopy_derive::*; |
3894 | /// |
3895 | /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)] |
3896 | /// #[repr(C)] |
3897 | /// struct PacketTrailer { |
3898 | /// frame_check_sequence: [u8; 4], |
3899 | /// } |
3900 | /// |
3901 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
3902 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
3903 | /// |
3904 | /// let (prefix, trailer) = PacketTrailer::mut_from_suffix(bytes).unwrap(); |
3905 | /// |
3906 | /// assert_eq!(prefix, &[0u8, 1, 2, 3, 4, 5][..]); |
3907 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
3908 | /// |
3909 | /// prefix.fill(0); |
3910 | /// trailer.frame_check_sequence.fill(1); |
3911 | /// |
3912 | /// assert_eq!(bytes, [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]); |
3913 | /// ``` |
3914 | #[must_use = "has no side effects" ] |
3915 | #[inline ] |
3916 | fn mut_from_suffix( |
3917 | source: &mut [u8], |
3918 | ) -> Result<(&mut [u8], &mut Self), CastError<&mut [u8], Self>> |
3919 | where |
3920 | Self: IntoBytes + KnownLayout, |
3921 | { |
3922 | static_assert_dst_is_not_zst!(Self); |
3923 | mut_from_prefix_suffix(source, None, CastType::Suffix).map(swap) |
3924 | } |
3925 | |
3926 | /// Interprets the given `source` as a `&Self` with a DST length equal to |
3927 | /// `count`. |
3928 | /// |
3929 | /// This method attempts to return a reference to `source` interpreted as a |
3930 | /// `Self` with `count` trailing elements. If the length of `source` is not |
3931 | /// equal to the size of `Self` with `count` elements, or if `source` is not |
3932 | /// appropriately aligned, this returns `Err`. If [`Self: |
3933 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
3934 | /// error][size-error-from]. |
3935 | /// |
3936 | /// [self-unaligned]: Unaligned |
3937 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3938 | /// |
3939 | /// # Examples |
3940 | /// |
3941 | /// ``` |
3942 | /// use zerocopy::FromBytes; |
3943 | /// # use zerocopy_derive::*; |
3944 | /// |
3945 | /// # #[derive(Debug, PartialEq, Eq)] |
3946 | /// #[derive(FromBytes, Immutable)] |
3947 | /// #[repr(C)] |
3948 | /// struct Pixel { |
3949 | /// r: u8, |
3950 | /// g: u8, |
3951 | /// b: u8, |
3952 | /// a: u8, |
3953 | /// } |
3954 | /// |
3955 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7][..]; |
3956 | /// |
3957 | /// let pixels = <[Pixel]>::ref_from_bytes_with_elems(bytes, 2).unwrap(); |
3958 | /// |
3959 | /// assert_eq!(pixels, &[ |
3960 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
3961 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
3962 | /// ]); |
3963 | /// |
3964 | /// ``` |
3965 | /// |
3966 | /// Since an explicit `count` is provided, this method supports types with |
3967 | /// zero-sized trailing slice elements. Methods such as [`ref_from_bytes`] |
3968 | /// which do not take an explicit count do not support such types. |
3969 | /// |
3970 | /// ``` |
3971 | /// use zerocopy::*; |
3972 | /// # use zerocopy_derive::*; |
3973 | /// |
3974 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3975 | /// #[repr(C)] |
3976 | /// struct ZSTy { |
3977 | /// leading_sized: [u8; 2], |
3978 | /// trailing_dst: [()], |
3979 | /// } |
3980 | /// |
3981 | /// let src = &[85, 85][..]; |
3982 | /// let zsty = ZSTy::ref_from_bytes_with_elems(src, 42).unwrap(); |
3983 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
3984 | /// ``` |
3985 | /// |
3986 | /// [`ref_from_bytes`]: FromBytes::ref_from_bytes |
3987 | #[must_use = "has no side effects" ] |
3988 | #[inline ] |
3989 | fn ref_from_bytes_with_elems( |
3990 | source: &[u8], |
3991 | count: usize, |
3992 | ) -> Result<&Self, CastError<&[u8], Self>> |
3993 | where |
3994 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
3995 | { |
3996 | let source = Ptr::from_ref(source); |
3997 | let maybe_slf = source.try_cast_into_no_leftover::<_, BecauseImmutable>(Some(count)); |
3998 | match maybe_slf { |
3999 | Ok(slf) => Ok(slf.bikeshed_recall_valid().as_ref()), |
4000 | Err(err) => Err(err.map_src(|s| s.as_ref())), |
4001 | } |
4002 | } |
4003 | |
4004 | /// Interprets the prefix of the given `source` as a DST `&Self` with length |
4005 | /// equal to `count`. |
4006 | /// |
4007 | /// This method attempts to return a reference to the prefix of `source` |
4008 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4009 | /// to the remaining bytes. If there are insufficient bytes, or if `source` |
4010 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
4011 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
4012 | /// error][size-error-from]. |
4013 | /// |
4014 | /// [self-unaligned]: Unaligned |
4015 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4016 | /// |
4017 | /// # Examples |
4018 | /// |
4019 | /// ``` |
4020 | /// use zerocopy::FromBytes; |
4021 | /// # use zerocopy_derive::*; |
4022 | /// |
4023 | /// # #[derive(Debug, PartialEq, Eq)] |
4024 | /// #[derive(FromBytes, Immutable)] |
4025 | /// #[repr(C)] |
4026 | /// struct Pixel { |
4027 | /// r: u8, |
4028 | /// g: u8, |
4029 | /// b: u8, |
4030 | /// a: u8, |
4031 | /// } |
4032 | /// |
4033 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4034 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4035 | /// |
4036 | /// let (pixels, suffix) = <[Pixel]>::ref_from_prefix_with_elems(bytes, 2).unwrap(); |
4037 | /// |
4038 | /// assert_eq!(pixels, &[ |
4039 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4040 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4041 | /// ]); |
4042 | /// |
4043 | /// assert_eq!(suffix, &[8, 9]); |
4044 | /// ``` |
4045 | /// |
4046 | /// Since an explicit `count` is provided, this method supports types with |
4047 | /// zero-sized trailing slice elements. Methods such as [`ref_from_prefix`] |
4048 | /// which do not take an explicit count do not support such types. |
4049 | /// |
4050 | /// ``` |
4051 | /// use zerocopy::*; |
4052 | /// # use zerocopy_derive::*; |
4053 | /// |
4054 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
4055 | /// #[repr(C)] |
4056 | /// struct ZSTy { |
4057 | /// leading_sized: [u8; 2], |
4058 | /// trailing_dst: [()], |
4059 | /// } |
4060 | /// |
4061 | /// let src = &[85, 85][..]; |
4062 | /// let (zsty, _) = ZSTy::ref_from_prefix_with_elems(src, 42).unwrap(); |
4063 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4064 | /// ``` |
4065 | /// |
4066 | /// [`ref_from_prefix`]: FromBytes::ref_from_prefix |
4067 | #[must_use = "has no side effects" ] |
4068 | #[inline ] |
4069 | fn ref_from_prefix_with_elems( |
4070 | source: &[u8], |
4071 | count: usize, |
4072 | ) -> Result<(&Self, &[u8]), CastError<&[u8], Self>> |
4073 | where |
4074 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
4075 | { |
4076 | ref_from_prefix_suffix(source, Some(count), CastType::Prefix) |
4077 | } |
4078 | |
4079 | /// Interprets the suffix of the given `source` as a DST `&Self` with length |
4080 | /// equal to `count`. |
4081 | /// |
4082 | /// This method attempts to return a reference to the suffix of `source` |
4083 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4084 | /// to the preceding bytes. If there are insufficient bytes, or if that |
4085 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
4086 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
4087 | /// alignment error][size-error-from]. |
4088 | /// |
4089 | /// [self-unaligned]: Unaligned |
4090 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4091 | /// |
4092 | /// # Examples |
4093 | /// |
4094 | /// ``` |
4095 | /// use zerocopy::FromBytes; |
4096 | /// # use zerocopy_derive::*; |
4097 | /// |
4098 | /// # #[derive(Debug, PartialEq, Eq)] |
4099 | /// #[derive(FromBytes, Immutable)] |
4100 | /// #[repr(C)] |
4101 | /// struct Pixel { |
4102 | /// r: u8, |
4103 | /// g: u8, |
4104 | /// b: u8, |
4105 | /// a: u8, |
4106 | /// } |
4107 | /// |
4108 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4109 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4110 | /// |
4111 | /// let (prefix, pixels) = <[Pixel]>::ref_from_suffix_with_elems(bytes, 2).unwrap(); |
4112 | /// |
4113 | /// assert_eq!(prefix, &[0, 1]); |
4114 | /// |
4115 | /// assert_eq!(pixels, &[ |
4116 | /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
4117 | /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
4118 | /// ]); |
4119 | /// ``` |
4120 | /// |
4121 | /// Since an explicit `count` is provided, this method supports types with |
4122 | /// zero-sized trailing slice elements. Methods such as [`ref_from_suffix`] |
4123 | /// which do not take an explicit count do not support such types. |
4124 | /// |
4125 | /// ``` |
4126 | /// use zerocopy::*; |
4127 | /// # use zerocopy_derive::*; |
4128 | /// |
4129 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
4130 | /// #[repr(C)] |
4131 | /// struct ZSTy { |
4132 | /// leading_sized: [u8; 2], |
4133 | /// trailing_dst: [()], |
4134 | /// } |
4135 | /// |
4136 | /// let src = &[85, 85][..]; |
4137 | /// let (_, zsty) = ZSTy::ref_from_suffix_with_elems(src, 42).unwrap(); |
4138 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4139 | /// ``` |
4140 | /// |
4141 | /// [`ref_from_suffix`]: FromBytes::ref_from_suffix |
4142 | #[must_use = "has no side effects" ] |
4143 | #[inline ] |
4144 | fn ref_from_suffix_with_elems( |
4145 | source: &[u8], |
4146 | count: usize, |
4147 | ) -> Result<(&[u8], &Self), CastError<&[u8], Self>> |
4148 | where |
4149 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
4150 | { |
4151 | ref_from_prefix_suffix(source, Some(count), CastType::Suffix).map(swap) |
4152 | } |
4153 | |
4154 | /// Interprets the given `source` as a `&mut Self` with a DST length equal |
4155 | /// to `count`. |
4156 | /// |
4157 | /// This method attempts to return a reference to `source` interpreted as a |
4158 | /// `Self` with `count` trailing elements. If the length of `source` is not |
4159 | /// equal to the size of `Self` with `count` elements, or if `source` is not |
4160 | /// appropriately aligned, this returns `Err`. If [`Self: |
4161 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
4162 | /// error][size-error-from]. |
4163 | /// |
4164 | /// [self-unaligned]: Unaligned |
4165 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4166 | /// |
4167 | /// # Examples |
4168 | /// |
4169 | /// ``` |
4170 | /// use zerocopy::FromBytes; |
4171 | /// # use zerocopy_derive::*; |
4172 | /// |
4173 | /// # #[derive(Debug, PartialEq, Eq)] |
4174 | /// #[derive(KnownLayout, FromBytes, IntoBytes, Immutable)] |
4175 | /// #[repr(C)] |
4176 | /// struct Pixel { |
4177 | /// r: u8, |
4178 | /// g: u8, |
4179 | /// b: u8, |
4180 | /// a: u8, |
4181 | /// } |
4182 | /// |
4183 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
4184 | /// |
4185 | /// let pixels = <[Pixel]>::mut_from_bytes_with_elems(bytes, 2).unwrap(); |
4186 | /// |
4187 | /// assert_eq!(pixels, &[ |
4188 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4189 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4190 | /// ]); |
4191 | /// |
4192 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
4193 | /// |
4194 | /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0]); |
4195 | /// ``` |
4196 | /// |
4197 | /// Since an explicit `count` is provided, this method supports types with |
4198 | /// zero-sized trailing slice elements. Methods such as [`mut_from`] which |
4199 | /// do not take an explicit count do not support such types. |
4200 | /// |
4201 | /// ``` |
4202 | /// use zerocopy::*; |
4203 | /// # use zerocopy_derive::*; |
4204 | /// |
4205 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
4206 | /// #[repr(C, packed)] |
4207 | /// struct ZSTy { |
4208 | /// leading_sized: [u8; 2], |
4209 | /// trailing_dst: [()], |
4210 | /// } |
4211 | /// |
4212 | /// let src = &mut [85, 85][..]; |
4213 | /// let zsty = ZSTy::mut_from_bytes_with_elems(src, 42).unwrap(); |
4214 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4215 | /// ``` |
4216 | /// |
4217 | /// [`mut_from`]: FromBytes::mut_from |
4218 | #[must_use = "has no side effects" ] |
4219 | #[inline ] |
4220 | fn mut_from_bytes_with_elems( |
4221 | source: &mut [u8], |
4222 | count: usize, |
4223 | ) -> Result<&mut Self, CastError<&mut [u8], Self>> |
4224 | where |
4225 | Self: IntoBytes + KnownLayout<PointerMetadata = usize> + Immutable, |
4226 | { |
4227 | let source = Ptr::from_mut(source); |
4228 | let maybe_slf = source.try_cast_into_no_leftover::<_, BecauseImmutable>(Some(count)); |
4229 | match maybe_slf { |
4230 | Ok(slf) => Ok(slf.bikeshed_recall_valid().as_mut()), |
4231 | Err(err) => Err(err.map_src(|s| s.as_mut())), |
4232 | } |
4233 | } |
4234 | |
4235 | /// Interprets the prefix of the given `source` as a `&mut Self` with DST |
4236 | /// length equal to `count`. |
4237 | /// |
4238 | /// This method attempts to return a reference to the prefix of `source` |
4239 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4240 | /// to the preceding bytes. If there are insufficient bytes, or if `source` |
4241 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
4242 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
4243 | /// error][size-error-from]. |
4244 | /// |
4245 | /// [self-unaligned]: Unaligned |
4246 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4247 | /// |
4248 | /// # Examples |
4249 | /// |
4250 | /// ``` |
4251 | /// use zerocopy::FromBytes; |
4252 | /// # use zerocopy_derive::*; |
4253 | /// |
4254 | /// # #[derive(Debug, PartialEq, Eq)] |
4255 | /// #[derive(KnownLayout, FromBytes, IntoBytes, Immutable)] |
4256 | /// #[repr(C)] |
4257 | /// struct Pixel { |
4258 | /// r: u8, |
4259 | /// g: u8, |
4260 | /// b: u8, |
4261 | /// a: u8, |
4262 | /// } |
4263 | /// |
4264 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4265 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4266 | /// |
4267 | /// let (pixels, suffix) = <[Pixel]>::mut_from_prefix_with_elems(bytes, 2).unwrap(); |
4268 | /// |
4269 | /// assert_eq!(pixels, &[ |
4270 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4271 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4272 | /// ]); |
4273 | /// |
4274 | /// assert_eq!(suffix, &[8, 9]); |
4275 | /// |
4276 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
4277 | /// suffix.fill(1); |
4278 | /// |
4279 | /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0, 1, 1]); |
4280 | /// ``` |
4281 | /// |
4282 | /// Since an explicit `count` is provided, this method supports types with |
4283 | /// zero-sized trailing slice elements. Methods such as [`mut_from_prefix`] |
4284 | /// which do not take an explicit count do not support such types. |
4285 | /// |
4286 | /// ``` |
4287 | /// use zerocopy::*; |
4288 | /// # use zerocopy_derive::*; |
4289 | /// |
4290 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
4291 | /// #[repr(C, packed)] |
4292 | /// struct ZSTy { |
4293 | /// leading_sized: [u8; 2], |
4294 | /// trailing_dst: [()], |
4295 | /// } |
4296 | /// |
4297 | /// let src = &mut [85, 85][..]; |
4298 | /// let (zsty, _) = ZSTy::mut_from_prefix_with_elems(src, 42).unwrap(); |
4299 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4300 | /// ``` |
4301 | /// |
4302 | /// [`mut_from_prefix`]: FromBytes::mut_from_prefix |
4303 | #[must_use = "has no side effects" ] |
4304 | #[inline ] |
4305 | fn mut_from_prefix_with_elems( |
4306 | source: &mut [u8], |
4307 | count: usize, |
4308 | ) -> Result<(&mut Self, &mut [u8]), CastError<&mut [u8], Self>> |
4309 | where |
4310 | Self: IntoBytes + KnownLayout<PointerMetadata = usize>, |
4311 | { |
4312 | mut_from_prefix_suffix(source, Some(count), CastType::Prefix) |
4313 | } |
4314 | |
4315 | /// Interprets the suffix of the given `source` as a `&mut Self` with DST |
4316 | /// length equal to `count`. |
4317 | /// |
4318 | /// This method attempts to return a reference to the suffix of `source` |
4319 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4320 | /// to the remaining bytes. If there are insufficient bytes, or if that |
4321 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
4322 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
4323 | /// alignment error][size-error-from]. |
4324 | /// |
4325 | /// [self-unaligned]: Unaligned |
4326 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4327 | /// |
4328 | /// # Examples |
4329 | /// |
4330 | /// ``` |
4331 | /// use zerocopy::FromBytes; |
4332 | /// # use zerocopy_derive::*; |
4333 | /// |
4334 | /// # #[derive(Debug, PartialEq, Eq)] |
4335 | /// #[derive(FromBytes, IntoBytes, Immutable)] |
4336 | /// #[repr(C)] |
4337 | /// struct Pixel { |
4338 | /// r: u8, |
4339 | /// g: u8, |
4340 | /// b: u8, |
4341 | /// a: u8, |
4342 | /// } |
4343 | /// |
4344 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4345 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4346 | /// |
4347 | /// let (prefix, pixels) = <[Pixel]>::mut_from_suffix_with_elems(bytes, 2).unwrap(); |
4348 | /// |
4349 | /// assert_eq!(prefix, &[0, 1]); |
4350 | /// |
4351 | /// assert_eq!(pixels, &[ |
4352 | /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
4353 | /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
4354 | /// ]); |
4355 | /// |
4356 | /// prefix.fill(9); |
4357 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
4358 | /// |
4359 | /// assert_eq!(bytes, [9, 9, 2, 3, 4, 5, 0, 0, 0, 0]); |
4360 | /// ``` |
4361 | /// |
4362 | /// Since an explicit `count` is provided, this method supports types with |
4363 | /// zero-sized trailing slice elements. Methods such as [`mut_from_suffix`] |
4364 | /// which do not take an explicit count do not support such types. |
4365 | /// |
4366 | /// ``` |
4367 | /// use zerocopy::*; |
4368 | /// # use zerocopy_derive::*; |
4369 | /// |
4370 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
4371 | /// #[repr(C, packed)] |
4372 | /// struct ZSTy { |
4373 | /// leading_sized: [u8; 2], |
4374 | /// trailing_dst: [()], |
4375 | /// } |
4376 | /// |
4377 | /// let src = &mut [85, 85][..]; |
4378 | /// let (_, zsty) = ZSTy::mut_from_suffix_with_elems(src, 42).unwrap(); |
4379 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4380 | /// ``` |
4381 | /// |
4382 | /// [`mut_from_suffix`]: FromBytes::mut_from_suffix |
4383 | #[must_use = "has no side effects" ] |
4384 | #[inline ] |
4385 | fn mut_from_suffix_with_elems( |
4386 | source: &mut [u8], |
4387 | count: usize, |
4388 | ) -> Result<(&mut [u8], &mut Self), CastError<&mut [u8], Self>> |
4389 | where |
4390 | Self: IntoBytes + KnownLayout<PointerMetadata = usize>, |
4391 | { |
4392 | mut_from_prefix_suffix(source, Some(count), CastType::Suffix).map(swap) |
4393 | } |
4394 | |
4395 | /// Reads a copy of `Self` from the given `source`. |
4396 | /// |
4397 | /// If `source.len() != size_of::<Self>()`, `read_from_bytes` returns `Err`. |
4398 | /// |
4399 | /// # Examples |
4400 | /// |
4401 | /// ``` |
4402 | /// use zerocopy::FromBytes; |
4403 | /// # use zerocopy_derive::*; |
4404 | /// |
4405 | /// #[derive(FromBytes)] |
4406 | /// #[repr(C)] |
4407 | /// struct PacketHeader { |
4408 | /// src_port: [u8; 2], |
4409 | /// dst_port: [u8; 2], |
4410 | /// length: [u8; 2], |
4411 | /// checksum: [u8; 2], |
4412 | /// } |
4413 | /// |
4414 | /// // These bytes encode a `PacketHeader`. |
4415 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7][..]; |
4416 | /// |
4417 | /// let header = PacketHeader::read_from_bytes(bytes).unwrap(); |
4418 | /// |
4419 | /// assert_eq!(header.src_port, [0, 1]); |
4420 | /// assert_eq!(header.dst_port, [2, 3]); |
4421 | /// assert_eq!(header.length, [4, 5]); |
4422 | /// assert_eq!(header.checksum, [6, 7]); |
4423 | /// ``` |
4424 | #[must_use = "has no side effects" ] |
4425 | #[inline ] |
4426 | fn read_from_bytes(source: &[u8]) -> Result<Self, SizeError<&[u8], Self>> |
4427 | where |
4428 | Self: Sized, |
4429 | { |
4430 | match Ref::<_, Unalign<Self>>::sized_from(source) { |
4431 | Ok(r) => Ok(Ref::read(&r).into_inner()), |
4432 | Err(CastError::Size(e)) => Err(e.with_dst()), |
4433 | Err(CastError::Alignment(_)) => { |
4434 | // SAFETY: `Unalign<Self>` is trivially aligned, so |
4435 | // `Ref::sized_from` cannot fail due to unmet alignment |
4436 | // requirements. |
4437 | unsafe { core::hint::unreachable_unchecked() } |
4438 | } |
4439 | Err(CastError::Validity(i)) => match i {}, |
4440 | } |
4441 | } |
4442 | |
4443 | /// Reads a copy of `Self` from the prefix of the given `source`. |
4444 | /// |
4445 | /// This attempts to read a `Self` from the first `size_of::<Self>()` bytes |
4446 | /// of `source`, returning that `Self` and any remaining bytes. If |
4447 | /// `source.len() < size_of::<Self>()`, it returns `Err`. |
4448 | /// |
4449 | /// # Examples |
4450 | /// |
4451 | /// ``` |
4452 | /// use zerocopy::FromBytes; |
4453 | /// # use zerocopy_derive::*; |
4454 | /// |
4455 | /// #[derive(FromBytes)] |
4456 | /// #[repr(C)] |
4457 | /// struct PacketHeader { |
4458 | /// src_port: [u8; 2], |
4459 | /// dst_port: [u8; 2], |
4460 | /// length: [u8; 2], |
4461 | /// checksum: [u8; 2], |
4462 | /// } |
4463 | /// |
4464 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
4465 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4466 | /// |
4467 | /// let (header, body) = PacketHeader::read_from_prefix(bytes).unwrap(); |
4468 | /// |
4469 | /// assert_eq!(header.src_port, [0, 1]); |
4470 | /// assert_eq!(header.dst_port, [2, 3]); |
4471 | /// assert_eq!(header.length, [4, 5]); |
4472 | /// assert_eq!(header.checksum, [6, 7]); |
4473 | /// assert_eq!(body, [8, 9]); |
4474 | /// ``` |
4475 | #[must_use = "has no side effects" ] |
4476 | #[inline ] |
4477 | fn read_from_prefix(source: &[u8]) -> Result<(Self, &[u8]), SizeError<&[u8], Self>> |
4478 | where |
4479 | Self: Sized, |
4480 | { |
4481 | match Ref::<_, Unalign<Self>>::sized_from_prefix(source) { |
4482 | Ok((r, suffix)) => Ok((Ref::read(&r).into_inner(), suffix)), |
4483 | Err(CastError::Size(e)) => Err(e.with_dst()), |
4484 | Err(CastError::Alignment(_)) => { |
4485 | // SAFETY: `Unalign<Self>` is trivially aligned, so |
4486 | // `Ref::sized_from_prefix` cannot fail due to unmet alignment |
4487 | // requirements. |
4488 | unsafe { core::hint::unreachable_unchecked() } |
4489 | } |
4490 | Err(CastError::Validity(i)) => match i {}, |
4491 | } |
4492 | } |
4493 | |
4494 | /// Reads a copy of `Self` from the suffix of the given `source`. |
4495 | /// |
4496 | /// This attempts to read a `Self` from the last `size_of::<Self>()` bytes |
4497 | /// of `source`, returning that `Self` and any preceding bytes. If |
4498 | /// `source.len() < size_of::<Self>()`, it returns `Err`. |
4499 | /// |
4500 | /// # Examples |
4501 | /// |
4502 | /// ``` |
4503 | /// use zerocopy::FromBytes; |
4504 | /// # use zerocopy_derive::*; |
4505 | /// |
4506 | /// #[derive(FromBytes)] |
4507 | /// #[repr(C)] |
4508 | /// struct PacketTrailer { |
4509 | /// frame_check_sequence: [u8; 4], |
4510 | /// } |
4511 | /// |
4512 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
4513 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4514 | /// |
4515 | /// let (prefix, trailer) = PacketTrailer::read_from_suffix(bytes).unwrap(); |
4516 | /// |
4517 | /// assert_eq!(prefix, [0, 1, 2, 3, 4, 5]); |
4518 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
4519 | /// ``` |
4520 | #[must_use = "has no side effects" ] |
4521 | #[inline ] |
4522 | fn read_from_suffix(source: &[u8]) -> Result<(&[u8], Self), SizeError<&[u8], Self>> |
4523 | where |
4524 | Self: Sized, |
4525 | { |
4526 | match Ref::<_, Unalign<Self>>::sized_from_suffix(source) { |
4527 | Ok((prefix, r)) => Ok((prefix, Ref::read(&r).into_inner())), |
4528 | Err(CastError::Size(e)) => Err(e.with_dst()), |
4529 | Err(CastError::Alignment(_)) => { |
4530 | // SAFETY: `Unalign<Self>` is trivially aligned, so |
4531 | // `Ref::sized_from_suffix` cannot fail due to unmet alignment |
4532 | // requirements. |
4533 | unsafe { core::hint::unreachable_unchecked() } |
4534 | } |
4535 | Err(CastError::Validity(i)) => match i {}, |
4536 | } |
4537 | } |
4538 | |
4539 | /// Reads a copy of `self` from an `io::Read`. |
4540 | /// |
4541 | /// This is useful for interfacing with operating system byte sinks (files, |
4542 | /// sockets, etc.). |
4543 | /// |
4544 | /// # Examples |
4545 | /// |
4546 | /// ```no_run |
4547 | /// use zerocopy::{byteorder::big_endian::*, FromBytes}; |
4548 | /// use std::fs::File; |
4549 | /// # use zerocopy_derive::*; |
4550 | /// |
4551 | /// #[derive(FromBytes)] |
4552 | /// #[repr(C)] |
4553 | /// struct BitmapFileHeader { |
4554 | /// signature: [u8; 2], |
4555 | /// size: U32, |
4556 | /// reserved: U64, |
4557 | /// offset: U64, |
4558 | /// } |
4559 | /// |
4560 | /// let mut file = File::open("image.bin").unwrap(); |
4561 | /// let header = BitmapFileHeader::read_from_io(&mut file).unwrap(); |
4562 | /// ``` |
4563 | #[cfg (feature = "std" )] |
4564 | #[inline (always)] |
4565 | fn read_from_io<R>(mut src: R) -> io::Result<Self> |
4566 | where |
4567 | Self: Sized, |
4568 | R: io::Read, |
4569 | { |
4570 | let mut buf = CoreMaybeUninit::<Self>::zeroed(); |
4571 | let ptr = Ptr::from_mut(&mut buf); |
4572 | // SAFETY: `buf` consists entirely of initialized, zeroed bytes. |
4573 | let ptr = unsafe { ptr.assume_validity::<invariant::Initialized>() }; |
4574 | let ptr = ptr.as_bytes::<BecauseExclusive>(); |
4575 | src.read_exact(ptr.as_mut())?; |
4576 | // SAFETY: `buf` entirely consists of initialized bytes, and `Self` is |
4577 | // `FromBytes`. |
4578 | Ok(unsafe { buf.assume_init() }) |
4579 | } |
4580 | |
4581 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::ref_from_bytes`" )] |
4582 | #[doc (hidden)] |
4583 | #[must_use = "has no side effects" ] |
4584 | #[inline (always)] |
4585 | fn ref_from(source: &[u8]) -> Option<&Self> |
4586 | where |
4587 | Self: KnownLayout + Immutable, |
4588 | { |
4589 | Self::ref_from_bytes(source).ok() |
4590 | } |
4591 | |
4592 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::mut_from_bytes`" )] |
4593 | #[doc (hidden)] |
4594 | #[must_use = "has no side effects" ] |
4595 | #[inline (always)] |
4596 | fn mut_from(source: &mut [u8]) -> Option<&mut Self> |
4597 | where |
4598 | Self: KnownLayout + IntoBytes, |
4599 | { |
4600 | Self::mut_from_bytes(source).ok() |
4601 | } |
4602 | |
4603 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::ref_from_prefix_with_elems`" )] |
4604 | #[doc (hidden)] |
4605 | #[must_use = "has no side effects" ] |
4606 | #[inline (always)] |
4607 | fn slice_from_prefix(source: &[u8], count: usize) -> Option<(&[Self], &[u8])> |
4608 | where |
4609 | Self: Sized + Immutable, |
4610 | { |
4611 | <[Self]>::ref_from_prefix_with_elems(source, count).ok() |
4612 | } |
4613 | |
4614 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::ref_from_suffix_with_elems`" )] |
4615 | #[doc (hidden)] |
4616 | #[must_use = "has no side effects" ] |
4617 | #[inline (always)] |
4618 | fn slice_from_suffix(source: &[u8], count: usize) -> Option<(&[u8], &[Self])> |
4619 | where |
4620 | Self: Sized + Immutable, |
4621 | { |
4622 | <[Self]>::ref_from_suffix_with_elems(source, count).ok() |
4623 | } |
4624 | |
4625 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::mut_from_prefix_with_elems`" )] |
4626 | #[doc (hidden)] |
4627 | #[must_use = "has no side effects" ] |
4628 | #[inline (always)] |
4629 | fn mut_slice_from_prefix(source: &mut [u8], count: usize) -> Option<(&mut [Self], &mut [u8])> |
4630 | where |
4631 | Self: Sized + IntoBytes, |
4632 | { |
4633 | <[Self]>::mut_from_prefix_with_elems(source, count).ok() |
4634 | } |
4635 | |
4636 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::mut_from_suffix_with_elems`" )] |
4637 | #[doc (hidden)] |
4638 | #[must_use = "has no side effects" ] |
4639 | #[inline (always)] |
4640 | fn mut_slice_from_suffix(source: &mut [u8], count: usize) -> Option<(&mut [u8], &mut [Self])> |
4641 | where |
4642 | Self: Sized + IntoBytes, |
4643 | { |
4644 | <[Self]>::mut_from_suffix_with_elems(source, count).ok() |
4645 | } |
4646 | |
4647 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::read_from_bytes`" )] |
4648 | #[doc (hidden)] |
4649 | #[must_use = "has no side effects" ] |
4650 | #[inline (always)] |
4651 | fn read_from(source: &[u8]) -> Option<Self> |
4652 | where |
4653 | Self: Sized, |
4654 | { |
4655 | Self::read_from_bytes(source).ok() |
4656 | } |
4657 | } |
4658 | |
4659 | /// Interprets the given affix of the given bytes as a `&Self`. |
4660 | /// |
4661 | /// This method computes the largest possible size of `Self` that can fit in the |
4662 | /// prefix or suffix bytes of `source`, then attempts to return both a reference |
4663 | /// to those bytes interpreted as a `Self`, and a reference to the excess bytes. |
4664 | /// If there are insufficient bytes, or if that affix of `source` is not |
4665 | /// appropriately aligned, this returns `Err`. |
4666 | #[inline (always)] |
4667 | fn ref_from_prefix_suffix<T: FromBytes + KnownLayout + Immutable + ?Sized>( |
4668 | source: &[u8], |
4669 | meta: Option<T::PointerMetadata>, |
4670 | cast_type: CastType, |
4671 | ) -> Result<(&T, &[u8]), CastError<&[u8], T>> { |
4672 | let (slf, prefix_suffix) = PtrPtr<'_, [u8], (Shared, Aligned, …)>::from_ref(ptr:source) |
4673 | .try_cast_into::<_, BecauseImmutable>(cast_type, meta) |
4674 | .map_err(|err| err.map_src(|s| s.as_ref()))?; |
4675 | Ok((slf.bikeshed_recall_valid().as_ref(), prefix_suffix.as_ref())) |
4676 | } |
4677 | |
4678 | /// Interprets the given affix of the given bytes as a `&mut Self` without |
4679 | /// copying. |
4680 | /// |
4681 | /// This method computes the largest possible size of `Self` that can fit in the |
4682 | /// prefix or suffix bytes of `source`, then attempts to return both a reference |
4683 | /// to those bytes interpreted as a `Self`, and a reference to the excess bytes. |
4684 | /// If there are insufficient bytes, or if that affix of `source` is not |
4685 | /// appropriately aligned, this returns `Err`. |
4686 | #[inline (always)] |
4687 | fn mut_from_prefix_suffix<T: FromBytes + KnownLayout + ?Sized>( |
4688 | source: &mut [u8], |
4689 | meta: Option<T::PointerMetadata>, |
4690 | cast_type: CastType, |
4691 | ) -> Result<(&mut T, &mut [u8]), CastError<&mut [u8], T>> { |
4692 | let (slf, prefix_suffix) = PtrPtr<'_, [u8], (Exclusive, …)>::from_mut(ptr:source) |
4693 | .try_cast_into::<_, BecauseExclusive>(cast_type, meta) |
4694 | .map_err(|err| err.map_src(|s| s.as_mut()))?; |
4695 | Ok((slf.bikeshed_recall_valid().as_mut(), prefix_suffix.as_mut())) |
4696 | } |
4697 | |
4698 | /// Analyzes whether a type is [`IntoBytes`]. |
4699 | /// |
4700 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
4701 | /// the [safety conditions] of `IntoBytes` and implements `IntoBytes` if it is |
4702 | /// sound to do so. This derive can be applied to structs and enums (see below |
4703 | /// for union support); e.g.: |
4704 | /// |
4705 | /// ``` |
4706 | /// # use zerocopy_derive::{IntoBytes}; |
4707 | /// #[derive(IntoBytes)] |
4708 | /// #[repr(C)] |
4709 | /// struct MyStruct { |
4710 | /// # /* |
4711 | /// ... |
4712 | /// # */ |
4713 | /// } |
4714 | /// |
4715 | /// #[derive(IntoBytes)] |
4716 | /// #[repr(u8)] |
4717 | /// enum MyEnum { |
4718 | /// # Variant, |
4719 | /// # /* |
4720 | /// ... |
4721 | /// # */ |
4722 | /// } |
4723 | /// ``` |
4724 | /// |
4725 | /// [safety conditions]: trait@IntoBytes#safety |
4726 | /// |
4727 | /// # Error Messages |
4728 | /// |
4729 | /// On Rust toolchains prior to 1.78.0, due to the way that the custom derive |
4730 | /// for `IntoBytes` is implemented, you may get an error like this: |
4731 | /// |
4732 | /// ```text |
4733 | /// error[E0277]: the trait bound `(): PaddingFree<Foo, true>` is not satisfied |
4734 | /// --> lib.rs:23:10 |
4735 | /// | |
4736 | /// 1 | #[derive(IntoBytes)] |
4737 | /// | ^^^^^^^^^ the trait `PaddingFree<Foo, true>` is not implemented for `()` |
4738 | /// | |
4739 | /// = help: the following implementations were found: |
4740 | /// <() as PaddingFree<T, false>> |
4741 | /// ``` |
4742 | /// |
4743 | /// This error indicates that the type being annotated has padding bytes, which |
4744 | /// is illegal for `IntoBytes` types. Consider reducing the alignment of some |
4745 | /// fields by using types in the [`byteorder`] module, wrapping field types in |
4746 | /// [`Unalign`], adding explicit struct fields where those padding bytes would |
4747 | /// be, or using `#[repr(packed)]`. See the Rust Reference's page on [type |
4748 | /// layout] for more information about type layout and padding. |
4749 | /// |
4750 | /// [type layout]: https://doc.rust-lang.org/reference/type-layout.html |
4751 | /// |
4752 | /// # Unions |
4753 | /// |
4754 | /// Currently, union bit validity is [up in the air][union-validity], and so |
4755 | /// zerocopy does not support `#[derive(IntoBytes)]` on unions by default. |
4756 | /// However, implementing `IntoBytes` on a union type is likely sound on all |
4757 | /// existing Rust toolchains - it's just that it may become unsound in the |
4758 | /// future. You can opt-in to `#[derive(IntoBytes)]` support on unions by |
4759 | /// passing the unstable `zerocopy_derive_union_into_bytes` cfg: |
4760 | /// |
4761 | /// ```shell |
4762 | /// $ RUSTFLAGS='--cfg zerocopy_derive_union_into_bytes' cargo build |
4763 | /// ``` |
4764 | /// |
4765 | /// However, it is your responsibility to ensure that this derive is sound on |
4766 | /// the specific versions of the Rust toolchain you are using! We make no |
4767 | /// stability or soundness guarantees regarding this cfg, and may remove it at |
4768 | /// any point. |
4769 | /// |
4770 | /// We are actively working with Rust to stabilize the necessary language |
4771 | /// guarantees to support this in a forwards-compatible way, which will enable |
4772 | /// us to remove the cfg gate. As part of this effort, we need to know how much |
4773 | /// demand there is for this feature. If you would like to use `IntoBytes` on |
4774 | /// unions, [please let us know][discussion]. |
4775 | /// |
4776 | /// [union-validity]: https://github.com/rust-lang/unsafe-code-guidelines/issues/438 |
4777 | /// [discussion]: https://github.com/google/zerocopy/discussions/1802 |
4778 | /// |
4779 | /// # Analysis |
4780 | /// |
4781 | /// *This section describes, roughly, the analysis performed by this derive to |
4782 | /// determine whether it is sound to implement `IntoBytes` for a given type. |
4783 | /// Unless you are modifying the implementation of this derive, or attempting to |
4784 | /// manually implement `IntoBytes` for a type yourself, you don't need to read |
4785 | /// this section.* |
4786 | /// |
4787 | /// If a type has the following properties, then this derive can implement |
4788 | /// `IntoBytes` for that type: |
4789 | /// |
4790 | /// - If the type is a struct, its fields must be [`IntoBytes`]. Additionally: |
4791 | /// - if the type is `repr(transparent)` or `repr(packed)`, it is |
4792 | /// [`IntoBytes`] if its fields are [`IntoBytes`]; else, |
4793 | /// - if the type is `repr(C)` with at most one field, it is [`IntoBytes`] |
4794 | /// if its field is [`IntoBytes`]; else, |
4795 | /// - if the type has no generic parameters, it is [`IntoBytes`] if the type |
4796 | /// is sized and has no padding bytes; else, |
4797 | /// - if the type is `repr(C)`, its fields must be [`Unaligned`]. |
4798 | /// - If the type is an enum: |
4799 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
4800 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
4801 | /// - It must have no padding bytes. |
4802 | /// - Its fields must be [`IntoBytes`]. |
4803 | /// |
4804 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
4805 | /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
4806 | /// implementation details of this derive. |
4807 | /// |
4808 | /// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html |
4809 | #[cfg (any(feature = "derive" , test))] |
4810 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
4811 | pub use zerocopy_derive::IntoBytes; |
4812 | |
4813 | /// Types that can be converted to an immutable slice of initialized bytes. |
4814 | /// |
4815 | /// Any `IntoBytes` type can be converted to a slice of initialized bytes of the |
4816 | /// same size. This is useful for efficiently serializing structured data as raw |
4817 | /// bytes. |
4818 | /// |
4819 | /// # Implementation |
4820 | /// |
4821 | /// **Do not implement this trait yourself!** Instead, use |
4822 | /// [`#[derive(IntoBytes)]`][derive]; e.g.: |
4823 | /// |
4824 | /// ``` |
4825 | /// # use zerocopy_derive::IntoBytes; |
4826 | /// #[derive(IntoBytes)] |
4827 | /// #[repr(C)] |
4828 | /// struct MyStruct { |
4829 | /// # /* |
4830 | /// ... |
4831 | /// # */ |
4832 | /// } |
4833 | /// |
4834 | /// #[derive(IntoBytes)] |
4835 | /// #[repr(u8)] |
4836 | /// enum MyEnum { |
4837 | /// # Variant0, |
4838 | /// # /* |
4839 | /// ... |
4840 | /// # */ |
4841 | /// } |
4842 | /// ``` |
4843 | /// |
4844 | /// This derive performs a sophisticated, compile-time safety analysis to |
4845 | /// determine whether a type is `IntoBytes`. See the [derive |
4846 | /// documentation][derive] for guidance on how to interpret error messages |
4847 | /// produced by the derive's analysis. |
4848 | /// |
4849 | /// # Safety |
4850 | /// |
4851 | /// *This section describes what is required in order for `T: IntoBytes`, and |
4852 | /// what unsafe code may assume of such types. If you don't plan on implementing |
4853 | /// `IntoBytes` manually, and you don't plan on writing unsafe code that |
4854 | /// operates on `IntoBytes` types, then you don't need to read this section.* |
4855 | /// |
4856 | /// If `T: IntoBytes`, then unsafe code may assume that it is sound to treat any |
4857 | /// `t: T` as an immutable `[u8]` of length `size_of_val(t)`. If a type is |
4858 | /// marked as `IntoBytes` which violates this contract, it may cause undefined |
4859 | /// behavior. |
4860 | /// |
4861 | /// `#[derive(IntoBytes)]` only permits [types which satisfy these |
4862 | /// requirements][derive-analysis]. |
4863 | /// |
4864 | #[cfg_attr ( |
4865 | feature = "derive" , |
4866 | doc = "[derive]: zerocopy_derive::IntoBytes" , |
4867 | doc = "[derive-analysis]: zerocopy_derive::IntoBytes#analysis" |
4868 | )] |
4869 | #[cfg_attr ( |
4870 | not(feature = "derive" ), |
4871 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.IntoBytes.html" ), |
4872 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.IntoBytes.html#analysis" ), |
4873 | )] |
4874 | #[cfg_attr ( |
4875 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
4876 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(IntoBytes)]` to `{Self}`" ) |
4877 | )] |
4878 | pub unsafe trait IntoBytes { |
4879 | // The `Self: Sized` bound makes it so that this function doesn't prevent |
4880 | // `IntoBytes` from being object safe. Note that other `IntoBytes` methods |
4881 | // prevent object safety, but those provide a benefit in exchange for object |
4882 | // safety. If at some point we remove those methods, change their type |
4883 | // signatures, or move them out of this trait so that `IntoBytes` is object |
4884 | // safe again, it's important that this function not prevent object safety. |
4885 | #[doc (hidden)] |
4886 | fn only_derive_is_allowed_to_implement_this_trait() |
4887 | where |
4888 | Self: Sized; |
4889 | |
4890 | /// Gets the bytes of this value. |
4891 | /// |
4892 | /// # Examples |
4893 | /// |
4894 | /// ``` |
4895 | /// use zerocopy::IntoBytes; |
4896 | /// # use zerocopy_derive::*; |
4897 | /// |
4898 | /// #[derive(IntoBytes, Immutable)] |
4899 | /// #[repr(C)] |
4900 | /// struct PacketHeader { |
4901 | /// src_port: [u8; 2], |
4902 | /// dst_port: [u8; 2], |
4903 | /// length: [u8; 2], |
4904 | /// checksum: [u8; 2], |
4905 | /// } |
4906 | /// |
4907 | /// let header = PacketHeader { |
4908 | /// src_port: [0, 1], |
4909 | /// dst_port: [2, 3], |
4910 | /// length: [4, 5], |
4911 | /// checksum: [6, 7], |
4912 | /// }; |
4913 | /// |
4914 | /// let bytes = header.as_bytes(); |
4915 | /// |
4916 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
4917 | /// ``` |
4918 | #[must_use = "has no side effects" ] |
4919 | #[inline (always)] |
4920 | fn as_bytes(&self) -> &[u8] |
4921 | where |
4922 | Self: Immutable, |
4923 | { |
4924 | // Note that this method does not have a `Self: Sized` bound; |
4925 | // `size_of_val` works for unsized values too. |
4926 | let len = mem::size_of_val(self); |
4927 | let slf: *const Self = self; |
4928 | |
4929 | // SAFETY: |
4930 | // - `slf.cast::<u8>()` is valid for reads for `len * size_of::<u8>()` |
4931 | // many bytes because... |
4932 | // - `slf` is the same pointer as `self`, and `self` is a reference |
4933 | // which points to an object whose size is `len`. Thus... |
4934 | // - The entire region of `len` bytes starting at `slf` is contained |
4935 | // within a single allocation. |
4936 | // - `slf` is non-null. |
4937 | // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
4938 | // - `Self: IntoBytes` ensures that all of the bytes of `slf` are |
4939 | // initialized. |
4940 | // - Since `slf` is derived from `self`, and `self` is an immutable |
4941 | // reference, the only other references to this memory region that |
4942 | // could exist are other immutable references, and those don't allow |
4943 | // mutation. `Self: Immutable` prohibits types which contain |
4944 | // `UnsafeCell`s, which are the only types for which this rule |
4945 | // wouldn't be sufficient. |
4946 | // - The total size of the resulting slice is no larger than |
4947 | // `isize::MAX` because no allocation produced by safe code can be |
4948 | // larger than `isize::MAX`. |
4949 | // |
4950 | // TODO(#429): Add references to docs and quotes. |
4951 | unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) } |
4952 | } |
4953 | |
4954 | /// Gets the bytes of this value mutably. |
4955 | /// |
4956 | /// # Examples |
4957 | /// |
4958 | /// ``` |
4959 | /// use zerocopy::IntoBytes; |
4960 | /// # use zerocopy_derive::*; |
4961 | /// |
4962 | /// # #[derive(Eq, PartialEq, Debug)] |
4963 | /// #[derive(FromBytes, IntoBytes, Immutable)] |
4964 | /// #[repr(C)] |
4965 | /// struct PacketHeader { |
4966 | /// src_port: [u8; 2], |
4967 | /// dst_port: [u8; 2], |
4968 | /// length: [u8; 2], |
4969 | /// checksum: [u8; 2], |
4970 | /// } |
4971 | /// |
4972 | /// let mut header = PacketHeader { |
4973 | /// src_port: [0, 1], |
4974 | /// dst_port: [2, 3], |
4975 | /// length: [4, 5], |
4976 | /// checksum: [6, 7], |
4977 | /// }; |
4978 | /// |
4979 | /// let bytes = header.as_mut_bytes(); |
4980 | /// |
4981 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
4982 | /// |
4983 | /// bytes.reverse(); |
4984 | /// |
4985 | /// assert_eq!(header, PacketHeader { |
4986 | /// src_port: [7, 6], |
4987 | /// dst_port: [5, 4], |
4988 | /// length: [3, 2], |
4989 | /// checksum: [1, 0], |
4990 | /// }); |
4991 | /// ``` |
4992 | #[must_use = "has no side effects" ] |
4993 | #[inline (always)] |
4994 | fn as_mut_bytes(&mut self) -> &mut [u8] |
4995 | where |
4996 | Self: FromBytes, |
4997 | { |
4998 | // Note that this method does not have a `Self: Sized` bound; |
4999 | // `size_of_val` works for unsized values too. |
5000 | let len = mem::size_of_val(self); |
5001 | let slf: *mut Self = self; |
5002 | |
5003 | // SAFETY: |
5004 | // - `slf.cast::<u8>()` is valid for reads and writes for `len * |
5005 | // size_of::<u8>()` many bytes because... |
5006 | // - `slf` is the same pointer as `self`, and `self` is a reference |
5007 | // which points to an object whose size is `len`. Thus... |
5008 | // - The entire region of `len` bytes starting at `slf` is contained |
5009 | // within a single allocation. |
5010 | // - `slf` is non-null. |
5011 | // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
5012 | // - `Self: IntoBytes` ensures that all of the bytes of `slf` are |
5013 | // initialized. |
5014 | // - `Self: FromBytes` ensures that no write to this memory region |
5015 | // could result in it containing an invalid `Self`. |
5016 | // - Since `slf` is derived from `self`, and `self` is a mutable |
5017 | // reference, no other references to this memory region can exist. |
5018 | // - The total size of the resulting slice is no larger than |
5019 | // `isize::MAX` because no allocation produced by safe code can be |
5020 | // larger than `isize::MAX`. |
5021 | // |
5022 | // TODO(#429): Add references to docs and quotes. |
5023 | unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) } |
5024 | } |
5025 | |
5026 | /// Writes a copy of `self` to `dst`. |
5027 | /// |
5028 | /// If `dst.len() != size_of_val(self)`, `write_to` returns `Err`. |
5029 | /// |
5030 | /// # Examples |
5031 | /// |
5032 | /// ``` |
5033 | /// use zerocopy::IntoBytes; |
5034 | /// # use zerocopy_derive::*; |
5035 | /// |
5036 | /// #[derive(IntoBytes, Immutable)] |
5037 | /// #[repr(C)] |
5038 | /// struct PacketHeader { |
5039 | /// src_port: [u8; 2], |
5040 | /// dst_port: [u8; 2], |
5041 | /// length: [u8; 2], |
5042 | /// checksum: [u8; 2], |
5043 | /// } |
5044 | /// |
5045 | /// let header = PacketHeader { |
5046 | /// src_port: [0, 1], |
5047 | /// dst_port: [2, 3], |
5048 | /// length: [4, 5], |
5049 | /// checksum: [6, 7], |
5050 | /// }; |
5051 | /// |
5052 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0]; |
5053 | /// |
5054 | /// header.write_to(&mut bytes[..]); |
5055 | /// |
5056 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
5057 | /// ``` |
5058 | /// |
5059 | /// If too many or too few target bytes are provided, `write_to` returns |
5060 | /// `Err` and leaves the target bytes unmodified: |
5061 | /// |
5062 | /// ``` |
5063 | /// # use zerocopy::IntoBytes; |
5064 | /// # let header = u128::MAX; |
5065 | /// let mut excessive_bytes = &mut [0u8; 128][..]; |
5066 | /// |
5067 | /// let write_result = header.write_to(excessive_bytes); |
5068 | /// |
5069 | /// assert!(write_result.is_err()); |
5070 | /// assert_eq!(excessive_bytes, [0u8; 128]); |
5071 | /// ``` |
5072 | #[must_use = "callers should check the return value to see if the operation succeeded" ] |
5073 | #[inline ] |
5074 | fn write_to(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>> |
5075 | where |
5076 | Self: Immutable, |
5077 | { |
5078 | let src = self.as_bytes(); |
5079 | if dst.len() == src.len() { |
5080 | // SAFETY: Within this branch of the conditional, we have ensured |
5081 | // that `dst.len()` is equal to `src.len()`. Neither the size of the |
5082 | // source nor the size of the destination change between the above |
5083 | // size check and the invocation of `copy_unchecked`. |
5084 | unsafe { util::copy_unchecked(src, dst) } |
5085 | Ok(()) |
5086 | } else { |
5087 | Err(SizeError::new(self)) |
5088 | } |
5089 | } |
5090 | |
5091 | /// Writes a copy of `self` to the prefix of `dst`. |
5092 | /// |
5093 | /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes |
5094 | /// of `dst`. If `dst.len() < size_of_val(self)`, it returns `Err`. |
5095 | /// |
5096 | /// # Examples |
5097 | /// |
5098 | /// ``` |
5099 | /// use zerocopy::IntoBytes; |
5100 | /// # use zerocopy_derive::*; |
5101 | /// |
5102 | /// #[derive(IntoBytes, Immutable)] |
5103 | /// #[repr(C)] |
5104 | /// struct PacketHeader { |
5105 | /// src_port: [u8; 2], |
5106 | /// dst_port: [u8; 2], |
5107 | /// length: [u8; 2], |
5108 | /// checksum: [u8; 2], |
5109 | /// } |
5110 | /// |
5111 | /// let header = PacketHeader { |
5112 | /// src_port: [0, 1], |
5113 | /// dst_port: [2, 3], |
5114 | /// length: [4, 5], |
5115 | /// checksum: [6, 7], |
5116 | /// }; |
5117 | /// |
5118 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
5119 | /// |
5120 | /// header.write_to_prefix(&mut bytes[..]); |
5121 | /// |
5122 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7, 0, 0]); |
5123 | /// ``` |
5124 | /// |
5125 | /// If insufficient target bytes are provided, `write_to_prefix` returns |
5126 | /// `Err` and leaves the target bytes unmodified: |
5127 | /// |
5128 | /// ``` |
5129 | /// # use zerocopy::IntoBytes; |
5130 | /// # let header = u128::MAX; |
5131 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
5132 | /// |
5133 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
5134 | /// |
5135 | /// assert!(write_result.is_err()); |
5136 | /// assert_eq!(insufficent_bytes, [0, 0]); |
5137 | /// ``` |
5138 | #[must_use = "callers should check the return value to see if the operation succeeded" ] |
5139 | #[inline ] |
5140 | fn write_to_prefix(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>> |
5141 | where |
5142 | Self: Immutable, |
5143 | { |
5144 | let src = self.as_bytes(); |
5145 | match dst.get_mut(..src.len()) { |
5146 | Some(dst) => { |
5147 | // SAFETY: Within this branch of the `match`, we have ensured |
5148 | // through fallible subslicing that `dst.len()` is equal to |
5149 | // `src.len()`. Neither the size of the source nor the size of |
5150 | // the destination change between the above subslicing operation |
5151 | // and the invocation of `copy_unchecked`. |
5152 | unsafe { util::copy_unchecked(src, dst) } |
5153 | Ok(()) |
5154 | } |
5155 | None => Err(SizeError::new(self)), |
5156 | } |
5157 | } |
5158 | |
5159 | /// Writes a copy of `self` to the suffix of `dst`. |
5160 | /// |
5161 | /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of |
5162 | /// `dst`. If `dst.len() < size_of_val(self)`, it returns `Err`. |
5163 | /// |
5164 | /// # Examples |
5165 | /// |
5166 | /// ``` |
5167 | /// use zerocopy::IntoBytes; |
5168 | /// # use zerocopy_derive::*; |
5169 | /// |
5170 | /// #[derive(IntoBytes, Immutable)] |
5171 | /// #[repr(C)] |
5172 | /// struct PacketHeader { |
5173 | /// src_port: [u8; 2], |
5174 | /// dst_port: [u8; 2], |
5175 | /// length: [u8; 2], |
5176 | /// checksum: [u8; 2], |
5177 | /// } |
5178 | /// |
5179 | /// let header = PacketHeader { |
5180 | /// src_port: [0, 1], |
5181 | /// dst_port: [2, 3], |
5182 | /// length: [4, 5], |
5183 | /// checksum: [6, 7], |
5184 | /// }; |
5185 | /// |
5186 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
5187 | /// |
5188 | /// header.write_to_suffix(&mut bytes[..]); |
5189 | /// |
5190 | /// assert_eq!(bytes, [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]); |
5191 | /// |
5192 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
5193 | /// |
5194 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
5195 | /// |
5196 | /// assert!(write_result.is_err()); |
5197 | /// assert_eq!(insufficent_bytes, [0, 0]); |
5198 | /// ``` |
5199 | /// |
5200 | /// If insufficient target bytes are provided, `write_to_suffix` returns |
5201 | /// `Err` and leaves the target bytes unmodified: |
5202 | /// |
5203 | /// ``` |
5204 | /// # use zerocopy::IntoBytes; |
5205 | /// # let header = u128::MAX; |
5206 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
5207 | /// |
5208 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
5209 | /// |
5210 | /// assert!(write_result.is_err()); |
5211 | /// assert_eq!(insufficent_bytes, [0, 0]); |
5212 | /// ``` |
5213 | #[must_use = "callers should check the return value to see if the operation succeeded" ] |
5214 | #[inline ] |
5215 | fn write_to_suffix(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>> |
5216 | where |
5217 | Self: Immutable, |
5218 | { |
5219 | let src = self.as_bytes(); |
5220 | let start = if let Some(start) = dst.len().checked_sub(src.len()) { |
5221 | start |
5222 | } else { |
5223 | return Err(SizeError::new(self)); |
5224 | }; |
5225 | let dst = if let Some(dst) = dst.get_mut(start..) { |
5226 | dst |
5227 | } else { |
5228 | // get_mut() should never return None here. We return a `SizeError` |
5229 | // rather than .unwrap() because in the event the branch is not |
5230 | // optimized away, returning a value is generally lighter-weight |
5231 | // than panicking. |
5232 | return Err(SizeError::new(self)); |
5233 | }; |
5234 | // SAFETY: Through fallible subslicing of `dst`, we have ensured that |
5235 | // `dst.len()` is equal to `src.len()`. Neither the size of the source |
5236 | // nor the size of the destination change between the above subslicing |
5237 | // operation and the invocation of `copy_unchecked`. |
5238 | unsafe { |
5239 | util::copy_unchecked(src, dst); |
5240 | } |
5241 | Ok(()) |
5242 | } |
5243 | |
5244 | /// Writes a copy of `self` to an `io::Write`. |
5245 | /// |
5246 | /// This is a shorthand for `dst.write_all(self.as_bytes())`, and is useful |
5247 | /// for interfacing with operating system byte sinks (files, sockets, etc.). |
5248 | /// |
5249 | /// # Examples |
5250 | /// |
5251 | /// ```no_run |
5252 | /// use zerocopy::{byteorder::big_endian::U16, FromBytes, IntoBytes}; |
5253 | /// use std::fs::File; |
5254 | /// # use zerocopy_derive::*; |
5255 | /// |
5256 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
5257 | /// #[repr(C, packed)] |
5258 | /// struct GrayscaleImage { |
5259 | /// height: U16, |
5260 | /// width: U16, |
5261 | /// pixels: [U16], |
5262 | /// } |
5263 | /// |
5264 | /// let image = GrayscaleImage::ref_from_bytes(&[0, 0, 0, 0][..]).unwrap(); |
5265 | /// let mut file = File::create("image.bin").unwrap(); |
5266 | /// image.write_to_io(&mut file).unwrap(); |
5267 | /// ``` |
5268 | /// |
5269 | /// If the write fails, `write_to_io` returns `Err` and a partial write may |
5270 | /// have occured; e.g.: |
5271 | /// |
5272 | /// ``` |
5273 | /// # use zerocopy::IntoBytes; |
5274 | /// |
5275 | /// let src = u128::MAX; |
5276 | /// let mut dst = [0u8; 2]; |
5277 | /// |
5278 | /// let write_result = src.write_to_io(&mut dst[..]); |
5279 | /// |
5280 | /// assert!(write_result.is_err()); |
5281 | /// assert_eq!(dst, [255, 255]); |
5282 | /// ``` |
5283 | #[cfg (feature = "std" )] |
5284 | #[inline (always)] |
5285 | fn write_to_io<W>(&self, mut dst: W) -> io::Result<()> |
5286 | where |
5287 | Self: Immutable, |
5288 | W: io::Write, |
5289 | { |
5290 | dst.write_all(self.as_bytes()) |
5291 | } |
5292 | |
5293 | #[deprecated (since = "0.8.0" , note = "`IntoBytes::as_bytes_mut` was renamed to `as_mut_bytes`" )] |
5294 | #[doc (hidden)] |
5295 | #[inline ] |
5296 | fn as_bytes_mut(&mut self) -> &mut [u8] |
5297 | where |
5298 | Self: FromBytes, |
5299 | { |
5300 | self.as_mut_bytes() |
5301 | } |
5302 | } |
5303 | |
5304 | /// Analyzes whether a type is [`Unaligned`]. |
5305 | /// |
5306 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
5307 | /// the [safety conditions] of `Unaligned` and implements `Unaligned` if it is |
5308 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
5309 | /// e.g.: |
5310 | /// |
5311 | /// ``` |
5312 | /// # use zerocopy_derive::Unaligned; |
5313 | /// #[derive(Unaligned)] |
5314 | /// #[repr(C)] |
5315 | /// struct MyStruct { |
5316 | /// # /* |
5317 | /// ... |
5318 | /// # */ |
5319 | /// } |
5320 | /// |
5321 | /// #[derive(Unaligned)] |
5322 | /// #[repr(u8)] |
5323 | /// enum MyEnum { |
5324 | /// # Variant0, |
5325 | /// # /* |
5326 | /// ... |
5327 | /// # */ |
5328 | /// } |
5329 | /// |
5330 | /// #[derive(Unaligned)] |
5331 | /// #[repr(packed)] |
5332 | /// union MyUnion { |
5333 | /// # variant: u8, |
5334 | /// # /* |
5335 | /// ... |
5336 | /// # */ |
5337 | /// } |
5338 | /// ``` |
5339 | /// |
5340 | /// # Analysis |
5341 | /// |
5342 | /// *This section describes, roughly, the analysis performed by this derive to |
5343 | /// determine whether it is sound to implement `Unaligned` for a given type. |
5344 | /// Unless you are modifying the implementation of this derive, or attempting to |
5345 | /// manually implement `Unaligned` for a type yourself, you don't need to read |
5346 | /// this section.* |
5347 | /// |
5348 | /// If a type has the following properties, then this derive can implement |
5349 | /// `Unaligned` for that type: |
5350 | /// |
5351 | /// - If the type is a struct or union: |
5352 | /// - If `repr(align(N))` is provided, `N` must equal 1. |
5353 | /// - If the type is `repr(C)` or `repr(transparent)`, all fields must be |
5354 | /// [`Unaligned`]. |
5355 | /// - If the type is not `repr(C)` or `repr(transparent)`, it must be |
5356 | /// `repr(packed)` or `repr(packed(1))`. |
5357 | /// - If the type is an enum: |
5358 | /// - If `repr(align(N))` is provided, `N` must equal 1. |
5359 | /// - It must be a field-less enum (meaning that all variants have no fields). |
5360 | /// - It must be `repr(i8)` or `repr(u8)`. |
5361 | /// |
5362 | /// [safety conditions]: trait@Unaligned#safety |
5363 | #[cfg (any(feature = "derive" , test))] |
5364 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
5365 | pub use zerocopy_derive::Unaligned; |
5366 | |
5367 | /// Types with no alignment requirement. |
5368 | /// |
5369 | /// If `T: Unaligned`, then `align_of::<T>() == 1`. |
5370 | /// |
5371 | /// # Implementation |
5372 | /// |
5373 | /// **Do not implement this trait yourself!** Instead, use |
5374 | /// [`#[derive(Unaligned)]`][derive]; e.g.: |
5375 | /// |
5376 | /// ``` |
5377 | /// # use zerocopy_derive::Unaligned; |
5378 | /// #[derive(Unaligned)] |
5379 | /// #[repr(C)] |
5380 | /// struct MyStruct { |
5381 | /// # /* |
5382 | /// ... |
5383 | /// # */ |
5384 | /// } |
5385 | /// |
5386 | /// #[derive(Unaligned)] |
5387 | /// #[repr(u8)] |
5388 | /// enum MyEnum { |
5389 | /// # Variant0, |
5390 | /// # /* |
5391 | /// ... |
5392 | /// # */ |
5393 | /// } |
5394 | /// |
5395 | /// #[derive(Unaligned)] |
5396 | /// #[repr(packed)] |
5397 | /// union MyUnion { |
5398 | /// # variant: u8, |
5399 | /// # /* |
5400 | /// ... |
5401 | /// # */ |
5402 | /// } |
5403 | /// ``` |
5404 | /// |
5405 | /// This derive performs a sophisticated, compile-time safety analysis to |
5406 | /// determine whether a type is `Unaligned`. |
5407 | /// |
5408 | /// # Safety |
5409 | /// |
5410 | /// *This section describes what is required in order for `T: Unaligned`, and |
5411 | /// what unsafe code may assume of such types. If you don't plan on implementing |
5412 | /// `Unaligned` manually, and you don't plan on writing unsafe code that |
5413 | /// operates on `Unaligned` types, then you don't need to read this section.* |
5414 | /// |
5415 | /// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a |
5416 | /// reference to `T` at any memory location regardless of alignment. If a type |
5417 | /// is marked as `Unaligned` which violates this contract, it may cause |
5418 | /// undefined behavior. |
5419 | /// |
5420 | /// `#[derive(Unaligned)]` only permits [types which satisfy these |
5421 | /// requirements][derive-analysis]. |
5422 | /// |
5423 | #[cfg_attr ( |
5424 | feature = "derive" , |
5425 | doc = "[derive]: zerocopy_derive::Unaligned" , |
5426 | doc = "[derive-analysis]: zerocopy_derive::Unaligned#analysis" |
5427 | )] |
5428 | #[cfg_attr ( |
5429 | not(feature = "derive" ), |
5430 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Unaligned.html" ), |
5431 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Unaligned.html#analysis" ), |
5432 | )] |
5433 | #[cfg_attr ( |
5434 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
5435 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(Unaligned)]` to `{Self}`" ) |
5436 | )] |
5437 | pub unsafe trait Unaligned { |
5438 | // The `Self: Sized` bound makes it so that `Unaligned` is still object |
5439 | // safe. |
5440 | #[doc (hidden)] |
5441 | fn only_derive_is_allowed_to_implement_this_trait() |
5442 | where |
5443 | Self: Sized; |
5444 | } |
5445 | |
5446 | /// Derives an optimized implementation of [`Hash`] for types that implement |
5447 | /// [`IntoBytes`] and [`Immutable`]. |
5448 | /// |
5449 | /// The standard library's derive for `Hash` generates a recursive descent |
5450 | /// into the fields of the type it is applied to. Instead, the implementation |
5451 | /// derived by this macro makes a single call to [`Hasher::write()`] for both |
5452 | /// [`Hash::hash()`] and [`Hash::hash_slice()`], feeding the hasher the bytes |
5453 | /// of the type or slice all at once. |
5454 | /// |
5455 | /// [`Hash`]: core::hash::Hash |
5456 | /// [`Hash::hash()`]: core::hash::Hash::hash() |
5457 | /// [`Hash::hash_slice()`]: core::hash::Hash::hash_slice() |
5458 | #[cfg (any(feature = "derive" , test))] |
5459 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
5460 | pub use zerocopy_derive::ByteHash; |
5461 | |
5462 | /// Derives an optimized implementation of [`PartialEq`] and [`Eq`] for types |
5463 | /// that implement [`IntoBytes`] and [`Immutable`]. |
5464 | /// |
5465 | /// The standard library's derive for [`PartialEq`] generates a recursive |
5466 | /// descent into the fields of the type it is applied to. Instead, the |
5467 | /// implementation derived by this macro performs a single slice comparison of |
5468 | /// the bytes of the two values being compared. |
5469 | #[cfg (any(feature = "derive" , test))] |
5470 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
5471 | pub use zerocopy_derive::ByteEq; |
5472 | |
5473 | #[cfg (feature = "alloc" )] |
5474 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
5475 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5476 | mod alloc_support { |
5477 | use super::*; |
5478 | |
5479 | /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the |
5480 | /// vector. The new items are initialized with zeros. |
5481 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5482 | #[doc (hidden)] |
5483 | #[deprecated (since = "0.8.0" , note = "moved to `FromZeros`" )] |
5484 | #[inline (always)] |
5485 | pub fn extend_vec_zeroed<T: FromZeros>( |
5486 | v: &mut Vec<T>, |
5487 | additional: usize, |
5488 | ) -> Result<(), AllocError> { |
5489 | <T as FromZeros>::extend_vec_zeroed(v, additional) |
5490 | } |
5491 | |
5492 | /// Inserts `additional` new items into `Vec<T>` at `position`. The new |
5493 | /// items are initialized with zeros. |
5494 | /// |
5495 | /// # Panics |
5496 | /// |
5497 | /// Panics if `position > v.len()`. |
5498 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5499 | #[doc (hidden)] |
5500 | #[deprecated (since = "0.8.0" , note = "moved to `FromZeros`" )] |
5501 | #[inline (always)] |
5502 | pub fn insert_vec_zeroed<T: FromZeros>( |
5503 | v: &mut Vec<T>, |
5504 | position: usize, |
5505 | additional: usize, |
5506 | ) -> Result<(), AllocError> { |
5507 | <T as FromZeros>::insert_vec_zeroed(v, position, additional) |
5508 | } |
5509 | } |
5510 | |
5511 | #[cfg (feature = "alloc" )] |
5512 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5513 | #[doc (hidden)] |
5514 | pub use alloc_support::*; |
5515 | |
5516 | #[cfg (test)] |
5517 | #[allow (clippy::assertions_on_result_states, clippy::unreadable_literal)] |
5518 | mod tests { |
5519 | use static_assertions::assert_impl_all; |
5520 | |
5521 | use super::*; |
5522 | use crate::util::testutil::*; |
5523 | |
5524 | // An unsized type. |
5525 | // |
5526 | // This is used to test the custom derives of our traits. The `[u8]` type |
5527 | // gets a hand-rolled impl, so it doesn't exercise our custom derives. |
5528 | #[derive(Debug, Eq, PartialEq, FromBytes, IntoBytes, Unaligned, Immutable)] |
5529 | #[repr (transparent)] |
5530 | struct Unsized([u8]); |
5531 | |
5532 | impl Unsized { |
5533 | fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized { |
5534 | // SAFETY: This *probably* sound - since the layouts of `[u8]` and |
5535 | // `Unsized` are the same, so are the layouts of `&mut [u8]` and |
5536 | // `&mut Unsized`. [1] Even if it turns out that this isn't actually |
5537 | // guaranteed by the language spec, we can just change this since |
5538 | // it's in test code. |
5539 | // |
5540 | // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375 |
5541 | unsafe { mem::transmute(slc) } |
5542 | } |
5543 | } |
5544 | |
5545 | #[test] |
5546 | fn test_known_layout() { |
5547 | // Test that `$ty` and `ManuallyDrop<$ty>` have the expected layout. |
5548 | // Test that `PhantomData<$ty>` has the same layout as `()` regardless |
5549 | // of `$ty`. |
5550 | macro_rules! test { |
5551 | ($ty:ty, $expect:expr) => { |
5552 | let expect = $expect; |
5553 | assert_eq!(<$ty as KnownLayout>::LAYOUT, expect); |
5554 | assert_eq!(<ManuallyDrop<$ty> as KnownLayout>::LAYOUT, expect); |
5555 | assert_eq!(<PhantomData<$ty> as KnownLayout>::LAYOUT, <() as KnownLayout>::LAYOUT); |
5556 | }; |
5557 | } |
5558 | |
5559 | let layout = |offset, align, _trailing_slice_elem_size| DstLayout { |
5560 | align: NonZeroUsize::new(align).unwrap(), |
5561 | size_info: match _trailing_slice_elem_size { |
5562 | None => SizeInfo::Sized { size: offset }, |
5563 | Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
5564 | }, |
5565 | }; |
5566 | |
5567 | test!((), layout(0, 1, None)); |
5568 | test!(u8, layout(1, 1, None)); |
5569 | // Use `align_of` because `u64` alignment may be smaller than 8 on some |
5570 | // platforms. |
5571 | test!(u64, layout(8, mem::align_of::<u64>(), None)); |
5572 | test!(AU64, layout(8, 8, None)); |
5573 | |
5574 | test!(Option<&'static ()>, usize::LAYOUT); |
5575 | |
5576 | test!([()], layout(0, 1, Some(0))); |
5577 | test!([u8], layout(0, 1, Some(1))); |
5578 | test!(str, layout(0, 1, Some(1))); |
5579 | } |
5580 | |
5581 | #[cfg (feature = "derive" )] |
5582 | #[test] |
5583 | fn test_known_layout_derive() { |
5584 | // In this and other files (`late_compile_pass.rs`, |
5585 | // `mid_compile_pass.rs`, and `struct.rs`), we test success and failure |
5586 | // modes of `derive(KnownLayout)` for the following combination of |
5587 | // properties: |
5588 | // |
5589 | // +------------+--------------------------------------+-----------+ |
5590 | // | | trailing field properties | | |
5591 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5592 | // |------------+----------+----------------+----------+-----------| |
5593 | // | N | N | N | N | KL00 | |
5594 | // | N | N | N | Y | KL01 | |
5595 | // | N | N | Y | N | KL02 | |
5596 | // | N | N | Y | Y | KL03 | |
5597 | // | N | Y | N | N | KL04 | |
5598 | // | N | Y | N | Y | KL05 | |
5599 | // | N | Y | Y | N | KL06 | |
5600 | // | N | Y | Y | Y | KL07 | |
5601 | // | Y | N | N | N | KL08 | |
5602 | // | Y | N | N | Y | KL09 | |
5603 | // | Y | N | Y | N | KL10 | |
5604 | // | Y | N | Y | Y | KL11 | |
5605 | // | Y | Y | N | N | KL12 | |
5606 | // | Y | Y | N | Y | KL13 | |
5607 | // | Y | Y | Y | N | KL14 | |
5608 | // | Y | Y | Y | Y | KL15 | |
5609 | // +------------+----------+----------------+----------+-----------+ |
5610 | |
5611 | struct NotKnownLayout<T = ()> { |
5612 | _t: T, |
5613 | } |
5614 | |
5615 | #[derive(KnownLayout)] |
5616 | #[repr (C)] |
5617 | struct AlignSize<const ALIGN: usize, const SIZE: usize> |
5618 | where |
5619 | elain::Align<ALIGN>: elain::Alignment, |
5620 | { |
5621 | _align: elain::Align<ALIGN>, |
5622 | size: [u8; SIZE], |
5623 | } |
5624 | |
5625 | type AU16 = AlignSize<2, 2>; |
5626 | type AU32 = AlignSize<4, 4>; |
5627 | |
5628 | fn _assert_kl<T: ?Sized + KnownLayout>(_: &T) {} |
5629 | |
5630 | let sized_layout = |align, size| DstLayout { |
5631 | align: NonZeroUsize::new(align).unwrap(), |
5632 | size_info: SizeInfo::Sized { size }, |
5633 | }; |
5634 | |
5635 | let unsized_layout = |align, elem_size, offset| DstLayout { |
5636 | align: NonZeroUsize::new(align).unwrap(), |
5637 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
5638 | }; |
5639 | |
5640 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5641 | // | N | N | N | Y | KL01 | |
5642 | #[allow (dead_code)] |
5643 | #[derive(KnownLayout)] |
5644 | struct KL01(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5645 | |
5646 | let expected = DstLayout::for_type::<KL01>(); |
5647 | |
5648 | assert_eq!(<KL01 as KnownLayout>::LAYOUT, expected); |
5649 | assert_eq!(<KL01 as KnownLayout>::LAYOUT, sized_layout(4, 8)); |
5650 | |
5651 | // ...with `align(N)`: |
5652 | #[allow (dead_code)] |
5653 | #[derive(KnownLayout)] |
5654 | #[repr (align(64))] |
5655 | struct KL01Align(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5656 | |
5657 | let expected = DstLayout::for_type::<KL01Align>(); |
5658 | |
5659 | assert_eq!(<KL01Align as KnownLayout>::LAYOUT, expected); |
5660 | assert_eq!(<KL01Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
5661 | |
5662 | // ...with `packed`: |
5663 | #[allow (dead_code)] |
5664 | #[derive(KnownLayout)] |
5665 | #[repr (packed)] |
5666 | struct KL01Packed(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5667 | |
5668 | let expected = DstLayout::for_type::<KL01Packed>(); |
5669 | |
5670 | assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, expected); |
5671 | assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, sized_layout(1, 6)); |
5672 | |
5673 | // ...with `packed(N)`: |
5674 | #[allow (dead_code)] |
5675 | #[derive(KnownLayout)] |
5676 | #[repr (packed(2))] |
5677 | struct KL01PackedN(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5678 | |
5679 | assert_impl_all!(KL01PackedN: KnownLayout); |
5680 | |
5681 | let expected = DstLayout::for_type::<KL01PackedN>(); |
5682 | |
5683 | assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, expected); |
5684 | assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
5685 | |
5686 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5687 | // | N | N | Y | Y | KL03 | |
5688 | #[allow (dead_code)] |
5689 | #[derive(KnownLayout)] |
5690 | struct KL03(NotKnownLayout, u8); |
5691 | |
5692 | let expected = DstLayout::for_type::<KL03>(); |
5693 | |
5694 | assert_eq!(<KL03 as KnownLayout>::LAYOUT, expected); |
5695 | assert_eq!(<KL03 as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
5696 | |
5697 | // ... with `align(N)` |
5698 | #[allow (dead_code)] |
5699 | #[derive(KnownLayout)] |
5700 | #[repr (align(64))] |
5701 | struct KL03Align(NotKnownLayout<AU32>, u8); |
5702 | |
5703 | let expected = DstLayout::for_type::<KL03Align>(); |
5704 | |
5705 | assert_eq!(<KL03Align as KnownLayout>::LAYOUT, expected); |
5706 | assert_eq!(<KL03Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
5707 | |
5708 | // ... with `packed`: |
5709 | #[allow (dead_code)] |
5710 | #[derive(KnownLayout)] |
5711 | #[repr (packed)] |
5712 | struct KL03Packed(NotKnownLayout<AU32>, u8); |
5713 | |
5714 | let expected = DstLayout::for_type::<KL03Packed>(); |
5715 | |
5716 | assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, expected); |
5717 | assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, sized_layout(1, 5)); |
5718 | |
5719 | // ... with `packed(N)` |
5720 | #[allow (dead_code)] |
5721 | #[derive(KnownLayout)] |
5722 | #[repr (packed(2))] |
5723 | struct KL03PackedN(NotKnownLayout<AU32>, u8); |
5724 | |
5725 | assert_impl_all!(KL03PackedN: KnownLayout); |
5726 | |
5727 | let expected = DstLayout::for_type::<KL03PackedN>(); |
5728 | |
5729 | assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, expected); |
5730 | assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
5731 | |
5732 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5733 | // | N | Y | N | Y | KL05 | |
5734 | #[allow (dead_code)] |
5735 | #[derive(KnownLayout)] |
5736 | struct KL05<T>(u8, T); |
5737 | |
5738 | fn _test_kl05<T>(t: T) -> impl KnownLayout { |
5739 | KL05(0u8, t) |
5740 | } |
5741 | |
5742 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5743 | // | N | Y | Y | Y | KL07 | |
5744 | #[allow (dead_code)] |
5745 | #[derive(KnownLayout)] |
5746 | struct KL07<T: KnownLayout>(u8, T); |
5747 | |
5748 | fn _test_kl07<T: KnownLayout>(t: T) -> impl KnownLayout { |
5749 | let _ = KL07(0u8, t); |
5750 | } |
5751 | |
5752 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5753 | // | Y | N | Y | N | KL10 | |
5754 | #[allow (dead_code)] |
5755 | #[derive(KnownLayout)] |
5756 | #[repr (C)] |
5757 | struct KL10(NotKnownLayout<AU32>, [u8]); |
5758 | |
5759 | let expected = DstLayout::new_zst(None) |
5760 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
5761 | .extend(<[u8] as KnownLayout>::LAYOUT, None) |
5762 | .pad_to_align(); |
5763 | |
5764 | assert_eq!(<KL10 as KnownLayout>::LAYOUT, expected); |
5765 | assert_eq!(<KL10 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 4)); |
5766 | |
5767 | // ...with `align(N)`: |
5768 | #[allow (dead_code)] |
5769 | #[derive(KnownLayout)] |
5770 | #[repr (C, align(64))] |
5771 | struct KL10Align(NotKnownLayout<AU32>, [u8]); |
5772 | |
5773 | let repr_align = NonZeroUsize::new(64); |
5774 | |
5775 | let expected = DstLayout::new_zst(repr_align) |
5776 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
5777 | .extend(<[u8] as KnownLayout>::LAYOUT, None) |
5778 | .pad_to_align(); |
5779 | |
5780 | assert_eq!(<KL10Align as KnownLayout>::LAYOUT, expected); |
5781 | assert_eq!(<KL10Align as KnownLayout>::LAYOUT, unsized_layout(64, 1, 4)); |
5782 | |
5783 | // ...with `packed`: |
5784 | #[allow (dead_code)] |
5785 | #[derive(KnownLayout)] |
5786 | #[repr (C, packed)] |
5787 | struct KL10Packed(NotKnownLayout<AU32>, [u8]); |
5788 | |
5789 | let repr_packed = NonZeroUsize::new(1); |
5790 | |
5791 | let expected = DstLayout::new_zst(None) |
5792 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
5793 | .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
5794 | .pad_to_align(); |
5795 | |
5796 | assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, expected); |
5797 | assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, unsized_layout(1, 1, 4)); |
5798 | |
5799 | // ...with `packed(N)`: |
5800 | #[allow (dead_code)] |
5801 | #[derive(KnownLayout)] |
5802 | #[repr (C, packed(2))] |
5803 | struct KL10PackedN(NotKnownLayout<AU32>, [u8]); |
5804 | |
5805 | let repr_packed = NonZeroUsize::new(2); |
5806 | |
5807 | let expected = DstLayout::new_zst(None) |
5808 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
5809 | .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
5810 | .pad_to_align(); |
5811 | |
5812 | assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, expected); |
5813 | assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
5814 | |
5815 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5816 | // | Y | N | Y | Y | KL11 | |
5817 | #[allow (dead_code)] |
5818 | #[derive(KnownLayout)] |
5819 | #[repr (C)] |
5820 | struct KL11(NotKnownLayout<AU64>, u8); |
5821 | |
5822 | let expected = DstLayout::new_zst(None) |
5823 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
5824 | .extend(<u8 as KnownLayout>::LAYOUT, None) |
5825 | .pad_to_align(); |
5826 | |
5827 | assert_eq!(<KL11 as KnownLayout>::LAYOUT, expected); |
5828 | assert_eq!(<KL11 as KnownLayout>::LAYOUT, sized_layout(8, 16)); |
5829 | |
5830 | // ...with `align(N)`: |
5831 | #[allow (dead_code)] |
5832 | #[derive(KnownLayout)] |
5833 | #[repr (C, align(64))] |
5834 | struct KL11Align(NotKnownLayout<AU64>, u8); |
5835 | |
5836 | let repr_align = NonZeroUsize::new(64); |
5837 | |
5838 | let expected = DstLayout::new_zst(repr_align) |
5839 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
5840 | .extend(<u8 as KnownLayout>::LAYOUT, None) |
5841 | .pad_to_align(); |
5842 | |
5843 | assert_eq!(<KL11Align as KnownLayout>::LAYOUT, expected); |
5844 | assert_eq!(<KL11Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
5845 | |
5846 | // ...with `packed`: |
5847 | #[allow (dead_code)] |
5848 | #[derive(KnownLayout)] |
5849 | #[repr (C, packed)] |
5850 | struct KL11Packed(NotKnownLayout<AU64>, u8); |
5851 | |
5852 | let repr_packed = NonZeroUsize::new(1); |
5853 | |
5854 | let expected = DstLayout::new_zst(None) |
5855 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
5856 | .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
5857 | .pad_to_align(); |
5858 | |
5859 | assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, expected); |
5860 | assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, sized_layout(1, 9)); |
5861 | |
5862 | // ...with `packed(N)`: |
5863 | #[allow (dead_code)] |
5864 | #[derive(KnownLayout)] |
5865 | #[repr (C, packed(2))] |
5866 | struct KL11PackedN(NotKnownLayout<AU64>, u8); |
5867 | |
5868 | let repr_packed = NonZeroUsize::new(2); |
5869 | |
5870 | let expected = DstLayout::new_zst(None) |
5871 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
5872 | .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
5873 | .pad_to_align(); |
5874 | |
5875 | assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, expected); |
5876 | assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, sized_layout(2, 10)); |
5877 | |
5878 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5879 | // | Y | Y | Y | N | KL14 | |
5880 | #[allow (dead_code)] |
5881 | #[derive(KnownLayout)] |
5882 | #[repr (C)] |
5883 | struct KL14<T: ?Sized + KnownLayout>(u8, T); |
5884 | |
5885 | fn _test_kl14<T: ?Sized + KnownLayout>(kl: &KL14<T>) { |
5886 | _assert_kl(kl) |
5887 | } |
5888 | |
5889 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5890 | // | Y | Y | Y | Y | KL15 | |
5891 | #[allow (dead_code)] |
5892 | #[derive(KnownLayout)] |
5893 | #[repr (C)] |
5894 | struct KL15<T: KnownLayout>(u8, T); |
5895 | |
5896 | fn _test_kl15<T: KnownLayout>(t: T) -> impl KnownLayout { |
5897 | let _ = KL15(0u8, t); |
5898 | } |
5899 | |
5900 | // Test a variety of combinations of field types: |
5901 | // - () |
5902 | // - u8 |
5903 | // - AU16 |
5904 | // - [()] |
5905 | // - [u8] |
5906 | // - [AU16] |
5907 | |
5908 | #[allow (clippy::upper_case_acronyms, dead_code)] |
5909 | #[derive(KnownLayout)] |
5910 | #[repr (C)] |
5911 | struct KLTU<T, U: ?Sized>(T, U); |
5912 | |
5913 | assert_eq!(<KLTU<(), ()> as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
5914 | |
5915 | assert_eq!(<KLTU<(), u8> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
5916 | |
5917 | assert_eq!(<KLTU<(), AU16> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
5918 | |
5919 | assert_eq!(<KLTU<(), [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 0)); |
5920 | |
5921 | assert_eq!(<KLTU<(), [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
5922 | |
5923 | assert_eq!(<KLTU<(), [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 0)); |
5924 | |
5925 | assert_eq!(<KLTU<u8, ()> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
5926 | |
5927 | assert_eq!(<KLTU<u8, u8> as KnownLayout>::LAYOUT, sized_layout(1, 2)); |
5928 | |
5929 | assert_eq!(<KLTU<u8, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
5930 | |
5931 | assert_eq!(<KLTU<u8, [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 1)); |
5932 | |
5933 | assert_eq!(<KLTU<u8, [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
5934 | |
5935 | assert_eq!(<KLTU<u8, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
5936 | |
5937 | assert_eq!(<KLTU<AU16, ()> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
5938 | |
5939 | assert_eq!(<KLTU<AU16, u8> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
5940 | |
5941 | assert_eq!(<KLTU<AU16, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
5942 | |
5943 | assert_eq!(<KLTU<AU16, [()]> as KnownLayout>::LAYOUT, unsized_layout(2, 0, 2)); |
5944 | |
5945 | assert_eq!(<KLTU<AU16, [u8]> as KnownLayout>::LAYOUT, unsized_layout(2, 1, 2)); |
5946 | |
5947 | assert_eq!(<KLTU<AU16, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
5948 | |
5949 | // Test a variety of field counts. |
5950 | |
5951 | #[derive(KnownLayout)] |
5952 | #[repr (C)] |
5953 | struct KLF0; |
5954 | |
5955 | assert_eq!(<KLF0 as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
5956 | |
5957 | #[derive(KnownLayout)] |
5958 | #[repr (C)] |
5959 | struct KLF1([u8]); |
5960 | |
5961 | assert_eq!(<KLF1 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
5962 | |
5963 | #[derive(KnownLayout)] |
5964 | #[repr (C)] |
5965 | struct KLF2(NotKnownLayout<u8>, [u8]); |
5966 | |
5967 | assert_eq!(<KLF2 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
5968 | |
5969 | #[derive(KnownLayout)] |
5970 | #[repr (C)] |
5971 | struct KLF3(NotKnownLayout<u8>, NotKnownLayout<AU16>, [u8]); |
5972 | |
5973 | assert_eq!(<KLF3 as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
5974 | |
5975 | #[derive(KnownLayout)] |
5976 | #[repr (C)] |
5977 | struct KLF4(NotKnownLayout<u8>, NotKnownLayout<AU16>, NotKnownLayout<AU32>, [u8]); |
5978 | |
5979 | assert_eq!(<KLF4 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 8)); |
5980 | } |
5981 | |
5982 | #[test] |
5983 | fn test_object_safety() { |
5984 | fn _takes_no_cell(_: &dyn Immutable) {} |
5985 | fn _takes_unaligned(_: &dyn Unaligned) {} |
5986 | } |
5987 | |
5988 | #[test] |
5989 | fn test_from_zeros_only() { |
5990 | // Test types that implement `FromZeros` but not `FromBytes`. |
5991 | |
5992 | assert!(!bool::new_zeroed()); |
5993 | assert_eq!(char::new_zeroed(), ' \0' ); |
5994 | |
5995 | #[cfg (feature = "alloc" )] |
5996 | { |
5997 | assert_eq!(bool::new_box_zeroed(), Ok(Box::new(false))); |
5998 | assert_eq!(char::new_box_zeroed(), Ok(Box::new(' \0' ))); |
5999 | |
6000 | assert_eq!( |
6001 | <[bool]>::new_box_zeroed_with_elems(3).unwrap().as_ref(), |
6002 | [false, false, false] |
6003 | ); |
6004 | assert_eq!( |
6005 | <[char]>::new_box_zeroed_with_elems(3).unwrap().as_ref(), |
6006 | [' \0' , ' \0' , ' \0' ] |
6007 | ); |
6008 | |
6009 | assert_eq!(bool::new_vec_zeroed(3).unwrap().as_ref(), [false, false, false]); |
6010 | assert_eq!(char::new_vec_zeroed(3).unwrap().as_ref(), [' \0' , ' \0' , ' \0' ]); |
6011 | } |
6012 | |
6013 | let mut string = "hello" .to_string(); |
6014 | let s: &mut str = string.as_mut(); |
6015 | assert_eq!(s, "hello" ); |
6016 | s.zero(); |
6017 | assert_eq!(s, " \0\0\0\0\0" ); |
6018 | } |
6019 | |
6020 | #[test] |
6021 | fn test_zst_count_preserved() { |
6022 | // Test that, when an explicit count is provided to for a type with a |
6023 | // ZST trailing slice element, that count is preserved. This is |
6024 | // important since, for such types, all element counts result in objects |
6025 | // of the same size, and so the correct behavior is ambiguous. However, |
6026 | // preserving the count as requested by the user is the behavior that we |
6027 | // document publicly. |
6028 | |
6029 | // FromZeros methods |
6030 | #[cfg (feature = "alloc" )] |
6031 | assert_eq!(<[()]>::new_box_zeroed_with_elems(3).unwrap().len(), 3); |
6032 | #[cfg (feature = "alloc" )] |
6033 | assert_eq!(<()>::new_vec_zeroed(3).unwrap().len(), 3); |
6034 | |
6035 | // FromBytes methods |
6036 | assert_eq!(<[()]>::ref_from_bytes_with_elems(&[][..], 3).unwrap().len(), 3); |
6037 | assert_eq!(<[()]>::ref_from_prefix_with_elems(&[][..], 3).unwrap().0.len(), 3); |
6038 | assert_eq!(<[()]>::ref_from_suffix_with_elems(&[][..], 3).unwrap().1.len(), 3); |
6039 | assert_eq!(<[()]>::mut_from_bytes_with_elems(&mut [][..], 3).unwrap().len(), 3); |
6040 | assert_eq!(<[()]>::mut_from_prefix_with_elems(&mut [][..], 3).unwrap().0.len(), 3); |
6041 | assert_eq!(<[()]>::mut_from_suffix_with_elems(&mut [][..], 3).unwrap().1.len(), 3); |
6042 | } |
6043 | |
6044 | #[test] |
6045 | fn test_read_write() { |
6046 | const VAL: u64 = 0x12345678; |
6047 | #[cfg (target_endian = "big" )] |
6048 | const VAL_BYTES: [u8; 8] = VAL.to_be_bytes(); |
6049 | #[cfg (target_endian = "little" )] |
6050 | const VAL_BYTES: [u8; 8] = VAL.to_le_bytes(); |
6051 | const ZEROS: [u8; 8] = [0u8; 8]; |
6052 | |
6053 | // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`. |
6054 | |
6055 | assert_eq!(u64::read_from_bytes(&VAL_BYTES[..]), Ok(VAL)); |
6056 | // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all |
6057 | // zeros. |
6058 | let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
6059 | assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Ok((VAL, &ZEROS[..]))); |
6060 | assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Ok((&VAL_BYTES[..], 0))); |
6061 | // The first 8 bytes are all zeros and the second 8 bytes are from |
6062 | // `VAL_BYTES` |
6063 | let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
6064 | assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Ok((0, &VAL_BYTES[..]))); |
6065 | assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Ok((&ZEROS[..], VAL))); |
6066 | |
6067 | // Test `IntoBytes::{write_to, write_to_prefix, write_to_suffix}`. |
6068 | |
6069 | let mut bytes = [0u8; 8]; |
6070 | assert_eq!(VAL.write_to(&mut bytes[..]), Ok(())); |
6071 | assert_eq!(bytes, VAL_BYTES); |
6072 | let mut bytes = [0u8; 16]; |
6073 | assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Ok(())); |
6074 | let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
6075 | assert_eq!(bytes, want); |
6076 | let mut bytes = [0u8; 16]; |
6077 | assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Ok(())); |
6078 | let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
6079 | assert_eq!(bytes, want); |
6080 | } |
6081 | |
6082 | #[test] |
6083 | #[cfg (feature = "std" )] |
6084 | fn test_read_write_io() { |
6085 | let mut long_buffer = [0, 0, 0, 0]; |
6086 | assert!(matches!(u16::MAX.write_to_io(&mut long_buffer[..]), Ok(()))); |
6087 | assert_eq!(long_buffer, [255, 255, 0, 0]); |
6088 | assert!(matches!(u16::read_from_io(&long_buffer[..]), Ok(u16::MAX))); |
6089 | |
6090 | let mut short_buffer = [0, 0]; |
6091 | assert!(u32::MAX.write_to_io(&mut short_buffer[..]).is_err()); |
6092 | assert_eq!(short_buffer, [255, 255]); |
6093 | assert!(u32::read_from_io(&short_buffer[..]).is_err()); |
6094 | } |
6095 | |
6096 | #[test] |
6097 | fn test_try_from_bytes_try_read_from() { |
6098 | assert_eq!(<bool as TryFromBytes>::try_read_from_bytes(&[0]), Ok(false)); |
6099 | assert_eq!(<bool as TryFromBytes>::try_read_from_bytes(&[1]), Ok(true)); |
6100 | |
6101 | assert_eq!(<bool as TryFromBytes>::try_read_from_prefix(&[0, 2]), Ok((false, &[2][..]))); |
6102 | assert_eq!(<bool as TryFromBytes>::try_read_from_prefix(&[1, 2]), Ok((true, &[2][..]))); |
6103 | |
6104 | assert_eq!(<bool as TryFromBytes>::try_read_from_suffix(&[2, 0]), Ok((&[2][..], false))); |
6105 | assert_eq!(<bool as TryFromBytes>::try_read_from_suffix(&[2, 1]), Ok((&[2][..], true))); |
6106 | |
6107 | // If we don't pass enough bytes, it fails. |
6108 | assert!(matches!( |
6109 | <u8 as TryFromBytes>::try_read_from_bytes(&[]), |
6110 | Err(TryReadError::Size(_)) |
6111 | )); |
6112 | assert!(matches!( |
6113 | <u8 as TryFromBytes>::try_read_from_prefix(&[]), |
6114 | Err(TryReadError::Size(_)) |
6115 | )); |
6116 | assert!(matches!( |
6117 | <u8 as TryFromBytes>::try_read_from_suffix(&[]), |
6118 | Err(TryReadError::Size(_)) |
6119 | )); |
6120 | |
6121 | // If we pass too many bytes, it fails. |
6122 | assert!(matches!( |
6123 | <u8 as TryFromBytes>::try_read_from_bytes(&[0, 0]), |
6124 | Err(TryReadError::Size(_)) |
6125 | )); |
6126 | |
6127 | // If we pass an invalid value, it fails. |
6128 | assert!(matches!( |
6129 | <bool as TryFromBytes>::try_read_from_bytes(&[2]), |
6130 | Err(TryReadError::Validity(_)) |
6131 | )); |
6132 | assert!(matches!( |
6133 | <bool as TryFromBytes>::try_read_from_prefix(&[2, 0]), |
6134 | Err(TryReadError::Validity(_)) |
6135 | )); |
6136 | assert!(matches!( |
6137 | <bool as TryFromBytes>::try_read_from_suffix(&[0, 2]), |
6138 | Err(TryReadError::Validity(_)) |
6139 | )); |
6140 | |
6141 | // Reading from a misaligned buffer should still succeed. Since `AU64`'s |
6142 | // alignment is 8, and since we read from two adjacent addresses one |
6143 | // byte apart, it is guaranteed that at least one of them (though |
6144 | // possibly both) will be misaligned. |
6145 | let bytes: [u8; 9] = [0, 0, 0, 0, 0, 0, 0, 0, 0]; |
6146 | assert_eq!(<AU64 as TryFromBytes>::try_read_from_bytes(&bytes[..8]), Ok(AU64(0))); |
6147 | assert_eq!(<AU64 as TryFromBytes>::try_read_from_bytes(&bytes[1..9]), Ok(AU64(0))); |
6148 | |
6149 | assert_eq!( |
6150 | <AU64 as TryFromBytes>::try_read_from_prefix(&bytes[..8]), |
6151 | Ok((AU64(0), &[][..])) |
6152 | ); |
6153 | assert_eq!( |
6154 | <AU64 as TryFromBytes>::try_read_from_prefix(&bytes[1..9]), |
6155 | Ok((AU64(0), &[][..])) |
6156 | ); |
6157 | |
6158 | assert_eq!( |
6159 | <AU64 as TryFromBytes>::try_read_from_suffix(&bytes[..8]), |
6160 | Ok((&[][..], AU64(0))) |
6161 | ); |
6162 | assert_eq!( |
6163 | <AU64 as TryFromBytes>::try_read_from_suffix(&bytes[1..9]), |
6164 | Ok((&[][..], AU64(0))) |
6165 | ); |
6166 | } |
6167 | |
6168 | #[test] |
6169 | fn test_ref_from_mut_from() { |
6170 | // Test `FromBytes::{ref_from, mut_from}{,_prefix,Suffix}` success cases |
6171 | // Exhaustive coverage for these methods is covered by the `Ref` tests above, |
6172 | // which these helper methods defer to. |
6173 | |
6174 | let mut buf = |
6175 | Align::<[u8; 16], AU64>::new([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
6176 | |
6177 | assert_eq!( |
6178 | AU64::ref_from_bytes(&buf.t[8..]).unwrap().0.to_ne_bytes(), |
6179 | [8, 9, 10, 11, 12, 13, 14, 15] |
6180 | ); |
6181 | let suffix = AU64::mut_from_bytes(&mut buf.t[8..]).unwrap(); |
6182 | suffix.0 = 0x0101010101010101; |
6183 | // The `[u8:9]` is a non-half size of the full buffer, which would catch |
6184 | // `from_prefix` having the same implementation as `from_suffix` (issues #506, #511). |
6185 | assert_eq!( |
6186 | <[u8; 9]>::ref_from_suffix(&buf.t[..]).unwrap(), |
6187 | (&[0, 1, 2, 3, 4, 5, 6][..], &[7u8, 1, 1, 1, 1, 1, 1, 1, 1]) |
6188 | ); |
6189 | let (prefix, suffix) = AU64::mut_from_suffix(&mut buf.t[1..]).unwrap(); |
6190 | assert_eq!(prefix, &mut [1u8, 2, 3, 4, 5, 6, 7][..]); |
6191 | suffix.0 = 0x0202020202020202; |
6192 | let (prefix, suffix) = <[u8; 10]>::mut_from_suffix(&mut buf.t[..]).unwrap(); |
6193 | assert_eq!(prefix, &mut [0u8, 1, 2, 3, 4, 5][..]); |
6194 | suffix[0] = 42; |
6195 | assert_eq!( |
6196 | <[u8; 9]>::ref_from_prefix(&buf.t[..]).unwrap(), |
6197 | (&[0u8, 1, 2, 3, 4, 5, 42, 7, 2], &[2u8, 2, 2, 2, 2, 2, 2][..]) |
6198 | ); |
6199 | <[u8; 2]>::mut_from_prefix(&mut buf.t[..]).unwrap().0[1] = 30; |
6200 | assert_eq!(buf.t, [0, 30, 2, 3, 4, 5, 42, 7, 2, 2, 2, 2, 2, 2, 2, 2]); |
6201 | } |
6202 | |
6203 | #[test] |
6204 | fn test_ref_from_mut_from_error() { |
6205 | // Test `FromBytes::{ref_from, mut_from}{,_prefix,Suffix}` error cases. |
6206 | |
6207 | // Fail because the buffer is too large. |
6208 | let mut buf = Align::<[u8; 16], AU64>::default(); |
6209 | // `buf.t` should be aligned to 8, so only the length check should fail. |
6210 | assert!(AU64::ref_from_bytes(&buf.t[..]).is_err()); |
6211 | assert!(AU64::mut_from_bytes(&mut buf.t[..]).is_err()); |
6212 | assert!(<[u8; 8]>::ref_from_bytes(&buf.t[..]).is_err()); |
6213 | assert!(<[u8; 8]>::mut_from_bytes(&mut buf.t[..]).is_err()); |
6214 | |
6215 | // Fail because the buffer is too small. |
6216 | let mut buf = Align::<[u8; 4], AU64>::default(); |
6217 | assert!(AU64::ref_from_bytes(&buf.t[..]).is_err()); |
6218 | assert!(AU64::mut_from_bytes(&mut buf.t[..]).is_err()); |
6219 | assert!(<[u8; 8]>::ref_from_bytes(&buf.t[..]).is_err()); |
6220 | assert!(<[u8; 8]>::mut_from_bytes(&mut buf.t[..]).is_err()); |
6221 | assert!(AU64::ref_from_prefix(&buf.t[..]).is_err()); |
6222 | assert!(AU64::mut_from_prefix(&mut buf.t[..]).is_err()); |
6223 | assert!(AU64::ref_from_suffix(&buf.t[..]).is_err()); |
6224 | assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_err()); |
6225 | assert!(<[u8; 8]>::ref_from_prefix(&buf.t[..]).is_err()); |
6226 | assert!(<[u8; 8]>::mut_from_prefix(&mut buf.t[..]).is_err()); |
6227 | assert!(<[u8; 8]>::ref_from_suffix(&buf.t[..]).is_err()); |
6228 | assert!(<[u8; 8]>::mut_from_suffix(&mut buf.t[..]).is_err()); |
6229 | |
6230 | // Fail because the alignment is insufficient. |
6231 | let mut buf = Align::<[u8; 13], AU64>::default(); |
6232 | assert!(AU64::ref_from_bytes(&buf.t[1..]).is_err()); |
6233 | assert!(AU64::mut_from_bytes(&mut buf.t[1..]).is_err()); |
6234 | assert!(AU64::ref_from_bytes(&buf.t[1..]).is_err()); |
6235 | assert!(AU64::mut_from_bytes(&mut buf.t[1..]).is_err()); |
6236 | assert!(AU64::ref_from_prefix(&buf.t[1..]).is_err()); |
6237 | assert!(AU64::mut_from_prefix(&mut buf.t[1..]).is_err()); |
6238 | assert!(AU64::ref_from_suffix(&buf.t[..]).is_err()); |
6239 | assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_err()); |
6240 | } |
6241 | |
6242 | #[test] |
6243 | fn test_to_methods() { |
6244 | /// Run a series of tests by calling `IntoBytes` methods on `t`. |
6245 | /// |
6246 | /// `bytes` is the expected byte sequence returned from `t.as_bytes()` |
6247 | /// before `t` has been modified. `post_mutation` is the expected |
6248 | /// sequence returned from `t.as_bytes()` after `t.as_mut_bytes()[0]` |
6249 | /// has had its bits flipped (by applying `^= 0xFF`). |
6250 | /// |
6251 | /// `N` is the size of `t` in bytes. |
6252 | fn test<T: FromBytes + IntoBytes + Immutable + Debug + Eq + ?Sized, const N: usize>( |
6253 | t: &mut T, |
6254 | bytes: &[u8], |
6255 | post_mutation: &T, |
6256 | ) { |
6257 | // Test that we can access the underlying bytes, and that we get the |
6258 | // right bytes and the right number of bytes. |
6259 | assert_eq!(t.as_bytes(), bytes); |
6260 | |
6261 | // Test that changes to the underlying byte slices are reflected in |
6262 | // the original object. |
6263 | t.as_mut_bytes()[0] ^= 0xFF; |
6264 | assert_eq!(t, post_mutation); |
6265 | t.as_mut_bytes()[0] ^= 0xFF; |
6266 | |
6267 | // `write_to` rejects slices that are too small or too large. |
6268 | assert!(t.write_to(&mut vec![0; N - 1][..]).is_err()); |
6269 | assert!(t.write_to(&mut vec![0; N + 1][..]).is_err()); |
6270 | |
6271 | // `write_to` works as expected. |
6272 | let mut bytes = [0; N]; |
6273 | assert_eq!(t.write_to(&mut bytes[..]), Ok(())); |
6274 | assert_eq!(bytes, t.as_bytes()); |
6275 | |
6276 | // `write_to_prefix` rejects slices that are too small. |
6277 | assert!(t.write_to_prefix(&mut vec![0; N - 1][..]).is_err()); |
6278 | |
6279 | // `write_to_prefix` works with exact-sized slices. |
6280 | let mut bytes = [0; N]; |
6281 | assert_eq!(t.write_to_prefix(&mut bytes[..]), Ok(())); |
6282 | assert_eq!(bytes, t.as_bytes()); |
6283 | |
6284 | // `write_to_prefix` works with too-large slices, and any bytes past |
6285 | // the prefix aren't modified. |
6286 | let mut too_many_bytes = vec![0; N + 1]; |
6287 | too_many_bytes[N] = 123; |
6288 | assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Ok(())); |
6289 | assert_eq!(&too_many_bytes[..N], t.as_bytes()); |
6290 | assert_eq!(too_many_bytes[N], 123); |
6291 | |
6292 | // `write_to_suffix` rejects slices that are too small. |
6293 | assert!(t.write_to_suffix(&mut vec![0; N - 1][..]).is_err()); |
6294 | |
6295 | // `write_to_suffix` works with exact-sized slices. |
6296 | let mut bytes = [0; N]; |
6297 | assert_eq!(t.write_to_suffix(&mut bytes[..]), Ok(())); |
6298 | assert_eq!(bytes, t.as_bytes()); |
6299 | |
6300 | // `write_to_suffix` works with too-large slices, and any bytes |
6301 | // before the suffix aren't modified. |
6302 | let mut too_many_bytes = vec![0; N + 1]; |
6303 | too_many_bytes[0] = 123; |
6304 | assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Ok(())); |
6305 | assert_eq!(&too_many_bytes[1..], t.as_bytes()); |
6306 | assert_eq!(too_many_bytes[0], 123); |
6307 | } |
6308 | |
6309 | #[derive(Debug, Eq, PartialEq, FromBytes, IntoBytes, Immutable)] |
6310 | #[repr (C)] |
6311 | struct Foo { |
6312 | a: u32, |
6313 | b: Wrapping<u32>, |
6314 | c: Option<NonZeroU32>, |
6315 | } |
6316 | |
6317 | let expected_bytes: Vec<u8> = if cfg!(target_endian = "little" ) { |
6318 | vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] |
6319 | } else { |
6320 | vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0] |
6321 | }; |
6322 | let post_mutation_expected_a = |
6323 | if cfg!(target_endian = "little" ) { 0x00_00_00_FE } else { 0xFF_00_00_01 }; |
6324 | test::<_, 12>( |
6325 | &mut Foo { a: 1, b: Wrapping(2), c: None }, |
6326 | expected_bytes.as_bytes(), |
6327 | &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None }, |
6328 | ); |
6329 | test::<_, 3>( |
6330 | Unsized::from_mut_slice(&mut [1, 2, 3]), |
6331 | &[1, 2, 3], |
6332 | Unsized::from_mut_slice(&mut [0xFE, 2, 3]), |
6333 | ); |
6334 | } |
6335 | |
6336 | #[test] |
6337 | fn test_array() { |
6338 | #[derive(FromBytes, IntoBytes, Immutable)] |
6339 | #[repr (C)] |
6340 | struct Foo { |
6341 | a: [u16; 33], |
6342 | } |
6343 | |
6344 | let foo = Foo { a: [0xFFFF; 33] }; |
6345 | let expected = [0xFFu8; 66]; |
6346 | assert_eq!(foo.as_bytes(), &expected[..]); |
6347 | } |
6348 | |
6349 | #[test] |
6350 | fn test_new_zeroed() { |
6351 | assert!(!bool::new_zeroed()); |
6352 | assert_eq!(u64::new_zeroed(), 0); |
6353 | // This test exists in order to exercise unsafe code, especially when |
6354 | // running under Miri. |
6355 | #[allow (clippy::unit_cmp)] |
6356 | { |
6357 | assert_eq!(<()>::new_zeroed(), ()); |
6358 | } |
6359 | } |
6360 | |
6361 | #[test] |
6362 | fn test_transparent_packed_generic_struct() { |
6363 | #[derive(IntoBytes, FromBytes, Unaligned)] |
6364 | #[repr (transparent)] |
6365 | #[allow (dead_code)] // We never construct this type |
6366 | struct Foo<T> { |
6367 | _t: T, |
6368 | _phantom: PhantomData<()>, |
6369 | } |
6370 | |
6371 | assert_impl_all!(Foo<u32>: FromZeros, FromBytes, IntoBytes); |
6372 | assert_impl_all!(Foo<u8>: Unaligned); |
6373 | |
6374 | #[derive(IntoBytes, FromBytes, Unaligned)] |
6375 | #[repr (C, packed)] |
6376 | #[allow (dead_code)] // We never construct this type |
6377 | struct Bar<T, U> { |
6378 | _t: T, |
6379 | _u: U, |
6380 | } |
6381 | |
6382 | assert_impl_all!(Bar<u8, AU64>: FromZeros, FromBytes, IntoBytes, Unaligned); |
6383 | } |
6384 | |
6385 | #[cfg (feature = "alloc" )] |
6386 | mod alloc { |
6387 | use super::*; |
6388 | |
6389 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6390 | #[test] |
6391 | fn test_extend_vec_zeroed() { |
6392 | // Test extending when there is an existing allocation. |
6393 | let mut v = vec![100u16, 200, 300]; |
6394 | FromZeros::extend_vec_zeroed(&mut v, 3).unwrap(); |
6395 | assert_eq!(v.len(), 6); |
6396 | assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]); |
6397 | drop(v); |
6398 | |
6399 | // Test extending when there is no existing allocation. |
6400 | let mut v: Vec<u64> = Vec::new(); |
6401 | FromZeros::extend_vec_zeroed(&mut v, 3).unwrap(); |
6402 | assert_eq!(v.len(), 3); |
6403 | assert_eq!(&*v, &[0, 0, 0]); |
6404 | drop(v); |
6405 | } |
6406 | |
6407 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6408 | #[test] |
6409 | fn test_extend_vec_zeroed_zst() { |
6410 | // Test extending when there is an existing (fake) allocation. |
6411 | let mut v = vec![(), (), ()]; |
6412 | <()>::extend_vec_zeroed(&mut v, 3).unwrap(); |
6413 | assert_eq!(v.len(), 6); |
6414 | assert_eq!(&*v, &[(), (), (), (), (), ()]); |
6415 | drop(v); |
6416 | |
6417 | // Test extending when there is no existing (fake) allocation. |
6418 | let mut v: Vec<()> = Vec::new(); |
6419 | <()>::extend_vec_zeroed(&mut v, 3).unwrap(); |
6420 | assert_eq!(&*v, &[(), (), ()]); |
6421 | drop(v); |
6422 | } |
6423 | |
6424 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6425 | #[test] |
6426 | fn test_insert_vec_zeroed() { |
6427 | // Insert at start (no existing allocation). |
6428 | let mut v: Vec<u64> = Vec::new(); |
6429 | u64::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6430 | assert_eq!(v.len(), 2); |
6431 | assert_eq!(&*v, &[0, 0]); |
6432 | drop(v); |
6433 | |
6434 | // Insert at start. |
6435 | let mut v = vec![100u64, 200, 300]; |
6436 | u64::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6437 | assert_eq!(v.len(), 5); |
6438 | assert_eq!(&*v, &[0, 0, 100, 200, 300]); |
6439 | drop(v); |
6440 | |
6441 | // Insert at middle. |
6442 | let mut v = vec![100u64, 200, 300]; |
6443 | u64::insert_vec_zeroed(&mut v, 1, 1).unwrap(); |
6444 | assert_eq!(v.len(), 4); |
6445 | assert_eq!(&*v, &[100, 0, 200, 300]); |
6446 | drop(v); |
6447 | |
6448 | // Insert at end. |
6449 | let mut v = vec![100u64, 200, 300]; |
6450 | u64::insert_vec_zeroed(&mut v, 3, 1).unwrap(); |
6451 | assert_eq!(v.len(), 4); |
6452 | assert_eq!(&*v, &[100, 200, 300, 0]); |
6453 | drop(v); |
6454 | } |
6455 | |
6456 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6457 | #[test] |
6458 | fn test_insert_vec_zeroed_zst() { |
6459 | // Insert at start (no existing fake allocation). |
6460 | let mut v: Vec<()> = Vec::new(); |
6461 | <()>::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6462 | assert_eq!(v.len(), 2); |
6463 | assert_eq!(&*v, &[(), ()]); |
6464 | drop(v); |
6465 | |
6466 | // Insert at start. |
6467 | let mut v = vec![(), (), ()]; |
6468 | <()>::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6469 | assert_eq!(v.len(), 5); |
6470 | assert_eq!(&*v, &[(), (), (), (), ()]); |
6471 | drop(v); |
6472 | |
6473 | // Insert at middle. |
6474 | let mut v = vec![(), (), ()]; |
6475 | <()>::insert_vec_zeroed(&mut v, 1, 1).unwrap(); |
6476 | assert_eq!(v.len(), 4); |
6477 | assert_eq!(&*v, &[(), (), (), ()]); |
6478 | drop(v); |
6479 | |
6480 | // Insert at end. |
6481 | let mut v = vec![(), (), ()]; |
6482 | <()>::insert_vec_zeroed(&mut v, 3, 1).unwrap(); |
6483 | assert_eq!(v.len(), 4); |
6484 | assert_eq!(&*v, &[(), (), (), ()]); |
6485 | drop(v); |
6486 | } |
6487 | |
6488 | #[test] |
6489 | fn test_new_box_zeroed() { |
6490 | assert_eq!(u64::new_box_zeroed(), Ok(Box::new(0))); |
6491 | } |
6492 | |
6493 | #[test] |
6494 | fn test_new_box_zeroed_array() { |
6495 | drop(<[u32; 0x1000]>::new_box_zeroed()); |
6496 | } |
6497 | |
6498 | #[test] |
6499 | fn test_new_box_zeroed_zst() { |
6500 | // This test exists in order to exercise unsafe code, especially |
6501 | // when running under Miri. |
6502 | #[allow (clippy::unit_cmp)] |
6503 | { |
6504 | assert_eq!(<()>::new_box_zeroed(), Ok(Box::new(()))); |
6505 | } |
6506 | } |
6507 | |
6508 | #[test] |
6509 | fn test_new_box_zeroed_with_elems() { |
6510 | let mut s: Box<[u64]> = <[u64]>::new_box_zeroed_with_elems(3).unwrap(); |
6511 | assert_eq!(s.len(), 3); |
6512 | assert_eq!(&*s, &[0, 0, 0]); |
6513 | s[1] = 3; |
6514 | assert_eq!(&*s, &[0, 3, 0]); |
6515 | } |
6516 | |
6517 | #[test] |
6518 | fn test_new_box_zeroed_with_elems_empty() { |
6519 | let s: Box<[u64]> = <[u64]>::new_box_zeroed_with_elems(0).unwrap(); |
6520 | assert_eq!(s.len(), 0); |
6521 | } |
6522 | |
6523 | #[test] |
6524 | fn test_new_box_zeroed_with_elems_zst() { |
6525 | let mut s: Box<[()]> = <[()]>::new_box_zeroed_with_elems(3).unwrap(); |
6526 | assert_eq!(s.len(), 3); |
6527 | assert!(s.get(10).is_none()); |
6528 | // This test exists in order to exercise unsafe code, especially |
6529 | // when running under Miri. |
6530 | #[allow (clippy::unit_cmp)] |
6531 | { |
6532 | assert_eq!(s[1], ()); |
6533 | } |
6534 | s[2] = (); |
6535 | } |
6536 | |
6537 | #[test] |
6538 | fn test_new_box_zeroed_with_elems_zst_empty() { |
6539 | let s: Box<[()]> = <[()]>::new_box_zeroed_with_elems(0).unwrap(); |
6540 | assert_eq!(s.len(), 0); |
6541 | } |
6542 | |
6543 | #[test] |
6544 | fn new_box_zeroed_with_elems_errors() { |
6545 | assert_eq!(<[u16]>::new_box_zeroed_with_elems(usize::MAX), Err(AllocError)); |
6546 | |
6547 | let max = <usize as core::convert::TryFrom<_>>::try_from(isize::MAX).unwrap(); |
6548 | assert_eq!( |
6549 | <[u16]>::new_box_zeroed_with_elems((max / mem::size_of::<u16>()) + 1), |
6550 | Err(AllocError) |
6551 | ); |
6552 | } |
6553 | } |
6554 | } |
6555 | |
6556 | #[cfg (kani)] |
6557 | mod proofs { |
6558 | use super::*; |
6559 | |
6560 | impl kani::Arbitrary for DstLayout { |
6561 | fn any() -> Self { |
6562 | let align: NonZeroUsize = kani::any(); |
6563 | let size_info: SizeInfo = kani::any(); |
6564 | |
6565 | kani::assume(align.is_power_of_two()); |
6566 | kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN); |
6567 | |
6568 | // For testing purposes, we most care about instantiations of |
6569 | // `DstLayout` that can correspond to actual Rust types. We use |
6570 | // `Layout` to verify that our `DstLayout` satisfies the validity |
6571 | // conditions of Rust layouts. |
6572 | kani::assume( |
6573 | match size_info { |
6574 | SizeInfo::Sized { size } => Layout::from_size_align(size, align.get()), |
6575 | SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size: _ }) => { |
6576 | // `SliceDst`` cannot encode an exact size, but we know |
6577 | // it is at least `offset` bytes. |
6578 | Layout::from_size_align(offset, align.get()) |
6579 | } |
6580 | } |
6581 | .is_ok(), |
6582 | ); |
6583 | |
6584 | Self { align: align, size_info: size_info } |
6585 | } |
6586 | } |
6587 | |
6588 | impl kani::Arbitrary for SizeInfo { |
6589 | fn any() -> Self { |
6590 | let is_sized: bool = kani::any(); |
6591 | |
6592 | match is_sized { |
6593 | true => { |
6594 | let size: usize = kani::any(); |
6595 | |
6596 | kani::assume(size <= isize::MAX as _); |
6597 | |
6598 | SizeInfo::Sized { size } |
6599 | } |
6600 | false => SizeInfo::SliceDst(kani::any()), |
6601 | } |
6602 | } |
6603 | } |
6604 | |
6605 | impl kani::Arbitrary for TrailingSliceLayout { |
6606 | fn any() -> Self { |
6607 | let elem_size: usize = kani::any(); |
6608 | let offset: usize = kani::any(); |
6609 | |
6610 | kani::assume(elem_size < isize::MAX as _); |
6611 | kani::assume(offset < isize::MAX as _); |
6612 | |
6613 | TrailingSliceLayout { elem_size, offset } |
6614 | } |
6615 | } |
6616 | |
6617 | #[kani::proof] |
6618 | fn prove_dst_layout_extend() { |
6619 | use crate::util::{max, min, padding_needed_for}; |
6620 | |
6621 | let base: DstLayout = kani::any(); |
6622 | let field: DstLayout = kani::any(); |
6623 | let packed: Option<NonZeroUsize> = kani::any(); |
6624 | |
6625 | if let Some(max_align) = packed { |
6626 | kani::assume(max_align.is_power_of_two()); |
6627 | kani::assume(base.align <= max_align); |
6628 | } |
6629 | |
6630 | // The base can only be extended if it's sized. |
6631 | kani::assume(matches!(base.size_info, SizeInfo::Sized { .. })); |
6632 | let base_size = if let SizeInfo::Sized { size } = base.size_info { |
6633 | size |
6634 | } else { |
6635 | unreachable!(); |
6636 | }; |
6637 | |
6638 | // Under the above conditions, `DstLayout::extend` will not panic. |
6639 | let composite = base.extend(field, packed); |
6640 | |
6641 | // The field's alignment is clamped by `max_align` (i.e., the |
6642 | // `packed` attribute, if any) [1]. |
6643 | // |
6644 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
6645 | // |
6646 | // The alignments of each field, for the purpose of positioning |
6647 | // fields, is the smaller of the specified alignment and the |
6648 | // alignment of the field's type. |
6649 | let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN)); |
6650 | |
6651 | // The struct's alignment is the maximum of its previous alignment and |
6652 | // `field_align`. |
6653 | assert_eq!(composite.align, max(base.align, field_align)); |
6654 | |
6655 | // Compute the minimum amount of inter-field padding needed to |
6656 | // satisfy the field's alignment, and offset of the trailing field. |
6657 | // [1] |
6658 | // |
6659 | // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
6660 | // |
6661 | // Inter-field padding is guaranteed to be the minimum required in |
6662 | // order to satisfy each field's (possibly altered) alignment. |
6663 | let padding = padding_needed_for(base_size, field_align); |
6664 | let offset = base_size + padding; |
6665 | |
6666 | // For testing purposes, we'll also construct `alloc::Layout` |
6667 | // stand-ins for `DstLayout`, and show that `extend` behaves |
6668 | // comparably on both types. |
6669 | let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap(); |
6670 | |
6671 | match field.size_info { |
6672 | SizeInfo::Sized { size: field_size } => { |
6673 | if let SizeInfo::Sized { size: composite_size } = composite.size_info { |
6674 | // If the trailing field is sized, the resulting layout will |
6675 | // be sized. Its size will be the sum of the preceding |
6676 | // layout, the size of the new field, and the size of |
6677 | // inter-field padding between the two. |
6678 | assert_eq!(composite_size, offset + field_size); |
6679 | |
6680 | let field_analog = |
6681 | Layout::from_size_align(field_size, field_align.get()).unwrap(); |
6682 | |
6683 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
6684 | { |
6685 | assert_eq!(actual_offset, offset); |
6686 | assert_eq!(actual_composite.size(), composite_size); |
6687 | assert_eq!(actual_composite.align(), composite.align.get()); |
6688 | } else { |
6689 | // An error here reflects that composite of `base` |
6690 | // and `field` cannot correspond to a real Rust type |
6691 | // fragment, because such a fragment would violate |
6692 | // the basic invariants of a valid Rust layout. At |
6693 | // the time of writing, `DstLayout` is a little more |
6694 | // permissive than `Layout`, so we don't assert |
6695 | // anything in this branch (e.g., unreachability). |
6696 | } |
6697 | } else { |
6698 | panic!("The composite of two sized layouts must be sized." ) |
6699 | } |
6700 | } |
6701 | SizeInfo::SliceDst(TrailingSliceLayout { |
6702 | offset: field_offset, |
6703 | elem_size: field_elem_size, |
6704 | }) => { |
6705 | if let SizeInfo::SliceDst(TrailingSliceLayout { |
6706 | offset: composite_offset, |
6707 | elem_size: composite_elem_size, |
6708 | }) = composite.size_info |
6709 | { |
6710 | // The offset of the trailing slice component is the sum |
6711 | // of the offset of the trailing field and the trailing |
6712 | // slice offset within that field. |
6713 | assert_eq!(composite_offset, offset + field_offset); |
6714 | // The elem size is unchanged. |
6715 | assert_eq!(composite_elem_size, field_elem_size); |
6716 | |
6717 | let field_analog = |
6718 | Layout::from_size_align(field_offset, field_align.get()).unwrap(); |
6719 | |
6720 | if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
6721 | { |
6722 | assert_eq!(actual_offset, offset); |
6723 | assert_eq!(actual_composite.size(), composite_offset); |
6724 | assert_eq!(actual_composite.align(), composite.align.get()); |
6725 | } else { |
6726 | // An error here reflects that composite of `base` |
6727 | // and `field` cannot correspond to a real Rust type |
6728 | // fragment, because such a fragment would violate |
6729 | // the basic invariants of a valid Rust layout. At |
6730 | // the time of writing, `DstLayout` is a little more |
6731 | // permissive than `Layout`, so we don't assert |
6732 | // anything in this branch (e.g., unreachability). |
6733 | } |
6734 | } else { |
6735 | panic!("The extension of a layout with a DST must result in a DST." ) |
6736 | } |
6737 | } |
6738 | } |
6739 | } |
6740 | |
6741 | #[kani::proof] |
6742 | #[kani::should_panic] |
6743 | fn prove_dst_layout_extend_dst_panics() { |
6744 | let base: DstLayout = kani::any(); |
6745 | let field: DstLayout = kani::any(); |
6746 | let packed: Option<NonZeroUsize> = kani::any(); |
6747 | |
6748 | if let Some(max_align) = packed { |
6749 | kani::assume(max_align.is_power_of_two()); |
6750 | kani::assume(base.align <= max_align); |
6751 | } |
6752 | |
6753 | kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..))); |
6754 | |
6755 | let _ = base.extend(field, packed); |
6756 | } |
6757 | |
6758 | #[kani::proof] |
6759 | fn prove_dst_layout_pad_to_align() { |
6760 | use crate::util::padding_needed_for; |
6761 | |
6762 | let layout: DstLayout = kani::any(); |
6763 | |
6764 | let padded: DstLayout = layout.pad_to_align(); |
6765 | |
6766 | // Calling `pad_to_align` does not alter the `DstLayout`'s alignment. |
6767 | assert_eq!(padded.align, layout.align); |
6768 | |
6769 | if let SizeInfo::Sized { size: unpadded_size } = layout.size_info { |
6770 | if let SizeInfo::Sized { size: padded_size } = padded.size_info { |
6771 | // If the layout is sized, it will remain sized after padding is |
6772 | // added. Its sum will be its unpadded size and the size of the |
6773 | // trailing padding needed to satisfy its alignment |
6774 | // requirements. |
6775 | let padding = padding_needed_for(unpadded_size, layout.align); |
6776 | assert_eq!(padded_size, unpadded_size + padding); |
6777 | |
6778 | // Prove that calling `DstLayout::pad_to_align` behaves |
6779 | // identically to `Layout::pad_to_align`. |
6780 | let layout_analog = |
6781 | Layout::from_size_align(unpadded_size, layout.align.get()).unwrap(); |
6782 | let padded_analog = layout_analog.pad_to_align(); |
6783 | assert_eq!(padded_analog.align(), layout.align.get()); |
6784 | assert_eq!(padded_analog.size(), padded_size); |
6785 | } else { |
6786 | panic!("The padding of a sized layout must result in a sized layout." ) |
6787 | } |
6788 | } else { |
6789 | // If the layout is a DST, padding cannot be statically added. |
6790 | assert_eq!(padded.size_info, layout.size_info); |
6791 | } |
6792 | } |
6793 | } |
6794 | |