1 | // Copyright 2023 The Fuchsia Authors |
2 | // |
3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
6 | // This file may not be copied, modified, or distributed except according to |
7 | // those terms. |
8 | |
9 | use core::ptr::NonNull; |
10 | |
11 | use crate::{util::AsAddress, CastType, KnownLayout}; |
12 | |
13 | /// Module used to gate access to [`Ptr`]'s fields. |
14 | mod def { |
15 | #[cfg (doc)] |
16 | use super::invariant; |
17 | use super::Invariants; |
18 | use core::{marker::PhantomData, ptr::NonNull}; |
19 | |
20 | /// A raw pointer with more restrictions. |
21 | /// |
22 | /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the |
23 | /// following ways (note that these requirements only hold of non-zero-sized |
24 | /// referents): |
25 | /// - It must derive from a valid allocation. |
26 | /// - It must reference a byte range which is contained inside the |
27 | /// allocation from which it derives. |
28 | /// - As a consequence, the byte range it references must have a size |
29 | /// which does not overflow `isize`. |
30 | /// |
31 | /// Depending on how `Ptr` is parameterized, it may have additional |
32 | /// invariants: |
33 | /// - `ptr` conforms to the aliasing invariant of |
34 | /// [`I::Aliasing`](invariant::Aliasing). |
35 | /// - `ptr` conforms to the alignment invariant of |
36 | /// [`I::Alignment`](invariant::Alignment). |
37 | /// - `ptr` conforms to the validity invariant of |
38 | /// [`I::Validity`](invariant::Validity). |
39 | /// |
40 | /// `Ptr<'a, T>` is [covariant] in `'a` and `T`. |
41 | /// |
42 | /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html |
43 | pub struct Ptr<'a, T, I> |
44 | where |
45 | T: 'a + ?Sized, |
46 | I: Invariants, |
47 | { |
48 | /// # Invariants |
49 | /// |
50 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from |
51 | /// some valid Rust allocation, `A`. |
52 | /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid |
53 | /// provenance for `A`. |
54 | /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a |
55 | /// byte range which is entirely contained in `A`. |
56 | /// 3. `ptr` addresses a byte range whose length fits in an `isize`. |
57 | /// 4. `ptr` addresses a byte range which does not wrap around the |
58 | /// address space. |
59 | /// 5. If `ptr`'s referent is not zero sized,`A` is guaranteed to live |
60 | /// for at least `'a`. |
61 | /// 6. `T: 'a`. |
62 | /// 7. `ptr` conforms to the aliasing invariant of |
63 | /// [`I::Aliasing`](invariant::Aliasing). |
64 | /// 8. `ptr` conforms to the alignment invariant of |
65 | /// [`I::Alignment`](invariant::Alignment). |
66 | /// 9. `ptr` conforms to the validity invariant of |
67 | /// [`I::Validity`](invariant::Validity). |
68 | // SAFETY: `NonNull<T>` is covariant over `T` [1]. |
69 | // |
70 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html |
71 | ptr: NonNull<T>, |
72 | // SAFETY: `&'a ()` is covariant over `'a` [1]. |
73 | // |
74 | // [1]: https://doc.rust-lang.org/reference/subtyping.html#variance |
75 | _invariants: PhantomData<&'a I>, |
76 | } |
77 | |
78 | impl<'a, T, I> Ptr<'a, T, I> |
79 | where |
80 | T: 'a + ?Sized, |
81 | I: Invariants, |
82 | { |
83 | /// Constructs a `Ptr` from a [`NonNull`]. |
84 | /// |
85 | /// # Safety |
86 | /// |
87 | /// The caller promises that: |
88 | /// |
89 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from |
90 | /// some valid Rust allocation, `A`. |
91 | /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid |
92 | /// provenance for `A`. |
93 | /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a |
94 | /// byte range which is entirely contained in `A`. |
95 | /// 3. `ptr` addresses a byte range whose length fits in an `isize`. |
96 | /// 4. `ptr` addresses a byte range which does not wrap around the |
97 | /// address space. |
98 | /// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to |
99 | /// live for at least `'a`. |
100 | /// 6. `ptr` conforms to the aliasing invariant of |
101 | /// [`I::Aliasing`](invariant::Aliasing). |
102 | /// 7. `ptr` conforms to the alignment invariant of |
103 | /// [`I::Alignment`](invariant::Alignment). |
104 | /// 8. `ptr` conforms to the validity invariant of |
105 | /// [`I::Validity`](invariant::Validity). |
106 | pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> { |
107 | // SAFETY: The caller has promised to satisfy all safety invariants |
108 | // of `Ptr`. |
109 | Self { ptr, _invariants: PhantomData } |
110 | } |
111 | |
112 | /// Converts this `Ptr<T>` to a [`NonNull<T>`]. |
113 | /// |
114 | /// Note that this method does not consume `self`. The caller should |
115 | /// watch out for `unsafe` code which uses the returned `NonNull` in a |
116 | /// way that violates the safety invariants of `self`. |
117 | pub(crate) fn as_non_null(&self) -> NonNull<T> { |
118 | self.ptr |
119 | } |
120 | } |
121 | } |
122 | |
123 | #[allow (unreachable_pub)] // This is a false positive on our MSRV toolchain. |
124 | pub use def::Ptr; |
125 | |
126 | /// Used to define the system of [invariants][invariant] of `Ptr`. |
127 | macro_rules! define_system { |
128 | ($(#[$system_attr:meta])* $system:ident { |
129 | $($(#[$set_attr:meta])* $set:ident { |
130 | $( $(#[$elem_attr:meta])* $elem:ident $(< $($stronger_elem:ident)|*)?,)* |
131 | })* |
132 | }) => { |
133 | /// No requirement - any invariant is allowed. |
134 | #[allow(missing_copy_implementations, missing_debug_implementations)] |
135 | pub enum Any {} |
136 | |
137 | /// `Self` imposes a requirement at least as strict as `I`. |
138 | pub trait AtLeast<I> {} |
139 | |
140 | mod sealed { |
141 | pub trait Sealed {} |
142 | |
143 | impl<$($set,)*> Sealed for ($($set,)*) |
144 | where |
145 | $($set: super::$set,)* |
146 | {} |
147 | |
148 | impl Sealed for super::Any {} |
149 | |
150 | $($( |
151 | impl Sealed for super::$elem {} |
152 | )*)* |
153 | } |
154 | |
155 | $(#[$system_attr])* |
156 | /// |
157 | #[doc = concat!( |
158 | stringify!($system), |
159 | " are encoded as tuples of (" , |
160 | )] |
161 | $(#[doc = concat!( |
162 | "[`" , |
163 | stringify!($set), |
164 | "`]," |
165 | )])* |
166 | #[doc = concat!( |
167 | ")." , |
168 | )] |
169 | /// This trait is implemented for such tuples, and can be used to |
170 | /// project out the components of these tuples via its associated types. |
171 | pub trait $system: sealed::Sealed { |
172 | $( |
173 | $(#[$set_attr])* |
174 | type $set: $set; |
175 | )* |
176 | } |
177 | |
178 | impl<$($set,)*> $system for ($($set,)*) |
179 | where |
180 | $($set: self::$set,)* |
181 | { |
182 | $(type $set = $set;)* |
183 | } |
184 | |
185 | $( |
186 | $(#[$set_attr])* |
187 | pub trait $set: 'static + sealed::Sealed { |
188 | // This only exists for use in |
189 | // `into_exclusive_or_post_monomorphization_error`. |
190 | #[doc(hidden)] |
191 | const NAME: &'static str; |
192 | } |
193 | |
194 | impl $set for Any { |
195 | const NAME: &'static str = stringify!(Any); |
196 | } |
197 | |
198 | $( |
199 | $(#[$elem_attr])* |
200 | #[allow(missing_copy_implementations, missing_debug_implementations)] |
201 | pub enum $elem {} |
202 | |
203 | $(#[$elem_attr])* |
204 | impl $set for $elem { |
205 | const NAME: &'static str = stringify!($elem); |
206 | } |
207 | )* |
208 | )* |
209 | |
210 | $($( |
211 | impl AtLeast<Any> for $elem {} |
212 | impl AtLeast<$elem> for $elem {} |
213 | |
214 | $($(impl AtLeast<$elem> for $stronger_elem {})*)? |
215 | )*)* |
216 | }; |
217 | } |
218 | |
219 | /// The parameterized invariants of a [`Ptr`]. |
220 | /// |
221 | /// Invariants are encoded as ([`Aliasing`], [`Alignment`], [`Validity`]) |
222 | /// triples implementing the [`Invariants`] trait. |
223 | #[doc (hidden)] |
224 | pub mod invariant { |
225 | define_system! { |
226 | /// The invariants of a [`Ptr`][super::Ptr]. |
227 | Invariants { |
228 | /// The aliasing invariant of a [`Ptr`][super::Ptr]. |
229 | Aliasing { |
230 | /// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a T`. |
231 | /// |
232 | /// The referent of a shared-aliased `Ptr` may be concurrently |
233 | /// referenced by any number of shared-aliased `Ptr` or `&T` |
234 | /// references, and may not be concurrently referenced by any |
235 | /// exclusively-aliased `Ptr`s or `&mut T` references. The |
236 | /// referent must not be mutated, except via [`UnsafeCell`]s. |
237 | /// |
238 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
239 | Shared < Exclusive, |
240 | |
241 | /// The `Ptr<'a, T>` adheres to the aliasing rules of a `&'a mut |
242 | /// T`. |
243 | /// |
244 | /// The referent of an exclusively-aliased `Ptr` may not be |
245 | /// concurrently referenced by any other `Ptr`s or references, |
246 | /// and may not be accessed (read or written) other than via |
247 | /// this `Ptr`. |
248 | Exclusive, |
249 | } |
250 | |
251 | /// The alignment invariant of a [`Ptr`][super::Ptr]. |
252 | Alignment { |
253 | /// The referent is aligned: for `Ptr<T>`, the referent's |
254 | /// address is a multiple of the `T`'s alignment. |
255 | Aligned, |
256 | } |
257 | |
258 | /// The validity invariant of a [`Ptr`][super::Ptr]. |
259 | Validity { |
260 | /// The byte ranges initialized in `T` are also initialized in |
261 | /// the referent. |
262 | /// |
263 | /// Formally: uninitialized bytes may only be present in |
264 | /// `Ptr<T>`'s referent where they are guaranteed to be present |
265 | /// in `T`. This is a dynamic property: if, at a particular byte |
266 | /// offset, a valid enum discriminant is set, the subsequent |
267 | /// bytes may only have uninitialized bytes as specificed by the |
268 | /// corresponding enum. |
269 | /// |
270 | /// Formally, given `len = size_of_val_raw(ptr)`, at every byte |
271 | /// offset, `b`, in the range `[0, len)`: |
272 | /// - If, in any instance `t: T` of length `len`, the byte at |
273 | /// offset `b` in `t` is initialized, then the byte at offset |
274 | /// `b` within `*ptr` must be initialized. |
275 | /// - Let `c` be the contents of the byte range `[0, b)` in |
276 | /// `*ptr`. Let `S` be the subset of valid instances of `T` of |
277 | /// length `len` which contain `c` in the offset range `[0, |
278 | /// b)`. If, in any instance of `t: T` in `S`, the byte at |
279 | /// offset `b` in `t` is initialized, then the byte at offset |
280 | /// `b` in `*ptr` must be initialized. |
281 | /// |
282 | /// Pragmatically, this means that if `*ptr` is guaranteed to |
283 | /// contain an enum type at a particular offset, and the enum |
284 | /// discriminant stored in `*ptr` corresponds to a valid |
285 | /// variant of that enum type, then it is guaranteed that the |
286 | /// appropriate bytes of `*ptr` are initialized as defined by |
287 | /// that variant's bit validity (although note that the |
288 | /// variant may contain another enum type, in which case the |
289 | /// same rules apply depending on the state of its |
290 | /// discriminant, and so on recursively). |
291 | AsInitialized < Initialized | Valid, |
292 | |
293 | /// The byte ranges in the referent are fully initialized. In |
294 | /// other words, if the referent is `N` bytes long, then it |
295 | /// contains a bit-valid `[u8; N]`. |
296 | Initialized, |
297 | |
298 | /// The referent is bit-valid for `T`. |
299 | Valid, |
300 | } |
301 | } |
302 | } |
303 | } |
304 | |
305 | pub(crate) use invariant::*; |
306 | |
307 | /// External trait implementations on [`Ptr`]. |
308 | mod _external { |
309 | use super::*; |
310 | use core::fmt::{Debug, Formatter}; |
311 | |
312 | /// SAFETY: Shared pointers are safely `Copy`. We do not implement `Copy` |
313 | /// for exclusive pointers, since at most one may exist at a time. `Ptr`'s |
314 | /// other invariants are unaffected by the number of references that exist |
315 | /// to `Ptr`'s referent. |
316 | impl<'a, T, I> Copy for Ptr<'a, T, I> |
317 | where |
318 | T: 'a + ?Sized, |
319 | I: Invariants, |
320 | Shared: AtLeast<I::Aliasing>, |
321 | { |
322 | } |
323 | |
324 | /// SAFETY: Shared pointers are safely `Clone`. We do not implement `Clone` |
325 | /// for exclusive pointers, since at most one may exist at a time. `Ptr`'s |
326 | /// other invariants are unaffected by the number of references that exist |
327 | /// to `Ptr`'s referent. |
328 | impl<'a, T, I> Clone for Ptr<'a, T, I> |
329 | where |
330 | T: 'a + ?Sized, |
331 | I: Invariants, |
332 | Shared: AtLeast<I::Aliasing>, |
333 | { |
334 | #[inline ] |
335 | fn clone(&self) -> Self { |
336 | *self |
337 | } |
338 | } |
339 | |
340 | impl<'a, T, I> Debug for Ptr<'a, T, I> |
341 | where |
342 | T: 'a + ?Sized, |
343 | I: Invariants, |
344 | { |
345 | #[inline ] |
346 | fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { |
347 | self.as_non_null().fmt(f) |
348 | } |
349 | } |
350 | } |
351 | |
352 | /// Methods for converting to and from `Ptr` and Rust's safe reference types. |
353 | mod _conversions { |
354 | use super::*; |
355 | use crate::util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance}; |
356 | |
357 | /// `&'a T` → `Ptr<'a, T>` |
358 | impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)> |
359 | where |
360 | T: 'a + ?Sized, |
361 | { |
362 | /// Constructs a `Ptr` from a shared reference. |
363 | #[doc (hidden)] |
364 | #[inline ] |
365 | pub fn from_ref(ptr: &'a T) -> Self { |
366 | let ptr = NonNull::from(ptr); |
367 | // SAFETY: |
368 | // 0. If `ptr`'s referent is not zero sized, then `ptr`, by |
369 | // invariant on `&'a T`, is derived from some valid Rust |
370 | // allocation, `A`. |
371 | // 1. If `ptr`'s referent is not zero sized, then `ptr`, by |
372 | // invariant on `&'a T`, has valid provenance for `A`. |
373 | // 2. If `ptr`'s referent is not zero sized, then `ptr`, by |
374 | // invariant on `&'a T`, addresses a byte range which is entirely |
375 | // contained in `A`. |
376 | // 3. `ptr`, by invariant on `&'a T`, addresses a byte range whose |
377 | // length fits in an `isize`. |
378 | // 4. `ptr`, by invariant on `&'a T`, addresses a byte range which |
379 | // does not wrap around the address space. |
380 | // 5. If `ptr`'s referent is not zero sized, then `A`, by invariant |
381 | // on `&'a T`, is guaranteed to live for at least `'a`. |
382 | // 6. `T: 'a`. |
383 | // 7. `ptr`, by invariant on `&'a T`, conforms to the aliasing |
384 | // invariant of `Shared`. |
385 | // 8. `ptr`, by invariant on `&'a T`, conforms to the alignment |
386 | // invariant of `Aligned`. |
387 | // 9. `ptr`, by invariant on `&'a T`, conforms to the validity |
388 | // invariant of `Valid`. |
389 | unsafe { Self::new(ptr) } |
390 | } |
391 | } |
392 | |
393 | /// `&'a mut T` → `Ptr<'a, T>` |
394 | impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)> |
395 | where |
396 | T: 'a + ?Sized, |
397 | { |
398 | /// Constructs a `Ptr` from an exclusive reference. |
399 | #[inline ] |
400 | pub(crate) fn from_mut(ptr: &'a mut T) -> Self { |
401 | let ptr = NonNull::from(ptr); |
402 | // SAFETY: |
403 | // 0. If `ptr`'s referent is not zero sized, then `ptr`, by |
404 | // invariant on `&'a mut T`, is derived from some valid Rust |
405 | // allocation, `A`. |
406 | // 1. If `ptr`'s referent is not zero sized, then `ptr`, by |
407 | // invariant on `&'a mut T`, has valid provenance for `A`. |
408 | // 2. If `ptr`'s referent is not zero sized, then `ptr`, by |
409 | // invariant on `&'a mut T`, addresses a byte range which is |
410 | // entirely contained in `A`. |
411 | // 3. `ptr`, by invariant on `&'a mut T`, addresses a byte range |
412 | // whose length fits in an `isize`. |
413 | // 4. `ptr`, by invariant on `&'a mut T`, addresses a byte range |
414 | // which does not wrap around the address space. |
415 | // 5. If `ptr`'s referent is not zero sized, then `A`, by invariant |
416 | // on `&'a mut T`, is guaranteed to live for at least `'a`. |
417 | // 6. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing |
418 | // invariant of `Exclusive`. |
419 | // 7. `ptr`, by invariant on `&'a mut T`, conforms to the alignment |
420 | // invariant of `Aligned`. |
421 | // 8. `ptr`, by invariant on `&'a mut T`, conforms to the validity |
422 | // invariant of `Valid`. |
423 | unsafe { Self::new(ptr) } |
424 | } |
425 | } |
426 | |
427 | /// `Ptr<'a, T>` → `&'a T` |
428 | impl<'a, T, I> Ptr<'a, T, I> |
429 | where |
430 | T: 'a + ?Sized, |
431 | I: Invariants<Alignment = Aligned, Validity = Valid>, |
432 | I::Aliasing: AtLeast<Shared>, |
433 | { |
434 | /// Converts `self` to a shared reference. |
435 | // This consumes `self`, not `&self`, because `self` is, logically, a |
436 | // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so |
437 | // this doesn't prevent the caller from still using the pointer after |
438 | // calling `as_ref`. |
439 | #[allow (clippy::wrong_self_convention)] |
440 | pub(crate) fn as_ref(self) -> &'a T { |
441 | let raw = self.as_non_null(); |
442 | // SAFETY: This invocation of `NonNull::as_ref` satisfies its |
443 | // documented safety preconditions: |
444 | // |
445 | // 1. The pointer is properly aligned. This is ensured by-contract |
446 | // on `Ptr`, because the `I::Alignment` is `Aligned`. |
447 | // |
448 | // 2. If the pointer's referent is not zero-sized, then the pointer |
449 | // must be “dereferenceable” in the sense defined in the module |
450 | // documentation; i.e.: |
451 | // |
452 | // > The memory range of the given size starting at the pointer |
453 | // > must all be within the bounds of a single allocated object. |
454 | // > [2] |
455 | // |
456 | // This is ensured by contract on all `Ptr`s. |
457 | // |
458 | // 3. The pointer must point to an initialized instance of `T`. This |
459 | // is ensured by-contract on `Ptr`, because the `I::Validity` is |
460 | // `Valid`. |
461 | // |
462 | // 4. You must enforce Rust’s aliasing rules. This is ensured by |
463 | // contract on `Ptr`, because the `I::Aliasing` is |
464 | // `AtLeast<Shared>`. Either it is `Shared` or `Exclusive`. If it |
465 | // is `Shared`, other references may not mutate the referent |
466 | // outside of `UnsafeCell`s. |
467 | // |
468 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref |
469 | // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety |
470 | unsafe { raw.as_ref() } |
471 | } |
472 | } |
473 | |
474 | impl<'a, T, I> Ptr<'a, T, I> |
475 | where |
476 | T: 'a + ?Sized, |
477 | I: Invariants, |
478 | I::Aliasing: AtLeast<Shared>, |
479 | { |
480 | /// Reborrows `self`, producing another `Ptr`. |
481 | /// |
482 | /// Since `self` is borrowed immutably, this prevents any mutable |
483 | /// methods from being called on `self` as long as the returned `Ptr` |
484 | /// exists. |
485 | #[doc (hidden)] |
486 | #[inline ] |
487 | #[allow (clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below. |
488 | pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I> |
489 | where |
490 | 'a: 'b, |
491 | { |
492 | // SAFETY: The following all hold by invariant on `self`, and thus |
493 | // hold of `ptr = self.as_non_null()`: |
494 | // 0. If `ptr`'s referent is not zero sized, then `ptr` is derived |
495 | // from some valid Rust allocation, `A`. |
496 | // 1. If `ptr`'s referent is not zero sized, then `ptr` has valid |
497 | // provenance for `A`. |
498 | // 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a |
499 | // byte range which is entirely contained in `A`. |
500 | // 3. `ptr` addresses a byte range whose length fits in an `isize`. |
501 | // 4. `ptr` addresses a byte range which does not wrap around the |
502 | // address space. |
503 | // 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed |
504 | // to live for at least `'a`. |
505 | // 6. SEE BELOW. |
506 | // 7. `ptr` conforms to the alignment invariant of |
507 | // [`I::Alignment`](invariant::Alignment). |
508 | // 8. `ptr` conforms to the validity invariant of |
509 | // [`I::Validity`](invariant::Validity). |
510 | // |
511 | // For aliasing (6 above), since `I::Aliasing: AtLeast<Shared>`, |
512 | // there are two cases for `I::Aliasing`: |
513 | // - For `invariant::Shared`: `'a` outlives `'b`, and so the |
514 | // returned `Ptr` does not permit accessing the referent any |
515 | // longer than is possible via `self`. For shared aliasing, it is |
516 | // sound for multiple `Ptr`s to exist simultaneously which |
517 | // reference the same memory, so creating a new one is not |
518 | // problematic. |
519 | // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we |
520 | // return a `Ptr` with lifetime `'b`, `self` is inaccessible to |
521 | // the caller for the lifetime `'b` - in other words, `self` is |
522 | // inaccessible to the caller as long as the returned `Ptr` |
523 | // exists. Since `self` is an exclusive `Ptr`, no other live |
524 | // references or `Ptr`s may exist which refer to the same memory |
525 | // while `self` is live. Thus, as long as the returned `Ptr` |
526 | // exists, no other references or `Ptr`s which refer to the same |
527 | // memory may be live. |
528 | unsafe { Ptr::new(self.as_non_null()) } |
529 | } |
530 | } |
531 | |
532 | /// `Ptr<'a, T>` → `&'a mut T` |
533 | impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)> |
534 | where |
535 | T: 'a + ?Sized, |
536 | { |
537 | /// Converts `self` to a mutable reference. |
538 | #[allow (clippy::wrong_self_convention)] |
539 | pub(crate) fn as_mut(self) -> &'a mut T { |
540 | let mut raw = self.as_non_null(); |
541 | // SAFETY: This invocation of `NonNull::as_mut` satisfies its |
542 | // documented safety preconditions: |
543 | // |
544 | // 1. The pointer is properly aligned. This is ensured by-contract |
545 | // on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`. |
546 | // |
547 | // 2. If the pointer's referent is not zero-sized, then the pointer |
548 | // must be “dereferenceable” in the sense defined in the module |
549 | // documentation; i.e.: |
550 | // |
551 | // > The memory range of the given size starting at the pointer |
552 | // > must all be within the bounds of a single allocated object. |
553 | // > [2] |
554 | // |
555 | // This is ensured by contract on all `Ptr`s. |
556 | // |
557 | // 3. The pointer must point to an initialized instance of `T`. This |
558 | // is ensured by-contract on `Ptr`, because the |
559 | // `VALIDITY_INVARIANT` is `Valid`. |
560 | // |
561 | // 4. You must enforce Rust’s aliasing rules. This is ensured by |
562 | // contract on `Ptr`, because the `ALIASING_INVARIANT` is |
563 | // `Exclusive`. |
564 | // |
565 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut |
566 | // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety |
567 | unsafe { raw.as_mut() } |
568 | } |
569 | } |
570 | |
571 | /// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>` |
572 | impl<'a, T, I> Ptr<'a, T, I> |
573 | where |
574 | T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized, |
575 | I: Invariants, |
576 | { |
577 | /// Converts `self` to a transparent wrapper type into a `Ptr` to the |
578 | /// wrapped inner type. |
579 | pub(crate) fn transparent_wrapper_into_inner( |
580 | self, |
581 | ) -> Ptr< |
582 | 'a, |
583 | T::Inner, |
584 | ( |
585 | I::Aliasing, |
586 | <T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied, |
587 | <T::ValidityVariance as ValidityVariance<I::Validity>>::Applied, |
588 | ), |
589 | > { |
590 | // SAFETY: |
591 | // - By invariant on `TransparentWrapper::cast_into_inner`: |
592 | // - This cast preserves address and referent size, and thus the |
593 | // returned pointer addresses the same bytes as `p` |
594 | // - This cast preserves provenance |
595 | // - By invariant on `TransparentWrapper<UnsafeCellVariance = |
596 | // Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same |
597 | // byte ranges. Since `p` and the returned pointer address the |
598 | // same byte range, they refer to `UnsafeCell`s at the same byte |
599 | // ranges. |
600 | let c = unsafe { self.cast_unsized(|p| T::cast_into_inner(p)) }; |
601 | // SAFETY: By invariant on `TransparentWrapper`, since `self` |
602 | // satisfies the alignment invariant `I::Alignment`, `c` (of type |
603 | // `T::Inner`) satisfies the given "applied" alignment invariant. |
604 | let c = unsafe { |
605 | c.assume_alignment::<<T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied>() |
606 | }; |
607 | // SAFETY: By invariant on `TransparentWrapper`, since `self` |
608 | // satisfies the validity invariant `I::Validity`, `c` (of type |
609 | // `T::Inner`) satisfies the given "applied" validity invariant. |
610 | let c = unsafe { |
611 | c.assume_validity::<<T::ValidityVariance as ValidityVariance<I::Validity>>::Applied>() |
612 | }; |
613 | c |
614 | } |
615 | } |
616 | |
617 | /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>` |
618 | impl<'a, T, I> Ptr<'a, T, I> |
619 | where |
620 | I: Invariants, |
621 | { |
622 | /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned |
623 | /// `Unalign<T>`. |
624 | pub(crate) fn into_unalign( |
625 | self, |
626 | ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> { |
627 | // SAFETY: |
628 | // - This cast preserves provenance. |
629 | // - This cast preserves address. `Unalign<T>` promises to have the |
630 | // same size as `T`, and so the cast returns a pointer addressing |
631 | // the same byte range as `p`. |
632 | // - By the same argument, the returned pointer refers to |
633 | // `UnsafeCell`s at the same locations as `p`. |
634 | let ptr = unsafe { |
635 | #[allow (clippy::as_conversions)] |
636 | self.cast_unsized(|p: *mut T| p as *mut crate::Unalign<T>) |
637 | }; |
638 | // SAFETY: `Unalign<T>` promises to have the same bit validity as |
639 | // `T`. |
640 | let ptr = unsafe { ptr.assume_validity::<I::Validity>() }; |
641 | // SAFETY: `Unalign<T>` promises to have alignment 1, and so it is |
642 | // trivially aligned. |
643 | let ptr = unsafe { ptr.assume_alignment::<Aligned>() }; |
644 | ptr |
645 | } |
646 | } |
647 | } |
648 | |
649 | /// State transitions between invariants. |
650 | mod _transitions { |
651 | use super::*; |
652 | use crate::{AlignmentError, TryFromBytes, ValidityError}; |
653 | |
654 | impl<'a, T, I> Ptr<'a, T, I> |
655 | where |
656 | T: 'a + ?Sized, |
657 | I: Invariants, |
658 | { |
659 | /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has |
660 | /// `Exclusive` aliasing. |
661 | /// |
662 | /// This allows code which is generic over aliasing to down-cast to a |
663 | /// concrete aliasing. |
664 | /// |
665 | /// [`Exclusive`]: invariant::Exclusive |
666 | #[inline ] |
667 | pub(crate) fn into_exclusive_or_post_monomorphization_error( |
668 | self, |
669 | ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> { |
670 | trait AliasingExt: Aliasing { |
671 | const IS_EXCLUSIVE: bool; |
672 | } |
673 | |
674 | impl<A: Aliasing> AliasingExt for A { |
675 | const IS_EXCLUSIVE: bool = { |
676 | let is_exclusive = |
677 | strs_are_equal(<Self as Aliasing>::NAME, <Exclusive as Aliasing>::NAME); |
678 | const_assert!(is_exclusive); |
679 | true |
680 | }; |
681 | } |
682 | |
683 | const fn strs_are_equal(s: &str, t: &str) -> bool { |
684 | if s.len() != t.len() { |
685 | return false; |
686 | } |
687 | |
688 | let s = s.as_bytes(); |
689 | let t = t.as_bytes(); |
690 | |
691 | let mut i = 0; |
692 | #[allow (clippy::arithmetic_side_effects)] |
693 | while i < s.len() { |
694 | #[allow (clippy::indexing_slicing)] |
695 | if s[i] != t[i] { |
696 | return false; |
697 | } |
698 | |
699 | i += 1; |
700 | } |
701 | |
702 | true |
703 | } |
704 | |
705 | assert!(I::Aliasing::IS_EXCLUSIVE); |
706 | |
707 | // SAFETY: We've confirmed that `self` already has the aliasing |
708 | // `Exclusive`. If it didn't, either the preceding assert would fail |
709 | // or evaluating `I::Aliasing::IS_EXCLUSIVE` would fail. We're |
710 | // *pretty* sure that it's guaranteed to fail const eval, but the |
711 | // `assert!` provides a backstop in case that doesn't work. |
712 | unsafe { self.assume_exclusive() } |
713 | } |
714 | |
715 | /// Assumes that `self` satisfies the invariants `H`. |
716 | /// |
717 | /// # Safety |
718 | /// |
719 | /// The caller promises that `self` satisfies the invariants `H`. |
720 | unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> { |
721 | // SAFETY: The caller has promised to satisfy all parameterized |
722 | // invariants of `Ptr`. `Ptr`'s other invariants are satisfied |
723 | // by-contract by the source `Ptr`. |
724 | unsafe { Ptr::new(self.as_non_null()) } |
725 | } |
726 | |
727 | /// Helps the type system unify two distinct invariant types which are |
728 | /// actually the same. |
729 | pub(crate) fn unify_invariants< |
730 | H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>, |
731 | >( |
732 | self, |
733 | ) -> Ptr<'a, T, H> { |
734 | // SAFETY: The associated type bounds on `H` ensure that the |
735 | // invariants are unchanged. |
736 | unsafe { self.assume_invariants::<H>() } |
737 | } |
738 | |
739 | /// Assumes that `self` satisfies the aliasing requirement of `A`. |
740 | /// |
741 | /// # Safety |
742 | /// |
743 | /// The caller promises that `self` satisfies the aliasing requirement |
744 | /// of `A`. |
745 | #[inline ] |
746 | pub(crate) unsafe fn assume_aliasing<A: Aliasing>( |
747 | self, |
748 | ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> { |
749 | // SAFETY: The caller promises that `self` satisfies the aliasing |
750 | // requirements of `A`. |
751 | unsafe { self.assume_invariants() } |
752 | } |
753 | |
754 | /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`]. |
755 | /// |
756 | /// # Safety |
757 | /// |
758 | /// The caller promises that `self` satisfies the aliasing requirement |
759 | /// of `Exclusive`. |
760 | /// |
761 | /// [`Exclusive`]: invariant::Exclusive |
762 | #[inline ] |
763 | pub(crate) unsafe fn assume_exclusive( |
764 | self, |
765 | ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> { |
766 | // SAFETY: The caller promises that `self` satisfies the aliasing |
767 | // requirements of `Exclusive`. |
768 | unsafe { self.assume_aliasing::<Exclusive>() } |
769 | } |
770 | |
771 | /// Assumes that `self`'s referent is validly-aligned for `T` if |
772 | /// required by `A`. |
773 | /// |
774 | /// # Safety |
775 | /// |
776 | /// The caller promises that `self`'s referent conforms to the alignment |
777 | /// invariant of `T` if required by `A`. |
778 | #[inline ] |
779 | pub(crate) unsafe fn assume_alignment<A: Alignment>( |
780 | self, |
781 | ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> { |
782 | // SAFETY: The caller promises that `self`'s referent is |
783 | // well-aligned for `T` if required by `A` . |
784 | unsafe { self.assume_invariants() } |
785 | } |
786 | |
787 | /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr` |
788 | /// on success. |
789 | pub(crate) fn bikeshed_try_into_aligned( |
790 | self, |
791 | ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>> |
792 | where |
793 | T: Sized, |
794 | { |
795 | if let Err(err) = crate::util::validate_aligned_to::<_, T>(self.as_non_null()) { |
796 | return Err(err.with_src(self)); |
797 | } |
798 | |
799 | // SAFETY: We just checked the alignment. |
800 | Ok(unsafe { self.assume_alignment::<Aligned>() }) |
801 | } |
802 | |
803 | /// Recalls that `self`'s referent is validly-aligned for `T`. |
804 | #[inline ] |
805 | // TODO(#859): Reconsider the name of this method before making it |
806 | // public. |
807 | pub(crate) fn bikeshed_recall_aligned( |
808 | self, |
809 | ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)> |
810 | where |
811 | T: crate::Unaligned, |
812 | { |
813 | // SAFETY: The bound `T: Unaligned` ensures that `T` has no |
814 | // non-trivial alignment requirement. |
815 | unsafe { self.assume_alignment::<Aligned>() } |
816 | } |
817 | |
818 | /// Assumes that `self`'s referent conforms to the validity requirement |
819 | /// of `V`. |
820 | /// |
821 | /// # Safety |
822 | /// |
823 | /// The caller promises that `self`'s referent conforms to the validity |
824 | /// requirement of `V`. |
825 | #[doc (hidden)] |
826 | #[must_use ] |
827 | #[inline ] |
828 | pub unsafe fn assume_validity<V: Validity>( |
829 | self, |
830 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> { |
831 | // SAFETY: The caller promises that `self`'s referent conforms to |
832 | // the validity requirement of `V`. |
833 | unsafe { self.assume_invariants() } |
834 | } |
835 | |
836 | /// A shorthand for `self.assume_validity<invariant::Initialized>()`. |
837 | /// |
838 | /// # Safety |
839 | /// |
840 | /// The caller promises to uphold the safety preconditions of |
841 | /// `self.assume_validity<invariant::Initialized>()`. |
842 | #[doc (hidden)] |
843 | #[must_use ] |
844 | #[inline ] |
845 | pub unsafe fn assume_initialized( |
846 | self, |
847 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> { |
848 | // SAFETY: The caller has promised to uphold the safety |
849 | // preconditions. |
850 | unsafe { self.assume_validity::<Initialized>() } |
851 | } |
852 | |
853 | /// A shorthand for `self.assume_validity<Valid>()`. |
854 | /// |
855 | /// # Safety |
856 | /// |
857 | /// The caller promises to uphold the safety preconditions of |
858 | /// `self.assume_validity<Valid>()`. |
859 | #[doc (hidden)] |
860 | #[must_use ] |
861 | #[inline ] |
862 | pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> { |
863 | // SAFETY: The caller has promised to uphold the safety |
864 | // preconditions. |
865 | unsafe { self.assume_validity::<Valid>() } |
866 | } |
867 | |
868 | /// Recalls that `self`'s referent is bit-valid for `T`. |
869 | #[doc (hidden)] |
870 | #[must_use ] |
871 | #[inline ] |
872 | // TODO(#859): Reconsider the name of this method before making it |
873 | // public. |
874 | pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> |
875 | where |
876 | T: crate::FromBytes, |
877 | I: Invariants<Validity = Initialized>, |
878 | { |
879 | // SAFETY: The bound `T: FromBytes` ensures that any initialized |
880 | // sequence of bytes is bit-valid for `T`. `I: Invariants<Validity = |
881 | // invariant::Initialized>` ensures that all of the referent bytes |
882 | // are initialized. |
883 | unsafe { self.assume_valid() } |
884 | } |
885 | |
886 | /// Checks that `self`'s referent is validly initialized for `T`, |
887 | /// returning a `Ptr` with `Valid` on success. |
888 | /// |
889 | /// # Panics |
890 | /// |
891 | /// This method will panic if |
892 | /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics. |
893 | /// |
894 | /// # Safety |
895 | /// |
896 | /// On error, unsafe code may rely on this method's returned |
897 | /// `ValidityError` containing `self`. |
898 | #[inline ] |
899 | pub(crate) fn try_into_valid( |
900 | mut self, |
901 | ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>> |
902 | where |
903 | T: TryFromBytes, |
904 | I::Aliasing: AtLeast<Shared>, |
905 | I: Invariants<Validity = Initialized>, |
906 | { |
907 | // This call may panic. If that happens, it doesn't cause any soundness |
908 | // issues, as we have not generated any invalid state which we need to |
909 | // fix before returning. |
910 | if T::is_bit_valid(self.reborrow().forget_aligned()) { |
911 | // SAFETY: If `T::is_bit_valid`, code may assume that `self` |
912 | // contains a bit-valid instance of `Self`. |
913 | Ok(unsafe { self.assume_valid() }) |
914 | } else { |
915 | Err(ValidityError::new(self)) |
916 | } |
917 | } |
918 | |
919 | /// Forgets that `self`'s referent exclusively references `T`, |
920 | /// downgrading to a shared reference. |
921 | #[doc (hidden)] |
922 | #[must_use ] |
923 | #[inline ] |
924 | pub fn forget_exclusive(self) -> Ptr<'a, T, (Shared, I::Alignment, I::Validity)> |
925 | where |
926 | I::Aliasing: AtLeast<Shared>, |
927 | { |
928 | // SAFETY: `I::Aliasing` is at least as restrictive as `Shared`. |
929 | unsafe { self.assume_invariants() } |
930 | } |
931 | |
932 | /// Forgets that `self`'s referent is validly-aligned for `T`. |
933 | #[doc (hidden)] |
934 | #[must_use ] |
935 | #[inline ] |
936 | pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Any, I::Validity)> { |
937 | // SAFETY: `Any` is less restrictive than `Aligned`. |
938 | unsafe { self.assume_invariants() } |
939 | } |
940 | } |
941 | } |
942 | |
943 | /// Casts of the referent type. |
944 | mod _casts { |
945 | use super::*; |
946 | use crate::{ |
947 | layout::{DstLayout, MetadataCastError}, |
948 | pointer::aliasing_safety::*, |
949 | AlignmentError, CastError, PointerMetadata, SizeError, |
950 | }; |
951 | |
952 | impl<'a, T, I> Ptr<'a, T, I> |
953 | where |
954 | T: 'a + ?Sized, |
955 | I: Invariants, |
956 | { |
957 | /// Casts to a different (unsized) target type. |
958 | /// |
959 | /// # Safety |
960 | /// |
961 | /// The caller promises that `u = cast(p)` is a pointer cast with the |
962 | /// following properties: |
963 | /// - `u` addresses a subset of the bytes addressed by `p` |
964 | /// - `u` has the same provenance as `p` |
965 | /// - If `I::Aliasing` is [`Any`] or [`Shared`], `UnsafeCell`s in `*u` |
966 | /// must exist at ranges identical to those at which `UnsafeCell`s |
967 | /// exist in `*p` |
968 | #[doc (hidden)] |
969 | #[inline ] |
970 | pub unsafe fn cast_unsized<U: 'a + ?Sized, F: FnOnce(*mut T) -> *mut U>( |
971 | self, |
972 | cast: F, |
973 | ) -> Ptr<'a, U, (I::Aliasing, Any, Any)> { |
974 | let ptr = cast(self.as_non_null().as_ptr()); |
975 | |
976 | // SAFETY: Caller promises that `cast` returns a pointer whose |
977 | // address is in the range of `self.as_non_null()`'s referent. By |
978 | // invariant, none of these addresses are null. |
979 | let ptr = unsafe { NonNull::new_unchecked(ptr) }; |
980 | |
981 | // SAFETY: |
982 | // |
983 | // Lemma 1: `ptr` has the same provenance as `self`. The caller |
984 | // promises that `cast` preserves provenance, and we call it with |
985 | // `self.as_non_null()`. |
986 | // |
987 | // 0. By invariant, if `self`'s referent is not zero sized, then |
988 | // `self` is derived from some valid Rust allocation, `A`. By |
989 | // Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr` |
990 | // is derived from `A`. |
991 | // 1. By invariant, if `self`'s referent is not zero sized, then |
992 | // `self` has valid provenance for `A`. By Lemma 1, so does |
993 | // `ptr`. |
994 | // 2. By invariant on `self` and caller precondition, if `ptr`'s |
995 | // referent is not zero sized, then `ptr` addresses a byte range |
996 | // which is entirely contained in `A`. |
997 | // 3. By invariant on `self` and caller precondition, `ptr` |
998 | // addresses a byte range whose length fits in an `isize`. |
999 | // 4. By invariant on `self` and caller precondition, `ptr` |
1000 | // addresses a byte range which does not wrap around the address |
1001 | // space. |
1002 | // 5. By invariant on `self`, if `self`'s referent is not zero |
1003 | // sized, then `A` is guaranteed to live for at least `'a`. |
1004 | // 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`: |
1005 | // - `Exclusive`: `self` is the only `Ptr` or reference which is |
1006 | // permitted to read or modify the referent for the lifetime |
1007 | // `'a`. Since we consume `self` by value, the returned pointer |
1008 | // remains the only `Ptr` or reference which is permitted to |
1009 | // read or modify the referent for the lifetime `'a`. |
1010 | // - `Shared`: Since `self` has aliasing `Shared`, we know that |
1011 | // no other code may mutate the referent during the lifetime |
1012 | // `'a`, except via `UnsafeCell`s. The caller promises that |
1013 | // `UnsafeCell`s cover the same byte ranges in `*self` and |
1014 | // `*ptr`. For each byte in the referent, there are two cases: |
1015 | // - If the byte is not covered by an `UnsafeCell` in `*ptr`, |
1016 | // then it is not covered in `*self`. By invariant on `self`, |
1017 | // it will not be mutated during `'a`, as required by the |
1018 | // constructed pointer. Similarly, the returned pointer will |
1019 | // not permit any mutations to these locations, as required |
1020 | // by the invariant on `self`. |
1021 | // - If the byte is covered by an `UnsafeCell` in `*ptr`, then |
1022 | // the returned pointer's invariants do not assume that the |
1023 | // byte will not be mutated during `'a`. While the returned |
1024 | // pointer will permit mutation of this byte during `'a`, by |
1025 | // invariant on `self`, no other code assumes that this will |
1026 | // not happen. |
1027 | // 7. `ptr`, trivially, conforms to the alignment invariant of |
1028 | // `Any`. |
1029 | // 8. `ptr`, trivially, conforms to the validity invariant of `Any`. |
1030 | unsafe { Ptr::new(ptr) } |
1031 | } |
1032 | } |
1033 | |
1034 | impl<'a, T, I> Ptr<'a, T, I> |
1035 | where |
1036 | T: 'a + KnownLayout + ?Sized, |
1037 | I: Invariants<Validity = Initialized>, |
1038 | { |
1039 | /// Casts this pointer-to-initialized into a pointer-to-bytes. |
1040 | #[allow (clippy::wrong_self_convention)] |
1041 | pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)> |
1042 | where |
1043 | [u8]: AliasingSafe<T, I::Aliasing, R>, |
1044 | R: AliasingSafeReason, |
1045 | { |
1046 | let bytes = match T::size_of_val_raw(self.as_non_null()) { |
1047 | Some(bytes) => bytes, |
1048 | // SAFETY: `KnownLayout::size_of_val_raw` promises to always |
1049 | // return `Some` so long as the resulting size fits in a |
1050 | // `usize`. By invariant on `Ptr`, `self` refers to a range of |
1051 | // bytes whose size fits in an `isize`, which implies that it |
1052 | // also fits in a `usize`. |
1053 | None => unsafe { core::hint::unreachable_unchecked() }, |
1054 | }; |
1055 | |
1056 | // SAFETY: |
1057 | // - `slice_from_raw_parts_mut` and `.cast` both preserve the |
1058 | // pointer's address, and `bytes` is the length of `p`, so the |
1059 | // returned pointer addresses the same bytes as `p` |
1060 | // - `slice_from_raw_parts_mut` and `.cast` both preserve provenance |
1061 | // - Because `[u8]: AliasingSafe<T, I::Aliasing, _>`, either: |
1062 | // - `I::Aliasing` is `Exclusive` |
1063 | // - `T` and `[u8]` are both `Immutable`, in which case they |
1064 | // trivially contain `UnsafeCell`s at identical locations |
1065 | let ptr: Ptr<'a, [u8], _> = unsafe { |
1066 | self.cast_unsized(|p: *mut T| { |
1067 | #[allow (clippy::as_conversions)] |
1068 | core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes) |
1069 | }) |
1070 | }; |
1071 | |
1072 | let ptr = ptr.bikeshed_recall_aligned(); |
1073 | |
1074 | // SAFETY: `ptr`'s referent begins as `Initialized`, denoting that |
1075 | // all bytes of the referent are initialized bytes. The referent |
1076 | // type is then casted to `[u8]`, whose only validity invariant is |
1077 | // that its bytes are initialized. This validity invariant is |
1078 | // satisfied by the `Initialized` invariant on the starting `ptr`. |
1079 | unsafe { ptr.assume_validity::<Valid>() } |
1080 | } |
1081 | } |
1082 | |
1083 | impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I> |
1084 | where |
1085 | T: 'a, |
1086 | I: Invariants, |
1087 | { |
1088 | /// Casts this pointer-to-array into a slice. |
1089 | #[allow (clippy::wrong_self_convention)] |
1090 | pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> { |
1091 | let start = self.as_non_null().cast::<T>().as_ptr(); |
1092 | let slice = core::ptr::slice_from_raw_parts_mut(start, N); |
1093 | // SAFETY: `slice` is not null, because it is derived from `start` |
1094 | // which is non-null. |
1095 | let slice = unsafe { NonNull::new_unchecked(slice) }; |
1096 | // SAFETY: Lemma: In the following safety arguments, note that |
1097 | // `slice` is derived from `self` in two steps: first, by casting |
1098 | // `self: [T; N]` to `start: T`, then by constructing a pointer to a |
1099 | // slice starting at `start` of length `N`. As a result, `slice` |
1100 | // references exactly the same allocation as `self`, if any. |
1101 | // |
1102 | // 0. By the above lemma, if `slice`'s referent is not zero sized, |
1103 | // then `slice` is derived from the same allocation as `self`, |
1104 | // which, by invariant on `Ptr`, is valid. |
1105 | // 1. By the above lemma, if `slice`'s referent is not zero sized, |
1106 | // then , `slice` has valid provenance for `A`, since it is |
1107 | // derived from the pointer `self`, which, by invariant on `Ptr`, |
1108 | // has valid provenance for `A`. |
1109 | // 2. By the above lemma, if `slice`'s referent is not zero sized, |
1110 | // then `slice` addresses a byte range which is entirely |
1111 | // contained in `A`, because it references exactly the same byte |
1112 | // range as `self`, which, by invariant on `Ptr`, is entirely |
1113 | // contained in `A`. |
1114 | // 3. By the above lemma, `slice` addresses a byte range whose |
1115 | // length fits in an `isize`, since it addresses exactly the same |
1116 | // byte range as `self`, which, by invariant on `Ptr`, has a |
1117 | // length that fits in an `isize`. |
1118 | // 4. By the above lemma, `slice` addresses a byte range which does |
1119 | // not wrap around the address space, since it addresses exactly |
1120 | // the same byte range as `self`, which, by invariant on `Ptr`, |
1121 | // does not wrap around the address space. |
1122 | // 5. By the above lemma, if `slice`'s referent is not zero sized, |
1123 | // then `A` is guaranteed to live for at least `'a`, because it |
1124 | // is derived from the same allocation as `self`, which, by |
1125 | // invariant on `Ptr`, lives for at least `'a`. |
1126 | // 6. By the above lemma, `slice` conforms to the aliasing invariant |
1127 | // of `I::Aliasing`, because the operations that produced `slice` |
1128 | // from `self` do not impact aliasing. |
1129 | // 7. By the above lemma, `slice` conforms to the alignment |
1130 | // invariant of `I::Alignment`, because the operations that |
1131 | // produced `slice` from `self` do not impact alignment. |
1132 | // 8. By the above lemma, `slice` conforms to the validity invariant |
1133 | // of `I::Validity`, because the operations that produced `slice` |
1134 | // from `self` do not impact validity. |
1135 | unsafe { Ptr::new(slice) } |
1136 | } |
1137 | } |
1138 | |
1139 | /// For caller convenience, these methods are generic over alignment |
1140 | /// invariant. In practice, the referent is always well-aligned, because the |
1141 | /// alignment of `[u8]` is 1. |
1142 | impl<'a, I> Ptr<'a, [u8], I> |
1143 | where |
1144 | I: Invariants<Validity = Valid>, |
1145 | { |
1146 | /// Attempts to cast `self` to a `U` using the given cast type. |
1147 | /// |
1148 | /// If `U` is a slice DST and pointer metadata (`meta`) is provided, |
1149 | /// then the cast will only succeed if it would produce an object with |
1150 | /// the given metadata. |
1151 | /// |
1152 | /// Returns `None` if the resulting `U` would be invalidly-aligned, if |
1153 | /// no `U` can fit in `self`, or if the provided pointer metadata |
1154 | /// describes an invalid instance of `U`. On success, returns a pointer |
1155 | /// to the largest-possible `U` which fits in `self`. |
1156 | /// |
1157 | /// # Safety |
1158 | /// |
1159 | /// The caller may assume that this implementation is correct, and may |
1160 | /// rely on that assumption for the soundness of their code. In |
1161 | /// particular, the caller may assume that, if `try_cast_into` returns |
1162 | /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to |
1163 | /// non-overlapping byte ranges within `self`, and that `ptr` and |
1164 | /// `remainder` entirely cover `self`. Finally: |
1165 | /// - If this is a prefix cast, `ptr` has the same address as `self`. |
1166 | /// - If this is a suffix cast, `remainder` has the same address as |
1167 | /// `self`. |
1168 | #[inline (always)] |
1169 | pub(crate) fn try_cast_into<U, R>( |
1170 | self, |
1171 | cast_type: CastType, |
1172 | meta: Option<U::PointerMetadata>, |
1173 | ) -> Result< |
1174 | (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>), |
1175 | CastError<Self, U>, |
1176 | > |
1177 | where |
1178 | R: AliasingSafeReason, |
1179 | U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>, |
1180 | { |
1181 | let layout = match meta { |
1182 | None => U::LAYOUT, |
1183 | // This can return `None` if the metadata describes an object |
1184 | // which can't fit in an `isize`. |
1185 | Some(meta) => { |
1186 | let size = match meta.size_for_metadata(U::LAYOUT) { |
1187 | Some(size) => size, |
1188 | None => return Err(CastError::Size(SizeError::new(self))), |
1189 | }; |
1190 | DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } } |
1191 | } |
1192 | }; |
1193 | // PANICS: By invariant, the byte range addressed by `self.ptr` does |
1194 | // not wrap around the address space. This implies that the sum of |
1195 | // the address (represented as a `usize`) and length do not overflow |
1196 | // `usize`, as required by `validate_cast_and_convert_metadata`. |
1197 | // Thus, this call to `validate_cast_and_convert_metadata` will only |
1198 | // panic if `U` is a DST whose trailing slice element is zero-sized. |
1199 | let maybe_metadata = layout.validate_cast_and_convert_metadata( |
1200 | AsAddress::addr(self.as_non_null().as_ptr()), |
1201 | self.len(), |
1202 | cast_type, |
1203 | ); |
1204 | |
1205 | let (elems, split_at) = match maybe_metadata { |
1206 | Ok((elems, split_at)) => (elems, split_at), |
1207 | Err(MetadataCastError::Alignment) => { |
1208 | // SAFETY: Since `validate_cast_and_convert_metadata` |
1209 | // returned an alignment error, `U` must have an alignment |
1210 | // requirement greater than one. |
1211 | let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) }; |
1212 | return Err(CastError::Alignment(err)); |
1213 | } |
1214 | Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))), |
1215 | }; |
1216 | |
1217 | // SAFETY: `validate_cast_and_convert_metadata` promises to return |
1218 | // `split_at <= self.len()`. |
1219 | let (l_slice, r_slice) = unsafe { self.split_at(split_at) }; |
1220 | |
1221 | let (target, remainder) = match cast_type { |
1222 | CastType::Prefix => (l_slice, r_slice), |
1223 | CastType::Suffix => (r_slice, l_slice), |
1224 | }; |
1225 | |
1226 | let base = target.as_non_null().cast::<u8>(); |
1227 | |
1228 | let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems); |
1229 | // For a slice DST type, if `meta` is `Some(elems)`, then we |
1230 | // synthesize `layout` to describe a sized type whose size is equal |
1231 | // to the size of the instance that we are asked to cast. For sized |
1232 | // types, `validate_cast_and_convert_metadata` returns `elems == 0`. |
1233 | // Thus, in this case, we need to use the `elems` passed by the |
1234 | // caller, not the one returned by |
1235 | // `validate_cast_and_convert_metadata`. |
1236 | let elems = meta.unwrap_or(elems); |
1237 | |
1238 | let ptr = U::raw_from_ptr_len(base, elems); |
1239 | |
1240 | // SAFETY: |
1241 | // 0. By invariant, if `target`'s referent is not zero sized, then |
1242 | // `target` is derived from some valid Rust allocation, `A`. By |
1243 | // contract on `cast`, `ptr` is derived from `self`, and thus |
1244 | // from the same valid Rust allocation, `A`. |
1245 | // 1. By invariant, if `target`'s referent is not zero sized, then |
1246 | // `target` has provenance valid for some Rust allocation, `A`. |
1247 | // Because `ptr` is derived from `target` via |
1248 | // provenance-preserving operations, `ptr` will also have |
1249 | // provenance valid for `A`. |
1250 | // - `validate_cast_and_convert_metadata` promises that the object |
1251 | // described by `elems` and `split_at` lives at a byte range |
1252 | // which is a subset of the input byte range. Thus: |
1253 | // 2. Since, by invariant, if `target`'s referent is not zero |
1254 | // sized, then `target` addresses a byte range which is |
1255 | // entirely contained in `A`, so does `ptr`. |
1256 | // 3. Since, by invariant, `target` addresses a byte range whose |
1257 | // length fits in an `isize`, so does `ptr`. |
1258 | // 4. Since, by invariant, `target` addresses a byte range which |
1259 | // does not wrap around the address space, so does `ptr`. |
1260 | // 5. Since, by invariant, if `target`'s referent is not zero |
1261 | // sized, then `target` refers to an allocation which is |
1262 | // guaranteed to live for at least `'a`, so does `ptr`. |
1263 | // 6. Since `U: AliasingSafe<[u8], I::Aliasing, _>`, either: |
1264 | // - `I::Aliasing` is `Exclusive`, in which case both `src` |
1265 | // and `ptr` conform to `Exclusive` |
1266 | // - `I::Aliasing` is `Shared` or `Any` and both `U` and |
1267 | // `[u8]` are `Immutable`. In this case, neither pointer |
1268 | // permits mutation, and so `Shared` aliasing is satisfied. |
1269 | // 7. `ptr` conforms to the alignment invariant of `Aligned` because |
1270 | // it is derived from `validate_cast_and_convert_metadata`, which |
1271 | // promises that the object described by `target` is validly |
1272 | // aligned for `U`. |
1273 | // 8. By trait bound, `self` - and thus `target` - is a bit-valid |
1274 | // `[u8]`. All bit-valid `[u8]`s have all of their bytes |
1275 | // initialized, so `ptr` conforms to the validity invariant of |
1276 | // `Initialized`. |
1277 | Ok((unsafe { Ptr::new(ptr) }, remainder)) |
1278 | } |
1279 | |
1280 | /// Attempts to cast `self` into a `U`, failing if all of the bytes of |
1281 | /// `self` cannot be treated as a `U`. |
1282 | /// |
1283 | /// In particular, this method fails if `self` is not validly-aligned |
1284 | /// for `U` or if `self`'s size is not a valid size for `U`. |
1285 | /// |
1286 | /// # Safety |
1287 | /// |
1288 | /// On success, the caller may assume that the returned pointer |
1289 | /// references the same byte range as `self`. |
1290 | #[allow (unused)] |
1291 | #[inline (always)] |
1292 | pub(crate) fn try_cast_into_no_leftover<U, R>( |
1293 | self, |
1294 | meta: Option<U::PointerMetadata>, |
1295 | ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>> |
1296 | where |
1297 | U: 'a + ?Sized + KnownLayout + AliasingSafe<[u8], I::Aliasing, R>, |
1298 | R: AliasingSafeReason, |
1299 | { |
1300 | // TODO(#67): Remove this allow. See NonNulSlicelExt for more |
1301 | // details. |
1302 | #[allow (unstable_name_collisions)] |
1303 | match self.try_cast_into(CastType::Prefix, meta) { |
1304 | Ok((slf, remainder)) => { |
1305 | if remainder.len() == 0 { |
1306 | Ok(slf) |
1307 | } else { |
1308 | // Undo the cast so we can return the original bytes. |
1309 | let slf = slf.as_bytes(); |
1310 | // Restore the initial alignment invariant of `self`. |
1311 | // |
1312 | // SAFETY: The referent type of `slf` is now equal to |
1313 | // that of `self`, but the alignment invariants |
1314 | // nominally differ. Since `slf` and `self` refer to the |
1315 | // same memory and no actions have been taken that would |
1316 | // violate the original invariants on `self`, it is |
1317 | // sound to apply the alignment invariant of `self` onto |
1318 | // `slf`. |
1319 | let slf = unsafe { slf.assume_alignment::<I::Alignment>() }; |
1320 | let slf = slf.unify_invariants(); |
1321 | Err(CastError::Size(SizeError::<_, U>::new(slf))) |
1322 | } |
1323 | } |
1324 | Err(err) => Err(err), |
1325 | } |
1326 | } |
1327 | } |
1328 | |
1329 | impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I> |
1330 | where |
1331 | T: 'a + ?Sized, |
1332 | I: Invariants<Aliasing = Exclusive>, |
1333 | { |
1334 | /// Converts this `Ptr` into a pointer to the underlying data. |
1335 | /// |
1336 | /// This call borrows the `UnsafeCell` mutably (at compile-time) which |
1337 | /// guarantees that we possess the only reference. |
1338 | /// |
1339 | /// This is like [`UnsafeCell::get_mut`], but for `Ptr`. |
1340 | /// |
1341 | /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut |
1342 | #[must_use ] |
1343 | #[inline (always)] |
1344 | pub fn get_mut(self) -> Ptr<'a, T, I> { |
1345 | // SAFETY: |
1346 | // - The closure uses an `as` cast, which preserves address range |
1347 | // and provenance. |
1348 | // - We require `I: Invariants<Aliasing = Exclusive>`, so we are not |
1349 | // required to uphold `UnsafeCell` equality. |
1350 | #[allow (clippy::as_conversions)] |
1351 | let ptr = unsafe { self.cast_unsized(|p| p as *mut T) }; |
1352 | |
1353 | // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1], |
1354 | // and so if `self` is guaranteed to be aligned, then so is the |
1355 | // returned `Ptr`. |
1356 | // |
1357 | // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout: |
1358 | // |
1359 | // `UnsafeCell<T>` has the same in-memory representation as |
1360 | // its inner type `T`. A consequence of this guarantee is that |
1361 | // it is possible to convert between `T` and `UnsafeCell<T>`. |
1362 | let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() }; |
1363 | |
1364 | // SAFETY: `UnsafeCell<T>` has the same bit validity as `T` [1], and |
1365 | // so if `self` has a particular validity invariant, then the same |
1366 | // holds of the returned `Ptr`. Technically the term |
1367 | // "representation" doesn't guarantee this, but the subsequent |
1368 | // sentence in the documentation makes it clear that this is the |
1369 | // intention. |
1370 | // |
1371 | // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout: |
1372 | // |
1373 | // `UnsafeCell<T>` has the same in-memory representation as its |
1374 | // inner type `T`. A consequence of this guarantee is that it is |
1375 | // possible to convert between `T` and `UnsafeCell<T>`. |
1376 | let ptr = unsafe { ptr.assume_validity::<I::Validity>() }; |
1377 | ptr.unify_invariants() |
1378 | } |
1379 | } |
1380 | } |
1381 | |
1382 | /// Projections through the referent. |
1383 | mod _project { |
1384 | use core::ops::Range; |
1385 | |
1386 | #[allow (unused_imports)] |
1387 | use crate::util::polyfills::NumExt as _; |
1388 | |
1389 | use super::*; |
1390 | |
1391 | impl<'a, T, I> Ptr<'a, T, I> |
1392 | where |
1393 | T: 'a + ?Sized, |
1394 | I: Invariants<Validity = Initialized>, |
1395 | { |
1396 | /// Projects a field from `self`. |
1397 | /// |
1398 | /// # Safety |
1399 | /// |
1400 | /// `project` has the same safety preconditions as `cast_unsized`. |
1401 | #[doc (hidden)] |
1402 | #[inline ] |
1403 | pub unsafe fn project<U: 'a + ?Sized>( |
1404 | self, |
1405 | projector: impl FnOnce(*mut T) -> *mut U, |
1406 | ) -> Ptr<'a, U, (I::Aliasing, Any, Initialized)> { |
1407 | // TODO(#1122): If `cast_unsized` were able to reason that, when |
1408 | // casting from an `Initialized` pointer, the result is another |
1409 | // `Initialized` pointer, we could remove this method entirely. |
1410 | |
1411 | // SAFETY: This method has the same safety preconditions as |
1412 | // `cast_unsized`. |
1413 | let ptr = unsafe { self.cast_unsized(projector) }; |
1414 | |
1415 | // SAFETY: If all of the bytes of `self` are initialized (as |
1416 | // promised by `I: Invariants<Validity = Initialized>`), then any |
1417 | // subset of those bytes are also all initialized. |
1418 | unsafe { ptr.assume_validity::<Initialized>() } |
1419 | } |
1420 | } |
1421 | |
1422 | impl<'a, T, I> Ptr<'a, T, I> |
1423 | where |
1424 | T: 'a + KnownLayout<PointerMetadata = usize> + ?Sized, |
1425 | I: Invariants, |
1426 | { |
1427 | /// The number of trailing slice elements in the object referenced by |
1428 | /// `self`. |
1429 | /// |
1430 | /// # Safety |
1431 | /// |
1432 | /// Unsafe code my rely on `trailing_slice_len` satisfying the above |
1433 | /// contract. |
1434 | pub(super) fn trailing_slice_len(&self) -> usize { |
1435 | T::pointer_to_metadata(self.as_non_null().as_ptr()) |
1436 | } |
1437 | } |
1438 | |
1439 | impl<'a, T, I> Ptr<'a, [T], I> |
1440 | where |
1441 | T: 'a, |
1442 | I: Invariants, |
1443 | { |
1444 | /// The number of slice elements in the object referenced by `self`. |
1445 | /// |
1446 | /// # Safety |
1447 | /// |
1448 | /// Unsafe code my rely on `len` satisfying the above contract. |
1449 | pub(crate) fn len(&self) -> usize { |
1450 | self.trailing_slice_len() |
1451 | } |
1452 | |
1453 | /// Creates a pointer which addresses the given `range` of self. |
1454 | /// |
1455 | /// # Safety |
1456 | /// |
1457 | /// `range` is a valid range (`start <= end`) and `end <= self.len()`. |
1458 | pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self { |
1459 | let base = self.as_non_null().cast::<T>().as_ptr(); |
1460 | |
1461 | // SAFETY: The caller promises that `start <= end <= self.len()`. By |
1462 | // invariant, if `self`'s referent is not zero-sized, then `self` |
1463 | // refers to a byte range which is contained within a single |
1464 | // allocation, which is no more than `isize::MAX` bytes long, and |
1465 | // which does not wrap around the address space. Thus, this pointer |
1466 | // arithmetic remains in-bounds of the same allocation, and does not |
1467 | // wrap around the address space. The offset (in bytes) does not |
1468 | // overflow `isize`. |
1469 | // |
1470 | // If `self`'s referent is zero-sized, then these conditions are |
1471 | // trivially satisfied. |
1472 | let base = unsafe { base.add(range.start) }; |
1473 | |
1474 | // SAFETY: The caller promises that `start <= end`, and so this will |
1475 | // not underflow. |
1476 | #[allow (unstable_name_collisions, clippy::incompatible_msrv)] |
1477 | let len = unsafe { range.end.unchecked_sub(range.start) }; |
1478 | |
1479 | let ptr = core::ptr::slice_from_raw_parts_mut(base, len); |
1480 | |
1481 | // SAFETY: By invariant, `self`'s address is non-null and its range |
1482 | // does not wrap around the address space. Since, by the preceding |
1483 | // lemma, `ptr` addresses a range within that addressed by `self`, |
1484 | // `ptr` is non-null. |
1485 | let ptr = unsafe { NonNull::new_unchecked(ptr) }; |
1486 | |
1487 | // SAFETY: |
1488 | // |
1489 | // Lemma 0: `ptr` addresses a subset of the bytes addressed by |
1490 | // `self`, and has the same provenance. |
1491 | // Proof: The caller guarantees that `start <= end <= self.len()`. |
1492 | // Thus, `base` is in-bounds of `self`, and `base + (end - |
1493 | // start)` is also in-bounds of self. Finally, `ptr` is |
1494 | // constructed using provenance-preserving operations. |
1495 | // |
1496 | // 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
1497 | // not zero sized, then `ptr` is derived from some valid Rust |
1498 | // allocation, `A`. |
1499 | // 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
1500 | // not zero sized, then `ptr` has valid provenance for `A`. |
1501 | // 2. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
1502 | // not zero sized, then `ptr` addresses a byte range which is |
1503 | // entirely contained in `A`. |
1504 | // 3. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte |
1505 | // range whose length fits in an `isize`. |
1506 | // 4. Per Lemma 0 and by invariant on `self`, `ptr` addresses a byte |
1507 | // range which does not wrap around the address space. |
1508 | // 5. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is |
1509 | // not zero sized, then `A` is guaranteed to live for at least |
1510 | // `'a`. |
1511 | // 6. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the |
1512 | // aliasing invariant of [`I::Aliasing`](invariant::Aliasing). |
1513 | // 7. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the |
1514 | // alignment invariant of [`I::Alignment`](invariant::Alignment). |
1515 | // 8. Per Lemma 0 and by invariant on `self`, `ptr` conforms to the |
1516 | // validity invariant of [`I::Validity`](invariant::Validity). |
1517 | unsafe { Ptr::new(ptr) } |
1518 | } |
1519 | |
1520 | /// Splits the slice in two. |
1521 | /// |
1522 | /// # Safety |
1523 | /// |
1524 | /// The caller promises that `l_len <= self.len()`. |
1525 | pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) { |
1526 | // SAFETY: `Any` imposes no invariants, and so this is always sound. |
1527 | let slf = unsafe { self.assume_aliasing::<Any>() }; |
1528 | |
1529 | // SAFETY: The caller promises that `l_len <= self.len()`. |
1530 | // Trivially, `0 <= l_len`. |
1531 | let left = unsafe { slf.slice_unchecked(0..l_len) }; |
1532 | |
1533 | // SAFETY: The caller promises that `l_len <= self.len() = |
1534 | // slf.len()`. Trivially, `slf.len() <= slf.len()`. |
1535 | let right = unsafe { slf.slice_unchecked(l_len..slf.len()) }; |
1536 | |
1537 | // LEMMA: `left` and `right` are non-overlapping. Proof: `left` is |
1538 | // constructed from `slf` with `l_len` as its (exclusive) upper |
1539 | // bound, while `right` is constructed from `slf` with `l_len` as |
1540 | // its (inclusive) lower bound. Thus, no index is a member of both |
1541 | // ranges. |
1542 | |
1543 | // SAFETY: By the preceding lemma, `left` and `right` do not alias. |
1544 | // We do not construct any other `Ptr`s or references which alias |
1545 | // `left` or `right`. Thus, the only `Ptr`s or references which |
1546 | // alias `left` or `right` are outside of this method. By invariant, |
1547 | // `self` obeys the aliasing invariant `I::Aliasing` with respect to |
1548 | // those other `Ptr`s or references, and so `left` and `right` do as |
1549 | // well. |
1550 | let (left, right) = unsafe { |
1551 | (left.assume_aliasing::<I::Aliasing>(), right.assume_aliasing::<I::Aliasing>()) |
1552 | }; |
1553 | (left.unify_invariants(), right.unify_invariants()) |
1554 | } |
1555 | |
1556 | /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`. |
1557 | pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> { |
1558 | // TODO(#429): Once `NonNull::cast` documents that it preserves |
1559 | // provenance, cite those docs. |
1560 | let base = self.as_non_null().cast::<T>().as_ptr(); |
1561 | (0..self.len()).map(move |i| { |
1562 | // TODO(https://github.com/rust-lang/rust/issues/74265): Use |
1563 | // `NonNull::get_unchecked_mut`. |
1564 | |
1565 | // SAFETY: If the following conditions are not satisfied |
1566 | // `pointer::cast` may induce Undefined Behavior [1]: |
1567 | // |
1568 | // > - The computed offset, `count * size_of::<T>()` bytes, must |
1569 | // > not overflow `isize``. |
1570 | // > - If the computed offset is non-zero, then `self` must be |
1571 | // > derived from a pointer to some allocated object, and the |
1572 | // > entire memory range between `self` and the result must be |
1573 | // > in bounds of that allocated object. In particular, this |
1574 | // > range must not “wrap around” the edge of the address |
1575 | // > space. |
1576 | // |
1577 | // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add |
1578 | // |
1579 | // We satisfy both of these conditions here: |
1580 | // - By invariant on `Ptr`, `self` addresses a byte range whose |
1581 | // length fits in an `isize`. Since `elem` is contained in |
1582 | // `self`, the computed offset of `elem` must fit within |
1583 | // `isize.` |
1584 | // - If the computed offset is non-zero, then this means that |
1585 | // the referent is not zero-sized. In this case, `base` points |
1586 | // to an allocated object (by invariant on `self`). Thus: |
1587 | // - By contract, `self.len()` accurately reflects the number |
1588 | // of elements in the slice. `i` is in bounds of `c.len()` |
1589 | // by construction, and so the result of this addition |
1590 | // cannot overflow past the end of the allocation referred |
1591 | // to by `c`. |
1592 | // - By invariant on `Ptr`, `self` addresses a byte range |
1593 | // which does not wrap around the address space. Since |
1594 | // `elem` is contained in `self`, the computed offset of |
1595 | // `elem` must wrap around the address space. |
1596 | // |
1597 | // TODO(#429): Once `pointer::add` documents that it preserves |
1598 | // provenance, cite those docs. |
1599 | let elem = unsafe { base.add(i) }; |
1600 | |
1601 | // SAFETY: |
1602 | // - `elem` must not be null. `base` is constructed from a |
1603 | // `NonNull` pointer, and the addition that produces `elem` |
1604 | // must not overflow or wrap around, so `elem >= base > 0`. |
1605 | // |
1606 | // TODO(#429): Once `NonNull::new_unchecked` documents that it |
1607 | // preserves provenance, cite those docs. |
1608 | let elem = unsafe { NonNull::new_unchecked(elem) }; |
1609 | |
1610 | // SAFETY: The safety invariants of `Ptr::new` (see definition) |
1611 | // are satisfied: |
1612 | // 0. If `elem`'s referent is not zero sized, then `elem` is |
1613 | // derived from a valid Rust allocation, because `self` is |
1614 | // derived from a valid Rust allocation, by invariant on |
1615 | // `Ptr`. |
1616 | // 1. If `elem`'s referent is not zero sized, then `elem` has |
1617 | // valid provenance for `self`, because it derived from |
1618 | // `self` using a series of provenance-preserving operations. |
1619 | // 2. If `elem`'s referent is not zero sized, then `elem` is |
1620 | // entirely contained in the allocation of `self` (see |
1621 | // above). |
1622 | // 3. `elem` addresses a byte range whose length fits in an |
1623 | // `isize` (see above). |
1624 | // 4. `elem` addresses a byte range which does not wrap around |
1625 | // the address space (see above). |
1626 | // 5. If `elem`'s referent is not zero sized, then the |
1627 | // allocation of `elem` is guaranteed to live for at least |
1628 | // `'a`, because `elem` is entirely contained in `self`, |
1629 | // which lives for at least `'a` by invariant on `Ptr`. |
1630 | // 6. `elem` conforms to the aliasing invariant of `I::Aliasing` |
1631 | // because projection does not impact the aliasing invariant. |
1632 | // 7. `elem`, conditionally, conforms to the validity invariant |
1633 | // of `I::Alignment`. If `elem` is projected from data |
1634 | // well-aligned for `[T]`, `elem` will be valid for `T`. |
1635 | // 8. `elem`, conditionally, conforms to the validity invariant |
1636 | // of `I::Validity`. If `elem` is projected from data valid |
1637 | // for `[T]`, `elem` will be valid for `T`. |
1638 | unsafe { Ptr::new(elem) } |
1639 | }) |
1640 | } |
1641 | } |
1642 | } |
1643 | |
1644 | #[cfg (test)] |
1645 | mod tests { |
1646 | use core::mem::{self, MaybeUninit}; |
1647 | |
1648 | use static_assertions::{assert_impl_all, assert_not_impl_any}; |
1649 | |
1650 | use super::*; |
1651 | use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable}; |
1652 | |
1653 | #[test] |
1654 | fn test_split_at() { |
1655 | const N: usize = 16; |
1656 | let mut arr = [1; N]; |
1657 | let mut ptr = Ptr::from_mut(&mut arr).as_slice(); |
1658 | for i in 0..=N { |
1659 | assert_eq!(ptr.len(), N); |
1660 | // SAFETY: `i` is in bounds by construction. |
1661 | let (l, r) = unsafe { ptr.reborrow().split_at(i) }; |
1662 | let l_sum: usize = l.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum(); |
1663 | let r_sum: usize = r.iter().map(Ptr::read_unaligned::<BecauseImmutable>).sum(); |
1664 | assert_eq!(l_sum, i); |
1665 | assert_eq!(r_sum, N - i); |
1666 | assert_eq!(l_sum + r_sum, N); |
1667 | } |
1668 | } |
1669 | |
1670 | mod test_ptr_try_cast_into_soundness { |
1671 | use super::*; |
1672 | |
1673 | // This test is designed so that if `Ptr::try_cast_into_xxx` are |
1674 | // buggy, it will manifest as unsoundness that Miri can detect. |
1675 | |
1676 | // - If `size_of::<T>() == 0`, `N == 4` |
1677 | // - Else, `N == 4 * size_of::<T>()` |
1678 | // |
1679 | // Each test will be run for each metadata in `metas`. |
1680 | fn test<T, I, const N: usize>(metas: I) |
1681 | where |
1682 | T: ?Sized + KnownLayout + Immutable + FromBytes, |
1683 | I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone, |
1684 | { |
1685 | let mut bytes = [MaybeUninit::<u8>::uninit(); N]; |
1686 | let initialized = [MaybeUninit::new(0u8); N]; |
1687 | for start in 0..=bytes.len() { |
1688 | for end in start..=bytes.len() { |
1689 | // Set all bytes to uninitialized other than those in |
1690 | // the range we're going to pass to `try_cast_from`. |
1691 | // This allows Miri to detect out-of-bounds reads |
1692 | // because they read uninitialized memory. Without this, |
1693 | // some out-of-bounds reads would still be in-bounds of |
1694 | // `bytes`, and so might spuriously be accepted. |
1695 | bytes = [MaybeUninit::<u8>::uninit(); N]; |
1696 | let bytes = &mut bytes[start..end]; |
1697 | // Initialize only the byte range we're going to pass to |
1698 | // `try_cast_from`. |
1699 | bytes.copy_from_slice(&initialized[start..end]); |
1700 | |
1701 | let bytes = { |
1702 | let bytes: *const [MaybeUninit<u8>] = bytes; |
1703 | #[allow (clippy::as_conversions)] |
1704 | let bytes = bytes as *const [u8]; |
1705 | // SAFETY: We just initialized these bytes to valid |
1706 | // `u8`s. |
1707 | unsafe { &*bytes } |
1708 | }; |
1709 | |
1710 | // SAFETY: The bytes in `slf` must be initialized. |
1711 | unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>( |
1712 | slf: Ptr<'_, T, (Shared, Aligned, Initialized)>, |
1713 | ) -> usize { |
1714 | let t = slf.bikeshed_recall_valid().as_ref(); |
1715 | |
1716 | let bytes = { |
1717 | let len = mem::size_of_val(t); |
1718 | let t: *const T = t; |
1719 | // SAFETY: |
1720 | // - We know `t`'s bytes are all initialized |
1721 | // because we just read it from `slf`, which |
1722 | // points to an initialized range of bytes. If |
1723 | // there's a bug and this doesn't hold, then |
1724 | // that's exactly what we're hoping Miri will |
1725 | // catch! |
1726 | // - Since `T: FromBytes`, `T` doesn't contain |
1727 | // any `UnsafeCell`s, so it's okay for `t: T` |
1728 | // and a `&[u8]` to the same memory to be |
1729 | // alive concurrently. |
1730 | unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) } |
1731 | }; |
1732 | |
1733 | // This assertion ensures that `t`'s bytes are read |
1734 | // and compared to another value, which in turn |
1735 | // ensures that Miri gets a chance to notice if any |
1736 | // of `t`'s bytes are uninitialized, which they |
1737 | // shouldn't be (see the comment above). |
1738 | assert_eq!(bytes, vec![0u8; bytes.len()]); |
1739 | |
1740 | mem::size_of_val(t) |
1741 | } |
1742 | |
1743 | for meta in metas.clone().into_iter() { |
1744 | for cast_type in [CastType::Prefix, CastType::Suffix] { |
1745 | if let Ok((slf, remaining)) = Ptr::from_ref(bytes) |
1746 | .try_cast_into::<T, BecauseImmutable>(cast_type, meta) |
1747 | { |
1748 | // SAFETY: All bytes in `bytes` have been |
1749 | // initialized. |
1750 | let len = unsafe { validate_and_get_len(slf) }; |
1751 | assert_eq!(remaining.len(), bytes.len() - len); |
1752 | #[allow (unstable_name_collisions)] |
1753 | let bytes_addr = bytes.as_ptr().addr(); |
1754 | #[allow (unstable_name_collisions)] |
1755 | let remaining_addr = remaining.as_non_null().as_ptr().addr(); |
1756 | match cast_type { |
1757 | CastType::Prefix => { |
1758 | assert_eq!(remaining_addr, bytes_addr + len) |
1759 | } |
1760 | CastType::Suffix => assert_eq!(remaining_addr, bytes_addr), |
1761 | } |
1762 | |
1763 | if let Some(want) = meta { |
1764 | let got = KnownLayout::pointer_to_metadata( |
1765 | slf.as_non_null().as_ptr(), |
1766 | ); |
1767 | assert_eq!(got, want); |
1768 | } |
1769 | } |
1770 | } |
1771 | |
1772 | if let Ok(slf) = Ptr::from_ref(bytes) |
1773 | .try_cast_into_no_leftover::<T, BecauseImmutable>(meta) |
1774 | { |
1775 | // SAFETY: All bytes in `bytes` have been |
1776 | // initialized. |
1777 | let len = unsafe { validate_and_get_len(slf) }; |
1778 | assert_eq!(len, bytes.len()); |
1779 | |
1780 | if let Some(want) = meta { |
1781 | let got = |
1782 | KnownLayout::pointer_to_metadata(slf.as_non_null().as_ptr()); |
1783 | assert_eq!(got, want); |
1784 | } |
1785 | } |
1786 | } |
1787 | } |
1788 | } |
1789 | } |
1790 | |
1791 | #[derive(FromBytes, KnownLayout, Immutable)] |
1792 | #[repr (C)] |
1793 | struct SliceDst<T> { |
1794 | a: u8, |
1795 | trailing: [T], |
1796 | } |
1797 | |
1798 | // Each test case becomes its own `#[test]` function. We do this because |
1799 | // this test in particular takes far, far longer to execute under Miri |
1800 | // than all of our other tests combined. Previously, we had these |
1801 | // execute sequentially in a single test function. We run Miri tests in |
1802 | // parallel in CI, but this test being sequential meant that most of |
1803 | // that parallelism was wasted, as all other tests would finish in a |
1804 | // fraction of the total execution time, leaving this test to execute on |
1805 | // a single thread for the remainder of the test. By putting each test |
1806 | // case in its own function, we permit better use of available |
1807 | // parallelism. |
1808 | macro_rules! test { |
1809 | ($test_name:ident: $ty:ty) => { |
1810 | #[test] |
1811 | #[allow(non_snake_case)] |
1812 | fn $test_name() { |
1813 | const S: usize = core::mem::size_of::<$ty>(); |
1814 | const N: usize = if S == 0 { 4 } else { S * 4 }; |
1815 | test::<$ty, _, N>([None]); |
1816 | |
1817 | // If `$ty` is a ZST, then we can't pass `None` as the |
1818 | // pointer metadata, or else computing the correct trailing |
1819 | // slice length will panic. |
1820 | if S == 0 { |
1821 | test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]); |
1822 | test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]); |
1823 | } else { |
1824 | test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]); |
1825 | test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]); |
1826 | } |
1827 | } |
1828 | }; |
1829 | ($ty:ident) => { |
1830 | test!($ty: $ty); |
1831 | }; |
1832 | ($($ty:ident),*) => { $(test!($ty);)* } |
1833 | } |
1834 | |
1835 | test!(empty_tuple: ()); |
1836 | test!(u8, u16, u32, u64, u128, usize, AU64); |
1837 | test!(i8, i16, i32, i64, i128, isize); |
1838 | test!(f32, f64); |
1839 | } |
1840 | |
1841 | #[test] |
1842 | fn test_invariants() { |
1843 | // Test that the correct invariant relationships hold. |
1844 | use super::invariant::*; |
1845 | |
1846 | assert_not_impl_any!(Any: AtLeast<Shared>); |
1847 | assert_impl_all!(Shared: AtLeast<Shared>); |
1848 | assert_impl_all!(Exclusive: AtLeast<Shared>); |
1849 | |
1850 | assert_not_impl_any!(Any: AtLeast<AsInitialized>); |
1851 | assert_impl_all!(AsInitialized: AtLeast<AsInitialized>); |
1852 | assert_impl_all!(Initialized: AtLeast<AsInitialized>); |
1853 | assert_impl_all!(Valid: AtLeast<AsInitialized>); |
1854 | } |
1855 | |
1856 | #[test] |
1857 | fn test_try_cast_into_explicit_count() { |
1858 | macro_rules! test { |
1859 | ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{ |
1860 | let bytes = [0u8; $bytes]; |
1861 | let ptr = Ptr::from_ref(&bytes[..]); |
1862 | let res = |
1863 | ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems)); |
1864 | if let Some(expect) = $expect { |
1865 | let (ptr, _) = res.unwrap(); |
1866 | assert_eq!( |
1867 | KnownLayout::pointer_to_metadata(ptr.as_non_null().as_ptr()), |
1868 | expect |
1869 | ); |
1870 | } else { |
1871 | let _ = res.unwrap_err(); |
1872 | } |
1873 | }}; |
1874 | } |
1875 | |
1876 | #[derive(KnownLayout, Immutable)] |
1877 | #[repr (C)] |
1878 | struct ZstDst { |
1879 | u: [u8; 8], |
1880 | slc: [()], |
1881 | } |
1882 | |
1883 | test!(ZstDst, 8, 0, Some(0)); |
1884 | test!(ZstDst, 7, 0, None); |
1885 | |
1886 | test!(ZstDst, 8, usize::MAX, Some(usize::MAX)); |
1887 | test!(ZstDst, 7, usize::MAX, None); |
1888 | |
1889 | #[derive(KnownLayout, Immutable)] |
1890 | #[repr (C)] |
1891 | struct Dst { |
1892 | u: [u8; 8], |
1893 | slc: [u8], |
1894 | } |
1895 | |
1896 | test!(Dst, 8, 0, Some(0)); |
1897 | test!(Dst, 7, 0, None); |
1898 | |
1899 | test!(Dst, 9, 1, Some(1)); |
1900 | test!(Dst, 8, 1, None); |
1901 | |
1902 | // If we didn't properly check for overflow, this would cause the |
1903 | // metadata to overflow to 0, and thus the cast would spuriously |
1904 | // succeed. |
1905 | test!(Dst, 8, usize::MAX - 8 + 1, None); |
1906 | } |
1907 | } |
1908 | |