1 | //! Traits for writing parallel programs using an iterator-style interface |
2 | //! |
3 | //! You will rarely need to interact with this module directly unless you have |
4 | //! need to name one of the iterator types. |
5 | //! |
6 | //! Parallel iterators make it easy to write iterator-like chains that |
7 | //! execute in parallel: typically all you have to do is convert the |
8 | //! first `.iter()` (or `iter_mut()`, `into_iter()`, etc) method into |
9 | //! `par_iter()` (or `par_iter_mut()`, `into_par_iter()`, etc). For |
10 | //! example, to compute the sum of the squares of a sequence of |
11 | //! integers, one might write: |
12 | //! |
13 | //! ```rust |
14 | //! use rayon::prelude::*; |
15 | //! fn sum_of_squares(input: &[i32]) -> i32 { |
16 | //! input.par_iter() |
17 | //! .map(|i| i * i) |
18 | //! .sum() |
19 | //! } |
20 | //! ``` |
21 | //! |
22 | //! Or, to increment all the integers in a slice, you could write: |
23 | //! |
24 | //! ```rust |
25 | //! use rayon::prelude::*; |
26 | //! fn increment_all(input: &mut [i32]) { |
27 | //! input.par_iter_mut() |
28 | //! .for_each(|p| *p += 1); |
29 | //! } |
30 | //! ``` |
31 | //! |
32 | //! To use parallel iterators, first import the traits by adding |
33 | //! something like `use rayon::prelude::*` to your module. You can |
34 | //! then call `par_iter`, `par_iter_mut`, or `into_par_iter` to get a |
35 | //! parallel iterator. Like a [regular iterator][], parallel |
36 | //! iterators work by first constructing a computation and then |
37 | //! executing it. |
38 | //! |
39 | //! In addition to `par_iter()` and friends, some types offer other |
40 | //! ways to create (or consume) parallel iterators: |
41 | //! |
42 | //! - Slices (`&[T]`, `&mut [T]`) offer methods like `par_split` and |
43 | //! `par_windows`, as well as various parallel sorting |
44 | //! operations. See [the `ParallelSlice` trait] for the full list. |
45 | //! - Strings (`&str`) offer methods like `par_split` and `par_lines`. |
46 | //! See [the `ParallelString` trait] for the full list. |
47 | //! - Various collections offer [`par_extend`], which grows a |
48 | //! collection given a parallel iterator. (If you don't have a |
49 | //! collection to extend, you can use [`collect()`] to create a new |
50 | //! one from scratch.) |
51 | //! |
52 | //! [the `ParallelSlice` trait]: ../slice/trait.ParallelSlice.html |
53 | //! [the `ParallelString` trait]: ../str/trait.ParallelString.html |
54 | //! [`par_extend`]: trait.ParallelExtend.html |
55 | //! [`collect()`]: trait.ParallelIterator.html#method.collect |
56 | //! |
57 | //! To see the full range of methods available on parallel iterators, |
58 | //! check out the [`ParallelIterator`] and [`IndexedParallelIterator`] |
59 | //! traits. |
60 | //! |
61 | //! If you'd like to build a custom parallel iterator, or to write your own |
62 | //! combinator, then check out the [split] function and the [plumbing] module. |
63 | //! |
64 | //! [regular iterator]: https://doc.rust-lang.org/std/iter/trait.Iterator.html |
65 | //! [`ParallelIterator`]: trait.ParallelIterator.html |
66 | //! [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html |
67 | //! [split]: fn.split.html |
68 | //! [plumbing]: plumbing/index.html |
69 | //! |
70 | //! Note: Several of the `ParallelIterator` methods rely on a `Try` trait which |
71 | //! has been deliberately obscured from the public API. This trait is intended |
72 | //! to mirror the unstable `std::ops::Try` with implementations for `Option` and |
73 | //! `Result`, where `Some`/`Ok` values will let those iterators continue, but |
74 | //! `None`/`Err` values will exit early. |
75 | //! |
76 | //! A note about object safety: It is currently _not_ possible to wrap |
77 | //! a `ParallelIterator` (or any trait that depends on it) using a |
78 | //! `Box<dyn ParallelIterator>` or other kind of dynamic allocation, |
79 | //! because `ParallelIterator` is **not object-safe**. |
80 | //! (This keeps the implementation simpler and allows extra optimizations.) |
81 | |
82 | use self::plumbing::*; |
83 | use self::private::Try; |
84 | pub use either::Either; |
85 | use std::cmp::{self, Ordering}; |
86 | use std::collections::LinkedList; |
87 | use std::iter::{Product, Sum}; |
88 | use std::ops::{Fn, RangeBounds}; |
89 | |
90 | pub mod plumbing; |
91 | |
92 | #[cfg (test)] |
93 | mod test; |
94 | |
95 | // There is a method to the madness here: |
96 | // |
97 | // - These modules are private but expose certain types to the end-user |
98 | // (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the |
99 | // public API surface of the `ParallelIterator` traits. |
100 | // - In **this** module, those public types are always used unprefixed, which forces |
101 | // us to add a `pub use` and helps identify if we missed anything. |
102 | // - In contrast, items that appear **only** in the body of a method, |
103 | // e.g. `find::find()`, are always used **prefixed**, so that they |
104 | // can be readily distinguished. |
105 | |
106 | mod blocks; |
107 | mod chain; |
108 | mod chunks; |
109 | mod cloned; |
110 | mod collect; |
111 | mod copied; |
112 | mod empty; |
113 | mod enumerate; |
114 | mod extend; |
115 | mod filter; |
116 | mod filter_map; |
117 | mod find; |
118 | mod find_first_last; |
119 | mod flat_map; |
120 | mod flat_map_iter; |
121 | mod flatten; |
122 | mod flatten_iter; |
123 | mod fold; |
124 | mod fold_chunks; |
125 | mod fold_chunks_with; |
126 | mod for_each; |
127 | mod from_par_iter; |
128 | mod inspect; |
129 | mod interleave; |
130 | mod interleave_shortest; |
131 | mod intersperse; |
132 | mod len; |
133 | mod map; |
134 | mod map_with; |
135 | mod multizip; |
136 | mod noop; |
137 | mod once; |
138 | mod panic_fuse; |
139 | mod par_bridge; |
140 | mod positions; |
141 | mod product; |
142 | mod reduce; |
143 | mod repeat; |
144 | mod rev; |
145 | mod skip; |
146 | mod skip_any; |
147 | mod skip_any_while; |
148 | mod splitter; |
149 | mod step_by; |
150 | mod sum; |
151 | mod take; |
152 | mod take_any; |
153 | mod take_any_while; |
154 | mod try_fold; |
155 | mod try_reduce; |
156 | mod try_reduce_with; |
157 | mod unzip; |
158 | mod update; |
159 | mod walk_tree; |
160 | mod while_some; |
161 | mod zip; |
162 | mod zip_eq; |
163 | |
164 | pub use self::{ |
165 | blocks::{ExponentialBlocks, UniformBlocks}, |
166 | chain::Chain, |
167 | chunks::Chunks, |
168 | cloned::Cloned, |
169 | copied::Copied, |
170 | empty::{empty, Empty}, |
171 | enumerate::Enumerate, |
172 | filter::Filter, |
173 | filter_map::FilterMap, |
174 | flat_map::FlatMap, |
175 | flat_map_iter::FlatMapIter, |
176 | flatten::Flatten, |
177 | flatten_iter::FlattenIter, |
178 | fold::{Fold, FoldWith}, |
179 | fold_chunks::FoldChunks, |
180 | fold_chunks_with::FoldChunksWith, |
181 | inspect::Inspect, |
182 | interleave::Interleave, |
183 | interleave_shortest::InterleaveShortest, |
184 | intersperse::Intersperse, |
185 | len::{MaxLen, MinLen}, |
186 | map::Map, |
187 | map_with::{MapInit, MapWith}, |
188 | multizip::MultiZip, |
189 | once::{once, Once}, |
190 | panic_fuse::PanicFuse, |
191 | par_bridge::{IterBridge, ParallelBridge}, |
192 | positions::Positions, |
193 | repeat::{repeat, repeatn, Repeat, RepeatN}, |
194 | rev::Rev, |
195 | skip::Skip, |
196 | skip_any::SkipAny, |
197 | skip_any_while::SkipAnyWhile, |
198 | splitter::{split, Split}, |
199 | step_by::StepBy, |
200 | take::Take, |
201 | take_any::TakeAny, |
202 | take_any_while::TakeAnyWhile, |
203 | try_fold::{TryFold, TryFoldWith}, |
204 | update::Update, |
205 | walk_tree::{ |
206 | walk_tree, walk_tree_postfix, walk_tree_prefix, WalkTree, WalkTreePostfix, WalkTreePrefix, |
207 | }, |
208 | while_some::WhileSome, |
209 | zip::Zip, |
210 | zip_eq::ZipEq, |
211 | }; |
212 | |
213 | /// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`]. |
214 | /// |
215 | /// By implementing `IntoParallelIterator` for a type, you define how it will |
216 | /// transformed into an iterator. This is a parallel version of the standard |
217 | /// library's [`std::iter::IntoIterator`] trait. |
218 | /// |
219 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
220 | /// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html |
221 | pub trait IntoParallelIterator { |
222 | /// The parallel iterator type that will be created. |
223 | type Iter: ParallelIterator<Item = Self::Item>; |
224 | |
225 | /// The type of item that the parallel iterator will produce. |
226 | type Item: Send; |
227 | |
228 | /// Converts `self` into a parallel iterator. |
229 | /// |
230 | /// # Examples |
231 | /// |
232 | /// ``` |
233 | /// use rayon::prelude::*; |
234 | /// |
235 | /// println!("counting in parallel:" ); |
236 | /// (0..100).into_par_iter() |
237 | /// .for_each(|i| println!("{}" , i)); |
238 | /// ``` |
239 | /// |
240 | /// This conversion is often implicit for arguments to methods like [`zip`]. |
241 | /// |
242 | /// ``` |
243 | /// use rayon::prelude::*; |
244 | /// |
245 | /// let v: Vec<_> = (0..5).into_par_iter().zip(5..10).collect(); |
246 | /// assert_eq!(v, [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]); |
247 | /// ``` |
248 | /// |
249 | /// [`zip`]: trait.IndexedParallelIterator.html#method.zip |
250 | fn into_par_iter(self) -> Self::Iter; |
251 | } |
252 | |
253 | /// `IntoParallelRefIterator` implements the conversion to a |
254 | /// [`ParallelIterator`], providing shared references to the data. |
255 | /// |
256 | /// This is a parallel version of the `iter()` method |
257 | /// defined by various collections. |
258 | /// |
259 | /// This trait is automatically implemented |
260 | /// `for I where &I: IntoParallelIterator`. In most cases, users |
261 | /// will want to implement [`IntoParallelIterator`] rather than implement |
262 | /// this trait directly. |
263 | /// |
264 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
265 | /// [`IntoParallelIterator`]: trait.IntoParallelIterator.html |
266 | pub trait IntoParallelRefIterator<'data> { |
267 | /// The type of the parallel iterator that will be returned. |
268 | type Iter: ParallelIterator<Item = Self::Item>; |
269 | |
270 | /// The type of item that the parallel iterator will produce. |
271 | /// This will typically be an `&'data T` reference type. |
272 | type Item: Send + 'data; |
273 | |
274 | /// Converts `self` into a parallel iterator. |
275 | /// |
276 | /// # Examples |
277 | /// |
278 | /// ``` |
279 | /// use rayon::prelude::*; |
280 | /// |
281 | /// let v: Vec<_> = (0..100).collect(); |
282 | /// assert_eq!(v.par_iter().sum::<i32>(), 100 * 99 / 2); |
283 | /// |
284 | /// // `v.par_iter()` is shorthand for `(&v).into_par_iter()`, |
285 | /// // producing the exact same references. |
286 | /// assert!(v.par_iter().zip(&v) |
287 | /// .all(|(a, b)| std::ptr::eq(a, b))); |
288 | /// ``` |
289 | fn par_iter(&'data self) -> Self::Iter; |
290 | } |
291 | |
292 | impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I |
293 | where |
294 | &'data I: IntoParallelIterator, |
295 | { |
296 | type Iter = <&'data I as IntoParallelIterator>::Iter; |
297 | type Item = <&'data I as IntoParallelIterator>::Item; |
298 | |
299 | fn par_iter(&'data self) -> Self::Iter { |
300 | self.into_par_iter() |
301 | } |
302 | } |
303 | |
304 | /// `IntoParallelRefMutIterator` implements the conversion to a |
305 | /// [`ParallelIterator`], providing mutable references to the data. |
306 | /// |
307 | /// This is a parallel version of the `iter_mut()` method |
308 | /// defined by various collections. |
309 | /// |
310 | /// This trait is automatically implemented |
311 | /// `for I where &mut I: IntoParallelIterator`. In most cases, users |
312 | /// will want to implement [`IntoParallelIterator`] rather than implement |
313 | /// this trait directly. |
314 | /// |
315 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
316 | /// [`IntoParallelIterator`]: trait.IntoParallelIterator.html |
317 | pub trait IntoParallelRefMutIterator<'data> { |
318 | /// The type of iterator that will be created. |
319 | type Iter: ParallelIterator<Item = Self::Item>; |
320 | |
321 | /// The type of item that will be produced; this is typically an |
322 | /// `&'data mut T` reference. |
323 | type Item: Send + 'data; |
324 | |
325 | /// Creates the parallel iterator from `self`. |
326 | /// |
327 | /// # Examples |
328 | /// |
329 | /// ``` |
330 | /// use rayon::prelude::*; |
331 | /// |
332 | /// let mut v = vec![0usize; 5]; |
333 | /// v.par_iter_mut().enumerate().for_each(|(i, x)| *x = i); |
334 | /// assert_eq!(v, [0, 1, 2, 3, 4]); |
335 | /// ``` |
336 | fn par_iter_mut(&'data mut self) -> Self::Iter; |
337 | } |
338 | |
339 | impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I |
340 | where |
341 | &'data mut I: IntoParallelIterator, |
342 | { |
343 | type Iter = <&'data mut I as IntoParallelIterator>::Iter; |
344 | type Item = <&'data mut I as IntoParallelIterator>::Item; |
345 | |
346 | fn par_iter_mut(&'data mut self) -> Self::Iter { |
347 | self.into_par_iter() |
348 | } |
349 | } |
350 | |
351 | /// Parallel version of the standard iterator trait. |
352 | /// |
353 | /// The combinators on this trait are available on **all** parallel |
354 | /// iterators. Additional methods can be found on the |
355 | /// [`IndexedParallelIterator`] trait: those methods are only |
356 | /// available for parallel iterators where the number of items is |
357 | /// known in advance (so, e.g., after invoking `filter`, those methods |
358 | /// become unavailable). |
359 | /// |
360 | /// For examples of using parallel iterators, see [the docs on the |
361 | /// `iter` module][iter]. |
362 | /// |
363 | /// [iter]: index.html |
364 | /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html |
365 | pub trait ParallelIterator: Sized + Send { |
366 | /// The type of item that this parallel iterator produces. |
367 | /// For example, if you use the [`for_each`] method, this is the type of |
368 | /// item that your closure will be invoked with. |
369 | /// |
370 | /// [`for_each`]: #method.for_each |
371 | type Item: Send; |
372 | |
373 | /// Executes `OP` on each item produced by the iterator, in parallel. |
374 | /// |
375 | /// # Examples |
376 | /// |
377 | /// ``` |
378 | /// use rayon::prelude::*; |
379 | /// |
380 | /// (0..100).into_par_iter().for_each(|x| println!("{:?}" , x)); |
381 | /// ``` |
382 | fn for_each<OP>(self, op: OP) |
383 | where |
384 | OP: Fn(Self::Item) + Sync + Send, |
385 | { |
386 | for_each::for_each(self, &op) |
387 | } |
388 | |
389 | /// Executes `OP` on the given `init` value with each item produced by |
390 | /// the iterator, in parallel. |
391 | /// |
392 | /// The `init` value will be cloned only as needed to be paired with |
393 | /// the group of items in each rayon job. It does not require the type |
394 | /// to be `Sync`. |
395 | /// |
396 | /// # Examples |
397 | /// |
398 | /// ``` |
399 | /// use std::sync::mpsc::channel; |
400 | /// use rayon::prelude::*; |
401 | /// |
402 | /// let (sender, receiver) = channel(); |
403 | /// |
404 | /// (0..5).into_par_iter().for_each_with(sender, |s, x| s.send(x).unwrap()); |
405 | /// |
406 | /// let mut res: Vec<_> = receiver.iter().collect(); |
407 | /// |
408 | /// res.sort(); |
409 | /// |
410 | /// assert_eq!(&res[..], &[0, 1, 2, 3, 4]) |
411 | /// ``` |
412 | fn for_each_with<OP, T>(self, init: T, op: OP) |
413 | where |
414 | OP: Fn(&mut T, Self::Item) + Sync + Send, |
415 | T: Send + Clone, |
416 | { |
417 | self.map_with(init, op).collect() |
418 | } |
419 | |
420 | /// Executes `OP` on a value returned by `init` with each item produced by |
421 | /// the iterator, in parallel. |
422 | /// |
423 | /// The `init` function will be called only as needed for a value to be |
424 | /// paired with the group of items in each rayon job. There is no |
425 | /// constraint on that returned type at all! |
426 | /// |
427 | /// # Examples |
428 | /// |
429 | /// ``` |
430 | /// use rand::Rng; |
431 | /// use rayon::prelude::*; |
432 | /// |
433 | /// let mut v = vec![0u8; 1_000_000]; |
434 | /// |
435 | /// v.par_chunks_mut(1000) |
436 | /// .for_each_init( |
437 | /// || rand::thread_rng(), |
438 | /// |rng, chunk| rng.fill(chunk), |
439 | /// ); |
440 | /// |
441 | /// // There's a remote chance that this will fail... |
442 | /// for i in 0u8..=255 { |
443 | /// assert!(v.contains(&i)); |
444 | /// } |
445 | /// ``` |
446 | fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP) |
447 | where |
448 | OP: Fn(&mut T, Self::Item) + Sync + Send, |
449 | INIT: Fn() -> T + Sync + Send, |
450 | { |
451 | self.map_init(init, op).collect() |
452 | } |
453 | |
454 | /// Executes a fallible `OP` on each item produced by the iterator, in parallel. |
455 | /// |
456 | /// If the `OP` returns `Result::Err` or `Option::None`, we will attempt to |
457 | /// stop processing the rest of the items in the iterator as soon as |
458 | /// possible, and we will return that terminating value. Otherwise, we will |
459 | /// return an empty `Result::Ok(())` or `Option::Some(())`. If there are |
460 | /// multiple errors in parallel, it is not specified which will be returned. |
461 | /// |
462 | /// # Examples |
463 | /// |
464 | /// ``` |
465 | /// use rayon::prelude::*; |
466 | /// use std::io::{self, Write}; |
467 | /// |
468 | /// // This will stop iteration early if there's any write error, like |
469 | /// // having piped output get closed on the other end. |
470 | /// (0..100).into_par_iter() |
471 | /// .try_for_each(|x| writeln!(io::stdout(), "{:?}" , x)) |
472 | /// .expect("expected no write errors" ); |
473 | /// ``` |
474 | fn try_for_each<OP, R>(self, op: OP) -> R |
475 | where |
476 | OP: Fn(Self::Item) -> R + Sync + Send, |
477 | R: Try<Output = ()> + Send, |
478 | { |
479 | fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { |
480 | R::from_output(()) |
481 | } |
482 | |
483 | self.map(op).try_reduce(<()>::default, ok) |
484 | } |
485 | |
486 | /// Executes a fallible `OP` on the given `init` value with each item |
487 | /// produced by the iterator, in parallel. |
488 | /// |
489 | /// This combines the `init` semantics of [`for_each_with()`] and the |
490 | /// failure semantics of [`try_for_each()`]. |
491 | /// |
492 | /// [`for_each_with()`]: #method.for_each_with |
493 | /// [`try_for_each()`]: #method.try_for_each |
494 | /// |
495 | /// # Examples |
496 | /// |
497 | /// ``` |
498 | /// use std::sync::mpsc::channel; |
499 | /// use rayon::prelude::*; |
500 | /// |
501 | /// let (sender, receiver) = channel(); |
502 | /// |
503 | /// (0..5).into_par_iter() |
504 | /// .try_for_each_with(sender, |s, x| s.send(x)) |
505 | /// .expect("expected no send errors" ); |
506 | /// |
507 | /// let mut res: Vec<_> = receiver.iter().collect(); |
508 | /// |
509 | /// res.sort(); |
510 | /// |
511 | /// assert_eq!(&res[..], &[0, 1, 2, 3, 4]) |
512 | /// ``` |
513 | fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R |
514 | where |
515 | OP: Fn(&mut T, Self::Item) -> R + Sync + Send, |
516 | T: Send + Clone, |
517 | R: Try<Output = ()> + Send, |
518 | { |
519 | fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { |
520 | R::from_output(()) |
521 | } |
522 | |
523 | self.map_with(init, op).try_reduce(<()>::default, ok) |
524 | } |
525 | |
526 | /// Executes a fallible `OP` on a value returned by `init` with each item |
527 | /// produced by the iterator, in parallel. |
528 | /// |
529 | /// This combines the `init` semantics of [`for_each_init()`] and the |
530 | /// failure semantics of [`try_for_each()`]. |
531 | /// |
532 | /// [`for_each_init()`]: #method.for_each_init |
533 | /// [`try_for_each()`]: #method.try_for_each |
534 | /// |
535 | /// # Examples |
536 | /// |
537 | /// ``` |
538 | /// use rand::Rng; |
539 | /// use rayon::prelude::*; |
540 | /// |
541 | /// let mut v = vec![0u8; 1_000_000]; |
542 | /// |
543 | /// v.par_chunks_mut(1000) |
544 | /// .try_for_each_init( |
545 | /// || rand::thread_rng(), |
546 | /// |rng, chunk| rng.try_fill(chunk), |
547 | /// ) |
548 | /// .expect("expected no rand errors" ); |
549 | /// |
550 | /// // There's a remote chance that this will fail... |
551 | /// for i in 0u8..=255 { |
552 | /// assert!(v.contains(&i)); |
553 | /// } |
554 | /// ``` |
555 | fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R |
556 | where |
557 | OP: Fn(&mut T, Self::Item) -> R + Sync + Send, |
558 | INIT: Fn() -> T + Sync + Send, |
559 | R: Try<Output = ()> + Send, |
560 | { |
561 | fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R { |
562 | R::from_output(()) |
563 | } |
564 | |
565 | self.map_init(init, op).try_reduce(<()>::default, ok) |
566 | } |
567 | |
568 | /// Counts the number of items in this parallel iterator. |
569 | /// |
570 | /// # Examples |
571 | /// |
572 | /// ``` |
573 | /// use rayon::prelude::*; |
574 | /// |
575 | /// let count = (0..100).into_par_iter().count(); |
576 | /// |
577 | /// assert_eq!(count, 100); |
578 | /// ``` |
579 | fn count(self) -> usize { |
580 | fn one<T>(_: T) -> usize { |
581 | 1 |
582 | } |
583 | |
584 | self.map(one).sum() |
585 | } |
586 | |
587 | /// Applies `map_op` to each item of this iterator, producing a new |
588 | /// iterator with the results. |
589 | /// |
590 | /// # Examples |
591 | /// |
592 | /// ``` |
593 | /// use rayon::prelude::*; |
594 | /// |
595 | /// let mut par_iter = (0..5).into_par_iter().map(|x| x * 2); |
596 | /// |
597 | /// let doubles: Vec<_> = par_iter.collect(); |
598 | /// |
599 | /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]); |
600 | /// ``` |
601 | fn map<F, R>(self, map_op: F) -> Map<Self, F> |
602 | where |
603 | F: Fn(Self::Item) -> R + Sync + Send, |
604 | R: Send, |
605 | { |
606 | Map::new(self, map_op) |
607 | } |
608 | |
609 | /// Applies `map_op` to the given `init` value with each item of this |
610 | /// iterator, producing a new iterator with the results. |
611 | /// |
612 | /// The `init` value will be cloned only as needed to be paired with |
613 | /// the group of items in each rayon job. It does not require the type |
614 | /// to be `Sync`. |
615 | /// |
616 | /// # Examples |
617 | /// |
618 | /// ``` |
619 | /// use std::sync::mpsc::channel; |
620 | /// use rayon::prelude::*; |
621 | /// |
622 | /// let (sender, receiver) = channel(); |
623 | /// |
624 | /// let a: Vec<_> = (0..5) |
625 | /// .into_par_iter() // iterating over i32 |
626 | /// .map_with(sender, |s, x| { |
627 | /// s.send(x).unwrap(); // sending i32 values through the channel |
628 | /// x // returning i32 |
629 | /// }) |
630 | /// .collect(); // collecting the returned values into a vector |
631 | /// |
632 | /// let mut b: Vec<_> = receiver.iter() // iterating over the values in the channel |
633 | /// .collect(); // and collecting them |
634 | /// b.sort(); |
635 | /// |
636 | /// assert_eq!(a, b); |
637 | /// ``` |
638 | fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F> |
639 | where |
640 | F: Fn(&mut T, Self::Item) -> R + Sync + Send, |
641 | T: Send + Clone, |
642 | R: Send, |
643 | { |
644 | MapWith::new(self, init, map_op) |
645 | } |
646 | |
647 | /// Applies `map_op` to a value returned by `init` with each item of this |
648 | /// iterator, producing a new iterator with the results. |
649 | /// |
650 | /// The `init` function will be called only as needed for a value to be |
651 | /// paired with the group of items in each rayon job. There is no |
652 | /// constraint on that returned type at all! |
653 | /// |
654 | /// # Examples |
655 | /// |
656 | /// ``` |
657 | /// use rand::Rng; |
658 | /// use rayon::prelude::*; |
659 | /// |
660 | /// let a: Vec<_> = (1i32..1_000_000) |
661 | /// .into_par_iter() |
662 | /// .map_init( |
663 | /// || rand::thread_rng(), // get the thread-local RNG |
664 | /// |rng, x| if rng.gen() { // randomly negate items |
665 | /// -x |
666 | /// } else { |
667 | /// x |
668 | /// }, |
669 | /// ).collect(); |
670 | /// |
671 | /// // There's a remote chance that this will fail... |
672 | /// assert!(a.iter().any(|&x| x < 0)); |
673 | /// assert!(a.iter().any(|&x| x > 0)); |
674 | /// ``` |
675 | fn map_init<F, INIT, T, R>(self, init: INIT, map_op: F) -> MapInit<Self, INIT, F> |
676 | where |
677 | F: Fn(&mut T, Self::Item) -> R + Sync + Send, |
678 | INIT: Fn() -> T + Sync + Send, |
679 | R: Send, |
680 | { |
681 | MapInit::new(self, init, map_op) |
682 | } |
683 | |
684 | /// Creates an iterator which clones all of its elements. This may be |
685 | /// useful when you have an iterator over `&T`, but you need `T`, and |
686 | /// that type implements `Clone`. See also [`copied()`]. |
687 | /// |
688 | /// [`copied()`]: #method.copied |
689 | /// |
690 | /// # Examples |
691 | /// |
692 | /// ``` |
693 | /// use rayon::prelude::*; |
694 | /// |
695 | /// let a = [1, 2, 3]; |
696 | /// |
697 | /// let v_cloned: Vec<_> = a.par_iter().cloned().collect(); |
698 | /// |
699 | /// // cloned is the same as .map(|&x| x), for integers |
700 | /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect(); |
701 | /// |
702 | /// assert_eq!(v_cloned, vec![1, 2, 3]); |
703 | /// assert_eq!(v_map, vec![1, 2, 3]); |
704 | /// ``` |
705 | fn cloned<'a, T>(self) -> Cloned<Self> |
706 | where |
707 | T: 'a + Clone + Send, |
708 | Self: ParallelIterator<Item = &'a T>, |
709 | { |
710 | Cloned::new(self) |
711 | } |
712 | |
713 | /// Creates an iterator which copies all of its elements. This may be |
714 | /// useful when you have an iterator over `&T`, but you need `T`, and |
715 | /// that type implements `Copy`. See also [`cloned()`]. |
716 | /// |
717 | /// [`cloned()`]: #method.cloned |
718 | /// |
719 | /// # Examples |
720 | /// |
721 | /// ``` |
722 | /// use rayon::prelude::*; |
723 | /// |
724 | /// let a = [1, 2, 3]; |
725 | /// |
726 | /// let v_copied: Vec<_> = a.par_iter().copied().collect(); |
727 | /// |
728 | /// // copied is the same as .map(|&x| x), for integers |
729 | /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect(); |
730 | /// |
731 | /// assert_eq!(v_copied, vec![1, 2, 3]); |
732 | /// assert_eq!(v_map, vec![1, 2, 3]); |
733 | /// ``` |
734 | fn copied<'a, T>(self) -> Copied<Self> |
735 | where |
736 | T: 'a + Copy + Send, |
737 | Self: ParallelIterator<Item = &'a T>, |
738 | { |
739 | Copied::new(self) |
740 | } |
741 | |
742 | /// Applies `inspect_op` to a reference to each item of this iterator, |
743 | /// producing a new iterator passing through the original items. This is |
744 | /// often useful for debugging to see what's happening in iterator stages. |
745 | /// |
746 | /// # Examples |
747 | /// |
748 | /// ``` |
749 | /// use rayon::prelude::*; |
750 | /// |
751 | /// let a = [1, 4, 2, 3]; |
752 | /// |
753 | /// // this iterator sequence is complex. |
754 | /// let sum = a.par_iter() |
755 | /// .cloned() |
756 | /// .filter(|&x| x % 2 == 0) |
757 | /// .reduce(|| 0, |sum, i| sum + i); |
758 | /// |
759 | /// println!("{}" , sum); |
760 | /// |
761 | /// // let's add some inspect() calls to investigate what's happening |
762 | /// let sum = a.par_iter() |
763 | /// .cloned() |
764 | /// .inspect(|x| println!("about to filter: {}" , x)) |
765 | /// .filter(|&x| x % 2 == 0) |
766 | /// .inspect(|x| println!("made it through filter: {}" , x)) |
767 | /// .reduce(|| 0, |sum, i| sum + i); |
768 | /// |
769 | /// println!("{}" , sum); |
770 | /// ``` |
771 | fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP> |
772 | where |
773 | OP: Fn(&Self::Item) + Sync + Send, |
774 | { |
775 | Inspect::new(self, inspect_op) |
776 | } |
777 | |
778 | /// Mutates each item of this iterator before yielding it. |
779 | /// |
780 | /// # Examples |
781 | /// |
782 | /// ``` |
783 | /// use rayon::prelude::*; |
784 | /// |
785 | /// let par_iter = (0..5).into_par_iter().update(|x| {*x *= 2;}); |
786 | /// |
787 | /// let doubles: Vec<_> = par_iter.collect(); |
788 | /// |
789 | /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]); |
790 | /// ``` |
791 | fn update<F>(self, update_op: F) -> Update<Self, F> |
792 | where |
793 | F: Fn(&mut Self::Item) + Sync + Send, |
794 | { |
795 | Update::new(self, update_op) |
796 | } |
797 | |
798 | /// Applies `filter_op` to each item of this iterator, producing a new |
799 | /// iterator with only the items that gave `true` results. |
800 | /// |
801 | /// # Examples |
802 | /// |
803 | /// ``` |
804 | /// use rayon::prelude::*; |
805 | /// |
806 | /// let mut par_iter = (0..10).into_par_iter().filter(|x| x % 2 == 0); |
807 | /// |
808 | /// let even_numbers: Vec<_> = par_iter.collect(); |
809 | /// |
810 | /// assert_eq!(&even_numbers[..], &[0, 2, 4, 6, 8]); |
811 | /// ``` |
812 | fn filter<P>(self, filter_op: P) -> Filter<Self, P> |
813 | where |
814 | P: Fn(&Self::Item) -> bool + Sync + Send, |
815 | { |
816 | Filter::new(self, filter_op) |
817 | } |
818 | |
819 | /// Applies `filter_op` to each item of this iterator to get an `Option`, |
820 | /// producing a new iterator with only the items from `Some` results. |
821 | /// |
822 | /// # Examples |
823 | /// |
824 | /// ``` |
825 | /// use rayon::prelude::*; |
826 | /// |
827 | /// let mut par_iter = (0..10).into_par_iter() |
828 | /// .filter_map(|x| { |
829 | /// if x % 2 == 0 { Some(x * 3) } |
830 | /// else { None } |
831 | /// }); |
832 | /// |
833 | /// let even_numbers: Vec<_> = par_iter.collect(); |
834 | /// |
835 | /// assert_eq!(&even_numbers[..], &[0, 6, 12, 18, 24]); |
836 | /// ``` |
837 | fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P> |
838 | where |
839 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
840 | R: Send, |
841 | { |
842 | FilterMap::new(self, filter_op) |
843 | } |
844 | |
845 | /// Applies `map_op` to each item of this iterator to get nested parallel iterators, |
846 | /// producing a new parallel iterator that flattens these back into one. |
847 | /// |
848 | /// See also [`flat_map_iter`](#method.flat_map_iter). |
849 | /// |
850 | /// # Examples |
851 | /// |
852 | /// ``` |
853 | /// use rayon::prelude::*; |
854 | /// |
855 | /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]]; |
856 | /// |
857 | /// let par_iter = a.par_iter().cloned().flat_map(|a| a.to_vec()); |
858 | /// |
859 | /// let vec: Vec<_> = par_iter.collect(); |
860 | /// |
861 | /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]); |
862 | /// ``` |
863 | fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F> |
864 | where |
865 | F: Fn(Self::Item) -> PI + Sync + Send, |
866 | PI: IntoParallelIterator, |
867 | { |
868 | FlatMap::new(self, map_op) |
869 | } |
870 | |
871 | /// Applies `map_op` to each item of this iterator to get nested serial iterators, |
872 | /// producing a new parallel iterator that flattens these back into one. |
873 | /// |
874 | /// # `flat_map_iter` versus `flat_map` |
875 | /// |
876 | /// These two methods are similar but behave slightly differently. With [`flat_map`], |
877 | /// each of the nested iterators must be a parallel iterator, and they will be further |
878 | /// split up with nested parallelism. With `flat_map_iter`, each nested iterator is a |
879 | /// sequential `Iterator`, and we only parallelize _between_ them, while the items |
880 | /// produced by each nested iterator are processed sequentially. |
881 | /// |
882 | /// When choosing between these methods, consider whether nested parallelism suits the |
883 | /// potential iterators at hand. If there's little computation involved, or its length |
884 | /// is much less than the outer parallel iterator, then it may perform better to avoid |
885 | /// the overhead of parallelism, just flattening sequentially with `flat_map_iter`. |
886 | /// If there is a lot of computation, potentially outweighing the outer parallel |
887 | /// iterator, then the nested parallelism of `flat_map` may be worthwhile. |
888 | /// |
889 | /// [`flat_map`]: #method.flat_map |
890 | /// |
891 | /// # Examples |
892 | /// |
893 | /// ``` |
894 | /// use rayon::prelude::*; |
895 | /// use std::cell::RefCell; |
896 | /// |
897 | /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]]; |
898 | /// |
899 | /// let par_iter = a.par_iter().flat_map_iter(|a| { |
900 | /// // The serial iterator doesn't have to be thread-safe, just its items. |
901 | /// let cell_iter = RefCell::new(a.iter().cloned()); |
902 | /// std::iter::from_fn(move || cell_iter.borrow_mut().next()) |
903 | /// }); |
904 | /// |
905 | /// let vec: Vec<_> = par_iter.collect(); |
906 | /// |
907 | /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]); |
908 | /// ``` |
909 | fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F> |
910 | where |
911 | F: Fn(Self::Item) -> SI + Sync + Send, |
912 | SI: IntoIterator, |
913 | SI::Item: Send, |
914 | { |
915 | FlatMapIter::new(self, map_op) |
916 | } |
917 | |
918 | /// An adaptor that flattens parallel-iterable `Item`s into one large iterator. |
919 | /// |
920 | /// See also [`flatten_iter`](#method.flatten_iter). |
921 | /// |
922 | /// # Examples |
923 | /// |
924 | /// ``` |
925 | /// use rayon::prelude::*; |
926 | /// |
927 | /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]]; |
928 | /// let y: Vec<_> = x.into_par_iter().flatten().collect(); |
929 | /// |
930 | /// assert_eq!(y, vec![1, 2, 3, 4]); |
931 | /// ``` |
932 | fn flatten(self) -> Flatten<Self> |
933 | where |
934 | Self::Item: IntoParallelIterator, |
935 | { |
936 | Flatten::new(self) |
937 | } |
938 | |
939 | /// An adaptor that flattens serial-iterable `Item`s into one large iterator. |
940 | /// |
941 | /// See also [`flatten`](#method.flatten) and the analogous comparison of |
942 | /// [`flat_map_iter` versus `flat_map`](#flat_map_iter-versus-flat_map). |
943 | /// |
944 | /// # Examples |
945 | /// |
946 | /// ``` |
947 | /// use rayon::prelude::*; |
948 | /// |
949 | /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]]; |
950 | /// let iters: Vec<_> = x.into_iter().map(Vec::into_iter).collect(); |
951 | /// let y: Vec<_> = iters.into_par_iter().flatten_iter().collect(); |
952 | /// |
953 | /// assert_eq!(y, vec![1, 2, 3, 4]); |
954 | /// ``` |
955 | fn flatten_iter(self) -> FlattenIter<Self> |
956 | where |
957 | Self::Item: IntoIterator, |
958 | <Self::Item as IntoIterator>::Item: Send, |
959 | { |
960 | FlattenIter::new(self) |
961 | } |
962 | |
963 | /// Reduces the items in the iterator into one item using `op`. |
964 | /// The argument `identity` should be a closure that can produce |
965 | /// "identity" value which may be inserted into the sequence as |
966 | /// needed to create opportunities for parallel execution. So, for |
967 | /// example, if you are doing a summation, then `identity()` ought |
968 | /// to produce something that represents the zero for your type |
969 | /// (but consider just calling `sum()` in that case). |
970 | /// |
971 | /// # Examples |
972 | /// |
973 | /// ``` |
974 | /// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)` |
975 | /// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)` |
976 | /// // where the first/second elements are summed separately. |
977 | /// use rayon::prelude::*; |
978 | /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)] |
979 | /// .par_iter() // iterating over &(i32, i32) |
980 | /// .cloned() // iterating over (i32, i32) |
981 | /// .reduce(|| (0, 0), // the "identity" is 0 in both columns |
982 | /// |a, b| (a.0 + b.0, a.1 + b.1)); |
983 | /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9)); |
984 | /// ``` |
985 | /// |
986 | /// **Note:** unlike a sequential `fold` operation, the order in |
987 | /// which `op` will be applied to reduce the result is not fully |
988 | /// specified. So `op` should be [associative] or else the results |
989 | /// will be non-deterministic. And of course `identity()` should |
990 | /// produce a true identity. |
991 | /// |
992 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
993 | fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item |
994 | where |
995 | OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send, |
996 | ID: Fn() -> Self::Item + Sync + Send, |
997 | { |
998 | reduce::reduce(self, identity, op) |
999 | } |
1000 | |
1001 | /// Reduces the items in the iterator into one item using `op`. |
1002 | /// If the iterator is empty, `None` is returned; otherwise, |
1003 | /// `Some` is returned. |
1004 | /// |
1005 | /// This version of `reduce` is simple but somewhat less |
1006 | /// efficient. If possible, it is better to call `reduce()`, which |
1007 | /// requires an identity element. |
1008 | /// |
1009 | /// # Examples |
1010 | /// |
1011 | /// ``` |
1012 | /// use rayon::prelude::*; |
1013 | /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)] |
1014 | /// .par_iter() // iterating over &(i32, i32) |
1015 | /// .cloned() // iterating over (i32, i32) |
1016 | /// .reduce_with(|a, b| (a.0 + b.0, a.1 + b.1)) |
1017 | /// .unwrap(); |
1018 | /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9)); |
1019 | /// ``` |
1020 | /// |
1021 | /// **Note:** unlike a sequential `fold` operation, the order in |
1022 | /// which `op` will be applied to reduce the result is not fully |
1023 | /// specified. So `op` should be [associative] or else the results |
1024 | /// will be non-deterministic. |
1025 | /// |
1026 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
1027 | fn reduce_with<OP>(self, op: OP) -> Option<Self::Item> |
1028 | where |
1029 | OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send, |
1030 | { |
1031 | fn opt_fold<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, T) -> Option<T> { |
1032 | move |opt_a, b| match opt_a { |
1033 | Some(a) => Some(op(a, b)), |
1034 | None => Some(b), |
1035 | } |
1036 | } |
1037 | |
1038 | fn opt_reduce<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, Option<T>) -> Option<T> { |
1039 | move |opt_a, opt_b| match (opt_a, opt_b) { |
1040 | (Some(a), Some(b)) => Some(op(a, b)), |
1041 | (Some(v), None) | (None, Some(v)) => Some(v), |
1042 | (None, None) => None, |
1043 | } |
1044 | } |
1045 | |
1046 | self.fold(<_>::default, opt_fold(&op)) |
1047 | .reduce(<_>::default, opt_reduce(&op)) |
1048 | } |
1049 | |
1050 | /// Reduces the items in the iterator into one item using a fallible `op`. |
1051 | /// The `identity` argument is used the same way as in [`reduce()`]. |
1052 | /// |
1053 | /// [`reduce()`]: #method.reduce |
1054 | /// |
1055 | /// If a `Result::Err` or `Option::None` item is found, or if `op` reduces |
1056 | /// to one, we will attempt to stop processing the rest of the items in the |
1057 | /// iterator as soon as possible, and we will return that terminating value. |
1058 | /// Otherwise, we will return the final reduced `Result::Ok(T)` or |
1059 | /// `Option::Some(T)`. If there are multiple errors in parallel, it is not |
1060 | /// specified which will be returned. |
1061 | /// |
1062 | /// # Examples |
1063 | /// |
1064 | /// ``` |
1065 | /// use rayon::prelude::*; |
1066 | /// |
1067 | /// // Compute the sum of squares, being careful about overflow. |
1068 | /// fn sum_squares<I: IntoParallelIterator<Item = i32>>(iter: I) -> Option<i32> { |
1069 | /// iter.into_par_iter() |
1070 | /// .map(|i| i.checked_mul(i)) // square each item, |
1071 | /// .try_reduce(|| 0, i32::checked_add) // and add them up! |
1072 | /// } |
1073 | /// assert_eq!(sum_squares(0..5), Some(0 + 1 + 4 + 9 + 16)); |
1074 | /// |
1075 | /// // The sum might overflow |
1076 | /// assert_eq!(sum_squares(0..10_000), None); |
1077 | /// |
1078 | /// // Or the squares might overflow before it even reaches `try_reduce` |
1079 | /// assert_eq!(sum_squares(1_000_000..1_000_001), None); |
1080 | /// ``` |
1081 | fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item |
1082 | where |
1083 | OP: Fn(T, T) -> Self::Item + Sync + Send, |
1084 | ID: Fn() -> T + Sync + Send, |
1085 | Self::Item: Try<Output = T>, |
1086 | { |
1087 | try_reduce::try_reduce(self, identity, op) |
1088 | } |
1089 | |
1090 | /// Reduces the items in the iterator into one item using a fallible `op`. |
1091 | /// |
1092 | /// Like [`reduce_with()`], if the iterator is empty, `None` is returned; |
1093 | /// otherwise, `Some` is returned. Beyond that, it behaves like |
1094 | /// [`try_reduce()`] for handling `Err`/`None`. |
1095 | /// |
1096 | /// [`reduce_with()`]: #method.reduce_with |
1097 | /// [`try_reduce()`]: #method.try_reduce |
1098 | /// |
1099 | /// For instance, with `Option` items, the return value may be: |
1100 | /// - `None`, the iterator was empty |
1101 | /// - `Some(None)`, we stopped after encountering `None`. |
1102 | /// - `Some(Some(x))`, the entire iterator reduced to `x`. |
1103 | /// |
1104 | /// With `Result` items, the nesting is more obvious: |
1105 | /// - `None`, the iterator was empty |
1106 | /// - `Some(Err(e))`, we stopped after encountering an error `e`. |
1107 | /// - `Some(Ok(x))`, the entire iterator reduced to `x`. |
1108 | /// |
1109 | /// # Examples |
1110 | /// |
1111 | /// ``` |
1112 | /// use rayon::prelude::*; |
1113 | /// |
1114 | /// let files = ["/dev/null" , "/does/not/exist" ]; |
1115 | /// |
1116 | /// // Find the biggest file |
1117 | /// files.into_par_iter() |
1118 | /// .map(|path| std::fs::metadata(path).map(|m| (path, m.len()))) |
1119 | /// .try_reduce_with(|a, b| { |
1120 | /// Ok(if a.1 >= b.1 { a } else { b }) |
1121 | /// }) |
1122 | /// .expect("Some value, since the iterator is not empty" ) |
1123 | /// .expect_err("not found" ); |
1124 | /// ``` |
1125 | fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item> |
1126 | where |
1127 | OP: Fn(T, T) -> Self::Item + Sync + Send, |
1128 | Self::Item: Try<Output = T>, |
1129 | { |
1130 | try_reduce_with::try_reduce_with(self, op) |
1131 | } |
1132 | |
1133 | /// Parallel fold is similar to sequential fold except that the |
1134 | /// sequence of items may be subdivided before it is |
1135 | /// folded. Consider a list of numbers like `22 3 77 89 46`. If |
1136 | /// you used sequential fold to add them (`fold(0, |a,b| a+b)`, |
1137 | /// you would wind up first adding 0 + 22, then 22 + 3, then 25 + |
1138 | /// 77, and so forth. The **parallel fold** works similarly except |
1139 | /// that it first breaks up your list into sublists, and hence |
1140 | /// instead of yielding up a single sum at the end, it yields up |
1141 | /// multiple sums. The number of results is nondeterministic, as |
1142 | /// is the point where the breaks occur. |
1143 | /// |
1144 | /// So if we did the same parallel fold (`fold(0, |a,b| a+b)`) on |
1145 | /// our example list, we might wind up with a sequence of two numbers, |
1146 | /// like so: |
1147 | /// |
1148 | /// ```notrust |
1149 | /// 22 3 77 89 46 |
1150 | /// | | |
1151 | /// 102 135 |
1152 | /// ``` |
1153 | /// |
1154 | /// Or perhaps these three numbers: |
1155 | /// |
1156 | /// ```notrust |
1157 | /// 22 3 77 89 46 |
1158 | /// | | | |
1159 | /// 102 89 46 |
1160 | /// ``` |
1161 | /// |
1162 | /// In general, Rayon will attempt to find good breaking points |
1163 | /// that keep all of your cores busy. |
1164 | /// |
1165 | /// ### Fold versus reduce |
1166 | /// |
1167 | /// The `fold()` and `reduce()` methods each take an identity element |
1168 | /// and a combining function, but they operate rather differently. |
1169 | /// |
1170 | /// `reduce()` requires that the identity function has the same |
1171 | /// type as the things you are iterating over, and it fully |
1172 | /// reduces the list of items into a single item. So, for example, |
1173 | /// imagine we are iterating over a list of bytes `bytes: [128_u8, |
1174 | /// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b: |
1175 | /// u8| a + b)`, we would get an overflow. This is because `0`, |
1176 | /// `a`, and `b` here are all bytes, just like the numbers in the |
1177 | /// list (I wrote the types explicitly above, but those are the |
1178 | /// only types you can use). To avoid the overflow, we would need |
1179 | /// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a, |
1180 | /// b| a + b)`, in which case our result would be `256`. |
1181 | /// |
1182 | /// In contrast, with `fold()`, the identity function does not |
1183 | /// have to have the same type as the things you are iterating |
1184 | /// over, and you potentially get back many results. So, if we |
1185 | /// continue with the `bytes` example from the previous paragraph, |
1186 | /// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to |
1187 | /// convert our bytes into `u32`. And of course we might not get |
1188 | /// back a single sum. |
1189 | /// |
1190 | /// There is a more subtle distinction as well, though it's |
1191 | /// actually implied by the above points. When you use `reduce()`, |
1192 | /// your reduction function is sometimes called with values that |
1193 | /// were never part of your original parallel iterator (for |
1194 | /// example, both the left and right might be a partial sum). With |
1195 | /// `fold()`, in contrast, the left value in the fold function is |
1196 | /// always the accumulator, and the right value is always from |
1197 | /// your original sequence. |
1198 | /// |
1199 | /// ### Fold vs Map/Reduce |
1200 | /// |
1201 | /// Fold makes sense if you have some operation where it is |
1202 | /// cheaper to create groups of elements at a time. For example, |
1203 | /// imagine collecting characters into a string. If you were going |
1204 | /// to use map/reduce, you might try this: |
1205 | /// |
1206 | /// ``` |
1207 | /// use rayon::prelude::*; |
1208 | /// |
1209 | /// let s = |
1210 | /// ['a' , 'b' , 'c' , 'd' , 'e' ] |
1211 | /// .par_iter() |
1212 | /// .map(|c: &char| format!("{}" , c)) |
1213 | /// .reduce(|| String::new(), |
1214 | /// |mut a: String, b: String| { a.push_str(&b); a }); |
1215 | /// |
1216 | /// assert_eq!(s, "abcde" ); |
1217 | /// ``` |
1218 | /// |
1219 | /// Because reduce produces the same type of element as its input, |
1220 | /// you have to first map each character into a string, and then |
1221 | /// you can reduce them. This means we create one string per |
1222 | /// element in our iterator -- not so great. Using `fold`, we can |
1223 | /// do this instead: |
1224 | /// |
1225 | /// ``` |
1226 | /// use rayon::prelude::*; |
1227 | /// |
1228 | /// let s = |
1229 | /// ['a' , 'b' , 'c' , 'd' , 'e' ] |
1230 | /// .par_iter() |
1231 | /// .fold(|| String::new(), |
1232 | /// |mut s: String, c: &char| { s.push(*c); s }) |
1233 | /// .reduce(|| String::new(), |
1234 | /// |mut a: String, b: String| { a.push_str(&b); a }); |
1235 | /// |
1236 | /// assert_eq!(s, "abcde" ); |
1237 | /// ``` |
1238 | /// |
1239 | /// Now `fold` will process groups of our characters at a time, |
1240 | /// and we only make one string per group. We should wind up with |
1241 | /// some small-ish number of strings roughly proportional to the |
1242 | /// number of CPUs you have (it will ultimately depend on how busy |
1243 | /// your processors are). Note that we still need to do a reduce |
1244 | /// afterwards to combine those groups of strings into a single |
1245 | /// string. |
1246 | /// |
1247 | /// You could use a similar trick to save partial results (e.g., a |
1248 | /// cache) or something similar. |
1249 | /// |
1250 | /// ### Combining fold with other operations |
1251 | /// |
1252 | /// You can combine `fold` with `reduce` if you want to produce a |
1253 | /// single value. This is then roughly equivalent to a map/reduce |
1254 | /// combination in effect: |
1255 | /// |
1256 | /// ``` |
1257 | /// use rayon::prelude::*; |
1258 | /// |
1259 | /// let bytes = 0..22_u8; |
1260 | /// let sum = bytes.into_par_iter() |
1261 | /// .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32)) |
1262 | /// .sum::<u32>(); |
1263 | /// |
1264 | /// assert_eq!(sum, (0..22).sum()); // compare to sequential |
1265 | /// ``` |
1266 | fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F> |
1267 | where |
1268 | F: Fn(T, Self::Item) -> T + Sync + Send, |
1269 | ID: Fn() -> T + Sync + Send, |
1270 | T: Send, |
1271 | { |
1272 | Fold::new(self, identity, fold_op) |
1273 | } |
1274 | |
1275 | /// Applies `fold_op` to the given `init` value with each item of this |
1276 | /// iterator, finally producing the value for further use. |
1277 | /// |
1278 | /// This works essentially like `fold(|| init.clone(), fold_op)`, except |
1279 | /// it doesn't require the `init` type to be `Sync`, nor any other form |
1280 | /// of added synchronization. |
1281 | /// |
1282 | /// # Examples |
1283 | /// |
1284 | /// ``` |
1285 | /// use rayon::prelude::*; |
1286 | /// |
1287 | /// let bytes = 0..22_u8; |
1288 | /// let sum = bytes.into_par_iter() |
1289 | /// .fold_with(0_u32, |a: u32, b: u8| a + (b as u32)) |
1290 | /// .sum::<u32>(); |
1291 | /// |
1292 | /// assert_eq!(sum, (0..22).sum()); // compare to sequential |
1293 | /// ``` |
1294 | fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F> |
1295 | where |
1296 | F: Fn(T, Self::Item) -> T + Sync + Send, |
1297 | T: Send + Clone, |
1298 | { |
1299 | FoldWith::new(self, init, fold_op) |
1300 | } |
1301 | |
1302 | /// Performs a fallible parallel fold. |
1303 | /// |
1304 | /// This is a variation of [`fold()`] for operations which can fail with |
1305 | /// `Option::None` or `Result::Err`. The first such failure stops |
1306 | /// processing the local set of items, without affecting other folds in the |
1307 | /// iterator's subdivisions. |
1308 | /// |
1309 | /// Often, `try_fold()` will be followed by [`try_reduce()`] |
1310 | /// for a final reduction and global short-circuiting effect. |
1311 | /// |
1312 | /// [`fold()`]: #method.fold |
1313 | /// [`try_reduce()`]: #method.try_reduce |
1314 | /// |
1315 | /// # Examples |
1316 | /// |
1317 | /// ``` |
1318 | /// use rayon::prelude::*; |
1319 | /// |
1320 | /// let bytes = 0..22_u8; |
1321 | /// let sum = bytes.into_par_iter() |
1322 | /// .try_fold(|| 0_u32, |a: u32, b: u8| a.checked_add(b as u32)) |
1323 | /// .try_reduce(|| 0, u32::checked_add); |
1324 | /// |
1325 | /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential |
1326 | /// ``` |
1327 | fn try_fold<T, R, ID, F>(self, identity: ID, fold_op: F) -> TryFold<Self, R, ID, F> |
1328 | where |
1329 | F: Fn(T, Self::Item) -> R + Sync + Send, |
1330 | ID: Fn() -> T + Sync + Send, |
1331 | R: Try<Output = T> + Send, |
1332 | { |
1333 | TryFold::new(self, identity, fold_op) |
1334 | } |
1335 | |
1336 | /// Performs a fallible parallel fold with a cloneable `init` value. |
1337 | /// |
1338 | /// This combines the `init` semantics of [`fold_with()`] and the failure |
1339 | /// semantics of [`try_fold()`]. |
1340 | /// |
1341 | /// [`fold_with()`]: #method.fold_with |
1342 | /// [`try_fold()`]: #method.try_fold |
1343 | /// |
1344 | /// ``` |
1345 | /// use rayon::prelude::*; |
1346 | /// |
1347 | /// let bytes = 0..22_u8; |
1348 | /// let sum = bytes.into_par_iter() |
1349 | /// .try_fold_with(0_u32, |a: u32, b: u8| a.checked_add(b as u32)) |
1350 | /// .try_reduce(|| 0, u32::checked_add); |
1351 | /// |
1352 | /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential |
1353 | /// ``` |
1354 | fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F> |
1355 | where |
1356 | F: Fn(T, Self::Item) -> R + Sync + Send, |
1357 | R: Try<Output = T> + Send, |
1358 | T: Clone + Send, |
1359 | { |
1360 | TryFoldWith::new(self, init, fold_op) |
1361 | } |
1362 | |
1363 | /// Sums up the items in the iterator. |
1364 | /// |
1365 | /// Note that the order in items will be reduced is not specified, |
1366 | /// so if the `+` operator is not truly [associative] \(as is the |
1367 | /// case for floating point numbers), then the results are not |
1368 | /// fully deterministic. |
1369 | /// |
1370 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
1371 | /// |
1372 | /// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`, |
1373 | /// except that the type of `0` and the `+` operation may vary |
1374 | /// depending on the type of value being produced. |
1375 | /// |
1376 | /// # Examples |
1377 | /// |
1378 | /// ``` |
1379 | /// use rayon::prelude::*; |
1380 | /// |
1381 | /// let a = [1, 5, 7]; |
1382 | /// |
1383 | /// let sum: i32 = a.par_iter().sum(); |
1384 | /// |
1385 | /// assert_eq!(sum, 13); |
1386 | /// ``` |
1387 | fn sum<S>(self) -> S |
1388 | where |
1389 | S: Send + Sum<Self::Item> + Sum<S>, |
1390 | { |
1391 | sum::sum(self) |
1392 | } |
1393 | |
1394 | /// Multiplies all the items in the iterator. |
1395 | /// |
1396 | /// Note that the order in items will be reduced is not specified, |
1397 | /// so if the `*` operator is not truly [associative] \(as is the |
1398 | /// case for floating point numbers), then the results are not |
1399 | /// fully deterministic. |
1400 | /// |
1401 | /// [associative]: https://en.wikipedia.org/wiki/Associative_property |
1402 | /// |
1403 | /// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`, |
1404 | /// except that the type of `1` and the `*` operation may vary |
1405 | /// depending on the type of value being produced. |
1406 | /// |
1407 | /// # Examples |
1408 | /// |
1409 | /// ``` |
1410 | /// use rayon::prelude::*; |
1411 | /// |
1412 | /// fn factorial(n: u32) -> u32 { |
1413 | /// (1..n+1).into_par_iter().product() |
1414 | /// } |
1415 | /// |
1416 | /// assert_eq!(factorial(0), 1); |
1417 | /// assert_eq!(factorial(1), 1); |
1418 | /// assert_eq!(factorial(5), 120); |
1419 | /// ``` |
1420 | fn product<P>(self) -> P |
1421 | where |
1422 | P: Send + Product<Self::Item> + Product<P>, |
1423 | { |
1424 | product::product(self) |
1425 | } |
1426 | |
1427 | /// Computes the minimum of all the items in the iterator. If the |
1428 | /// iterator is empty, `None` is returned; otherwise, `Some(min)` |
1429 | /// is returned. |
1430 | /// |
1431 | /// Note that the order in which the items will be reduced is not |
1432 | /// specified, so if the `Ord` impl is not truly associative, then |
1433 | /// the results are not deterministic. |
1434 | /// |
1435 | /// Basically equivalent to `self.reduce_with(|a, b| cmp::min(a, b))`. |
1436 | /// |
1437 | /// # Examples |
1438 | /// |
1439 | /// ``` |
1440 | /// use rayon::prelude::*; |
1441 | /// |
1442 | /// let a = [45, 74, 32]; |
1443 | /// |
1444 | /// assert_eq!(a.par_iter().min(), Some(&32)); |
1445 | /// |
1446 | /// let b: [i32; 0] = []; |
1447 | /// |
1448 | /// assert_eq!(b.par_iter().min(), None); |
1449 | /// ``` |
1450 | fn min(self) -> Option<Self::Item> |
1451 | where |
1452 | Self::Item: Ord, |
1453 | { |
1454 | self.reduce_with(cmp::min) |
1455 | } |
1456 | |
1457 | /// Computes the minimum of all the items in the iterator with respect to |
1458 | /// the given comparison function. If the iterator is empty, `None` is |
1459 | /// returned; otherwise, `Some(min)` is returned. |
1460 | /// |
1461 | /// Note that the order in which the items will be reduced is not |
1462 | /// specified, so if the comparison function is not associative, then |
1463 | /// the results are not deterministic. |
1464 | /// |
1465 | /// # Examples |
1466 | /// |
1467 | /// ``` |
1468 | /// use rayon::prelude::*; |
1469 | /// |
1470 | /// let a = [-3_i32, 77, 53, 240, -1]; |
1471 | /// |
1472 | /// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3)); |
1473 | /// ``` |
1474 | fn min_by<F>(self, f: F) -> Option<Self::Item> |
1475 | where |
1476 | F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering, |
1477 | { |
1478 | fn min<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T { |
1479 | move |a, b| match f(&a, &b) { |
1480 | Ordering::Greater => b, |
1481 | _ => a, |
1482 | } |
1483 | } |
1484 | |
1485 | self.reduce_with(min(f)) |
1486 | } |
1487 | |
1488 | /// Computes the item that yields the minimum value for the given |
1489 | /// function. If the iterator is empty, `None` is returned; |
1490 | /// otherwise, `Some(item)` is returned. |
1491 | /// |
1492 | /// Note that the order in which the items will be reduced is not |
1493 | /// specified, so if the `Ord` impl is not truly associative, then |
1494 | /// the results are not deterministic. |
1495 | /// |
1496 | /// # Examples |
1497 | /// |
1498 | /// ``` |
1499 | /// use rayon::prelude::*; |
1500 | /// |
1501 | /// let a = [-3_i32, 34, 2, 5, -10, -3, -23]; |
1502 | /// |
1503 | /// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2)); |
1504 | /// ``` |
1505 | fn min_by_key<K, F>(self, f: F) -> Option<Self::Item> |
1506 | where |
1507 | K: Ord + Send, |
1508 | F: Sync + Send + Fn(&Self::Item) -> K, |
1509 | { |
1510 | fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) { |
1511 | move |x| (f(&x), x) |
1512 | } |
1513 | |
1514 | fn min_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) { |
1515 | match (a.0).cmp(&b.0) { |
1516 | Ordering::Greater => b, |
1517 | _ => a, |
1518 | } |
1519 | } |
1520 | |
1521 | let (_, x) = self.map(key(f)).reduce_with(min_key)?; |
1522 | Some(x) |
1523 | } |
1524 | |
1525 | /// Computes the maximum of all the items in the iterator. If the |
1526 | /// iterator is empty, `None` is returned; otherwise, `Some(max)` |
1527 | /// is returned. |
1528 | /// |
1529 | /// Note that the order in which the items will be reduced is not |
1530 | /// specified, so if the `Ord` impl is not truly associative, then |
1531 | /// the results are not deterministic. |
1532 | /// |
1533 | /// Basically equivalent to `self.reduce_with(|a, b| cmp::max(a, b))`. |
1534 | /// |
1535 | /// # Examples |
1536 | /// |
1537 | /// ``` |
1538 | /// use rayon::prelude::*; |
1539 | /// |
1540 | /// let a = [45, 74, 32]; |
1541 | /// |
1542 | /// assert_eq!(a.par_iter().max(), Some(&74)); |
1543 | /// |
1544 | /// let b: [i32; 0] = []; |
1545 | /// |
1546 | /// assert_eq!(b.par_iter().max(), None); |
1547 | /// ``` |
1548 | fn max(self) -> Option<Self::Item> |
1549 | where |
1550 | Self::Item: Ord, |
1551 | { |
1552 | self.reduce_with(cmp::max) |
1553 | } |
1554 | |
1555 | /// Computes the maximum of all the items in the iterator with respect to |
1556 | /// the given comparison function. If the iterator is empty, `None` is |
1557 | /// returned; otherwise, `Some(max)` is returned. |
1558 | /// |
1559 | /// Note that the order in which the items will be reduced is not |
1560 | /// specified, so if the comparison function is not associative, then |
1561 | /// the results are not deterministic. |
1562 | /// |
1563 | /// # Examples |
1564 | /// |
1565 | /// ``` |
1566 | /// use rayon::prelude::*; |
1567 | /// |
1568 | /// let a = [-3_i32, 77, 53, 240, -1]; |
1569 | /// |
1570 | /// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240)); |
1571 | /// ``` |
1572 | fn max_by<F>(self, f: F) -> Option<Self::Item> |
1573 | where |
1574 | F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering, |
1575 | { |
1576 | fn max<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T { |
1577 | move |a, b| match f(&a, &b) { |
1578 | Ordering::Greater => a, |
1579 | _ => b, |
1580 | } |
1581 | } |
1582 | |
1583 | self.reduce_with(max(f)) |
1584 | } |
1585 | |
1586 | /// Computes the item that yields the maximum value for the given |
1587 | /// function. If the iterator is empty, `None` is returned; |
1588 | /// otherwise, `Some(item)` is returned. |
1589 | /// |
1590 | /// Note that the order in which the items will be reduced is not |
1591 | /// specified, so if the `Ord` impl is not truly associative, then |
1592 | /// the results are not deterministic. |
1593 | /// |
1594 | /// # Examples |
1595 | /// |
1596 | /// ``` |
1597 | /// use rayon::prelude::*; |
1598 | /// |
1599 | /// let a = [-3_i32, 34, 2, 5, -10, -3, -23]; |
1600 | /// |
1601 | /// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34)); |
1602 | /// ``` |
1603 | fn max_by_key<K, F>(self, f: F) -> Option<Self::Item> |
1604 | where |
1605 | K: Ord + Send, |
1606 | F: Sync + Send + Fn(&Self::Item) -> K, |
1607 | { |
1608 | fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) { |
1609 | move |x| (f(&x), x) |
1610 | } |
1611 | |
1612 | fn max_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) { |
1613 | match (a.0).cmp(&b.0) { |
1614 | Ordering::Greater => a, |
1615 | _ => b, |
1616 | } |
1617 | } |
1618 | |
1619 | let (_, x) = self.map(key(f)).reduce_with(max_key)?; |
1620 | Some(x) |
1621 | } |
1622 | |
1623 | /// Takes two iterators and creates a new iterator over both. |
1624 | /// |
1625 | /// # Examples |
1626 | /// |
1627 | /// ``` |
1628 | /// use rayon::prelude::*; |
1629 | /// |
1630 | /// let a = [0, 1, 2]; |
1631 | /// let b = [9, 8, 7]; |
1632 | /// |
1633 | /// let par_iter = a.par_iter().chain(b.par_iter()); |
1634 | /// |
1635 | /// let chained: Vec<_> = par_iter.cloned().collect(); |
1636 | /// |
1637 | /// assert_eq!(&chained[..], &[0, 1, 2, 9, 8, 7]); |
1638 | /// ``` |
1639 | fn chain<C>(self, chain: C) -> Chain<Self, C::Iter> |
1640 | where |
1641 | C: IntoParallelIterator<Item = Self::Item>, |
1642 | { |
1643 | Chain::new(self, chain.into_par_iter()) |
1644 | } |
1645 | |
1646 | /// Searches for **some** item in the parallel iterator that |
1647 | /// matches the given predicate and returns it. This operation |
1648 | /// is similar to [`find` on sequential iterators][find] but |
1649 | /// the item returned may not be the **first** one in the parallel |
1650 | /// sequence which matches, since we search the entire sequence in parallel. |
1651 | /// |
1652 | /// Once a match is found, we will attempt to stop processing |
1653 | /// the rest of the items in the iterator as soon as possible |
1654 | /// (just as `find` stops iterating once a match is found). |
1655 | /// |
1656 | /// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find |
1657 | /// |
1658 | /// # Examples |
1659 | /// |
1660 | /// ``` |
1661 | /// use rayon::prelude::*; |
1662 | /// |
1663 | /// let a = [1, 2, 3, 3]; |
1664 | /// |
1665 | /// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3)); |
1666 | /// |
1667 | /// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None); |
1668 | /// ``` |
1669 | fn find_any<P>(self, predicate: P) -> Option<Self::Item> |
1670 | where |
1671 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1672 | { |
1673 | find::find(self, predicate) |
1674 | } |
1675 | |
1676 | /// Searches for the sequentially **first** item in the parallel iterator |
1677 | /// that matches the given predicate and returns it. |
1678 | /// |
1679 | /// Once a match is found, all attempts to the right of the match |
1680 | /// will be stopped, while attempts to the left must continue in case |
1681 | /// an earlier match is found. |
1682 | /// |
1683 | /// For added performance, you might consider using `find_first` in conjunction with |
1684 | /// [`by_exponential_blocks()`][IndexedParallelIterator::by_exponential_blocks]. |
1685 | /// |
1686 | /// Note that not all parallel iterators have a useful order, much like |
1687 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
1688 | /// just want the first match that discovered anywhere in the iterator, |
1689 | /// `find_any` is a better choice. |
1690 | /// |
1691 | /// # Examples |
1692 | /// |
1693 | /// ``` |
1694 | /// use rayon::prelude::*; |
1695 | /// |
1696 | /// let a = [1, 2, 3, 3]; |
1697 | /// |
1698 | /// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3)); |
1699 | /// |
1700 | /// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None); |
1701 | /// ``` |
1702 | fn find_first<P>(self, predicate: P) -> Option<Self::Item> |
1703 | where |
1704 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1705 | { |
1706 | find_first_last::find_first(self, predicate) |
1707 | } |
1708 | |
1709 | /// Searches for the sequentially **last** item in the parallel iterator |
1710 | /// that matches the given predicate and returns it. |
1711 | /// |
1712 | /// Once a match is found, all attempts to the left of the match |
1713 | /// will be stopped, while attempts to the right must continue in case |
1714 | /// a later match is found. |
1715 | /// |
1716 | /// Note that not all parallel iterators have a useful order, much like |
1717 | /// sequential `HashMap` iteration, so "last" may be nebulous. When the |
1718 | /// order doesn't actually matter to you, `find_any` is a better choice. |
1719 | /// |
1720 | /// # Examples |
1721 | /// |
1722 | /// ``` |
1723 | /// use rayon::prelude::*; |
1724 | /// |
1725 | /// let a = [1, 2, 3, 3]; |
1726 | /// |
1727 | /// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3)); |
1728 | /// |
1729 | /// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None); |
1730 | /// ``` |
1731 | fn find_last<P>(self, predicate: P) -> Option<Self::Item> |
1732 | where |
1733 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1734 | { |
1735 | find_first_last::find_last(self, predicate) |
1736 | } |
1737 | |
1738 | /// Applies the given predicate to the items in the parallel iterator |
1739 | /// and returns **any** non-None result of the map operation. |
1740 | /// |
1741 | /// Once a non-None value is produced from the map operation, we will |
1742 | /// attempt to stop processing the rest of the items in the iterator |
1743 | /// as soon as possible. |
1744 | /// |
1745 | /// Note that this method only returns **some** item in the parallel |
1746 | /// iterator that is not None from the map predicate. The item returned |
1747 | /// may not be the **first** non-None value produced in the parallel |
1748 | /// sequence, since the entire sequence is mapped over in parallel. |
1749 | /// |
1750 | /// # Examples |
1751 | /// |
1752 | /// ``` |
1753 | /// use rayon::prelude::*; |
1754 | /// |
1755 | /// let c = ["lol" , "NaN" , "5" , "5" ]; |
1756 | /// |
1757 | /// let found_number = c.par_iter().find_map_any(|s| s.parse().ok()); |
1758 | /// |
1759 | /// assert_eq!(found_number, Some(5)); |
1760 | /// ``` |
1761 | fn find_map_any<P, R>(self, predicate: P) -> Option<R> |
1762 | where |
1763 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
1764 | R: Send, |
1765 | { |
1766 | fn yes<T>(_: &T) -> bool { |
1767 | true |
1768 | } |
1769 | self.filter_map(predicate).find_any(yes) |
1770 | } |
1771 | |
1772 | /// Applies the given predicate to the items in the parallel iterator and |
1773 | /// returns the sequentially **first** non-None result of the map operation. |
1774 | /// |
1775 | /// Once a non-None value is produced from the map operation, all attempts |
1776 | /// to the right of the match will be stopped, while attempts to the left |
1777 | /// must continue in case an earlier match is found. |
1778 | /// |
1779 | /// Note that not all parallel iterators have a useful order, much like |
1780 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
1781 | /// just want the first non-None value discovered anywhere in the iterator, |
1782 | /// `find_map_any` is a better choice. |
1783 | /// |
1784 | /// # Examples |
1785 | /// |
1786 | /// ``` |
1787 | /// use rayon::prelude::*; |
1788 | /// |
1789 | /// let c = ["lol" , "NaN" , "2" , "5" ]; |
1790 | /// |
1791 | /// let first_number = c.par_iter().find_map_first(|s| s.parse().ok()); |
1792 | /// |
1793 | /// assert_eq!(first_number, Some(2)); |
1794 | /// ``` |
1795 | fn find_map_first<P, R>(self, predicate: P) -> Option<R> |
1796 | where |
1797 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
1798 | R: Send, |
1799 | { |
1800 | fn yes<T>(_: &T) -> bool { |
1801 | true |
1802 | } |
1803 | self.filter_map(predicate).find_first(yes) |
1804 | } |
1805 | |
1806 | /// Applies the given predicate to the items in the parallel iterator and |
1807 | /// returns the sequentially **last** non-None result of the map operation. |
1808 | /// |
1809 | /// Once a non-None value is produced from the map operation, all attempts |
1810 | /// to the left of the match will be stopped, while attempts to the right |
1811 | /// must continue in case a later match is found. |
1812 | /// |
1813 | /// Note that not all parallel iterators have a useful order, much like |
1814 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
1815 | /// just want the first non-None value discovered anywhere in the iterator, |
1816 | /// `find_map_any` is a better choice. |
1817 | /// |
1818 | /// # Examples |
1819 | /// |
1820 | /// ``` |
1821 | /// use rayon::prelude::*; |
1822 | /// |
1823 | /// let c = ["lol" , "NaN" , "2" , "5" ]; |
1824 | /// |
1825 | /// let last_number = c.par_iter().find_map_last(|s| s.parse().ok()); |
1826 | /// |
1827 | /// assert_eq!(last_number, Some(5)); |
1828 | /// ``` |
1829 | fn find_map_last<P, R>(self, predicate: P) -> Option<R> |
1830 | where |
1831 | P: Fn(Self::Item) -> Option<R> + Sync + Send, |
1832 | R: Send, |
1833 | { |
1834 | fn yes<T>(_: &T) -> bool { |
1835 | true |
1836 | } |
1837 | self.filter_map(predicate).find_last(yes) |
1838 | } |
1839 | |
1840 | #[doc (hidden)] |
1841 | #[deprecated (note = "parallel `find` does not search in order -- use `find_any`, \\ |
1842 | `find_first`, or `find_last`" )] |
1843 | fn find<P>(self, predicate: P) -> Option<Self::Item> |
1844 | where |
1845 | P: Fn(&Self::Item) -> bool + Sync + Send, |
1846 | { |
1847 | self.find_any(predicate) |
1848 | } |
1849 | |
1850 | /// Searches for **some** item in the parallel iterator that |
1851 | /// matches the given predicate, and if so returns true. Once |
1852 | /// a match is found, we'll attempt to stop process the rest |
1853 | /// of the items. Proving that there's no match, returning false, |
1854 | /// does require visiting every item. |
1855 | /// |
1856 | /// # Examples |
1857 | /// |
1858 | /// ``` |
1859 | /// use rayon::prelude::*; |
1860 | /// |
1861 | /// let a = [0, 12, 3, 4, 0, 23, 0]; |
1862 | /// |
1863 | /// let is_valid = a.par_iter().any(|&x| x > 10); |
1864 | /// |
1865 | /// assert!(is_valid); |
1866 | /// ``` |
1867 | fn any<P>(self, predicate: P) -> bool |
1868 | where |
1869 | P: Fn(Self::Item) -> bool + Sync + Send, |
1870 | { |
1871 | self.map(predicate).find_any(bool::clone).is_some() |
1872 | } |
1873 | |
1874 | /// Tests that every item in the parallel iterator matches the given |
1875 | /// predicate, and if so returns true. If a counter-example is found, |
1876 | /// we'll attempt to stop processing more items, then return false. |
1877 | /// |
1878 | /// # Examples |
1879 | /// |
1880 | /// ``` |
1881 | /// use rayon::prelude::*; |
1882 | /// |
1883 | /// let a = [0, 12, 3, 4, 0, 23, 0]; |
1884 | /// |
1885 | /// let is_valid = a.par_iter().all(|&x| x > 10); |
1886 | /// |
1887 | /// assert!(!is_valid); |
1888 | /// ``` |
1889 | fn all<P>(self, predicate: P) -> bool |
1890 | where |
1891 | P: Fn(Self::Item) -> bool + Sync + Send, |
1892 | { |
1893 | #[inline ] |
1894 | fn is_false(x: &bool) -> bool { |
1895 | !x |
1896 | } |
1897 | |
1898 | self.map(predicate).find_any(is_false).is_none() |
1899 | } |
1900 | |
1901 | /// Creates an iterator over the `Some` items of this iterator, halting |
1902 | /// as soon as any `None` is found. |
1903 | /// |
1904 | /// # Examples |
1905 | /// |
1906 | /// ``` |
1907 | /// use rayon::prelude::*; |
1908 | /// use std::sync::atomic::{AtomicUsize, Ordering}; |
1909 | /// |
1910 | /// let counter = AtomicUsize::new(0); |
1911 | /// let value = (0_i32..2048) |
1912 | /// .into_par_iter() |
1913 | /// .map(|x| { |
1914 | /// counter.fetch_add(1, Ordering::SeqCst); |
1915 | /// if x < 1024 { Some(x) } else { None } |
1916 | /// }) |
1917 | /// .while_some() |
1918 | /// .max(); |
1919 | /// |
1920 | /// assert!(value < Some(1024)); |
1921 | /// assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
1922 | /// ``` |
1923 | fn while_some<T>(self) -> WhileSome<Self> |
1924 | where |
1925 | Self: ParallelIterator<Item = Option<T>>, |
1926 | T: Send, |
1927 | { |
1928 | WhileSome::new(self) |
1929 | } |
1930 | |
1931 | /// Wraps an iterator with a fuse in case of panics, to halt all threads |
1932 | /// as soon as possible. |
1933 | /// |
1934 | /// Panics within parallel iterators are always propagated to the caller, |
1935 | /// but they don't always halt the rest of the iterator right away, due to |
1936 | /// the internal semantics of [`join`]. This adaptor makes a greater effort |
1937 | /// to stop processing other items sooner, with the cost of additional |
1938 | /// synchronization overhead, which may also inhibit some optimizations. |
1939 | /// |
1940 | /// [`join`]: ../fn.join.html#panics |
1941 | /// |
1942 | /// # Examples |
1943 | /// |
1944 | /// If this code didn't use `panic_fuse()`, it would continue processing |
1945 | /// many more items in other threads (with long sleep delays) before the |
1946 | /// panic is finally propagated. |
1947 | /// |
1948 | /// ```should_panic |
1949 | /// use rayon::prelude::*; |
1950 | /// use std::{thread, time}; |
1951 | /// |
1952 | /// (0..1_000_000) |
1953 | /// .into_par_iter() |
1954 | /// .panic_fuse() |
1955 | /// .for_each(|i| { |
1956 | /// // simulate some work |
1957 | /// thread::sleep(time::Duration::from_secs(1)); |
1958 | /// assert!(i > 0); // oops! |
1959 | /// }); |
1960 | /// ``` |
1961 | fn panic_fuse(self) -> PanicFuse<Self> { |
1962 | PanicFuse::new(self) |
1963 | } |
1964 | |
1965 | /// Creates a fresh collection containing all the elements produced |
1966 | /// by this parallel iterator. |
1967 | /// |
1968 | /// You may prefer [`collect_into_vec()`] implemented on |
1969 | /// [`IndexedParallelIterator`], if your underlying iterator also implements |
1970 | /// it. [`collect_into_vec()`] allocates efficiently with precise knowledge |
1971 | /// of how many elements the iterator contains, and even allows you to reuse |
1972 | /// an existing vector's backing store rather than allocating a fresh vector. |
1973 | /// |
1974 | /// See also [`collect_vec_list()`][Self::collect_vec_list] for collecting |
1975 | /// into a `LinkedList<Vec<T>>`. |
1976 | /// |
1977 | /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html |
1978 | /// [`collect_into_vec()`]: |
1979 | /// trait.IndexedParallelIterator.html#method.collect_into_vec |
1980 | /// |
1981 | /// # Examples |
1982 | /// |
1983 | /// ``` |
1984 | /// use rayon::prelude::*; |
1985 | /// |
1986 | /// let sync_vec: Vec<_> = (0..100).into_iter().collect(); |
1987 | /// |
1988 | /// let async_vec: Vec<_> = (0..100).into_par_iter().collect(); |
1989 | /// |
1990 | /// assert_eq!(sync_vec, async_vec); |
1991 | /// ``` |
1992 | /// |
1993 | /// You can collect a pair of collections like [`unzip`](#method.unzip) |
1994 | /// for paired items: |
1995 | /// |
1996 | /// ``` |
1997 | /// use rayon::prelude::*; |
1998 | /// |
1999 | /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)]; |
2000 | /// let (first, second): (Vec<_>, Vec<_>) = a.into_par_iter().collect(); |
2001 | /// |
2002 | /// assert_eq!(first, [0, 1, 2, 3]); |
2003 | /// assert_eq!(second, [1, 2, 3, 4]); |
2004 | /// ``` |
2005 | /// |
2006 | /// Or like [`partition_map`](#method.partition_map) for `Either` items: |
2007 | /// |
2008 | /// ``` |
2009 | /// use rayon::prelude::*; |
2010 | /// use rayon::iter::Either; |
2011 | /// |
2012 | /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().map(|x| { |
2013 | /// if x % 2 == 0 { |
2014 | /// Either::Left(x * 4) |
2015 | /// } else { |
2016 | /// Either::Right(x * 3) |
2017 | /// } |
2018 | /// }).collect(); |
2019 | /// |
2020 | /// assert_eq!(left, [0, 8, 16, 24]); |
2021 | /// assert_eq!(right, [3, 9, 15, 21]); |
2022 | /// ``` |
2023 | /// |
2024 | /// You can even collect an arbitrarily-nested combination of pairs and `Either`: |
2025 | /// |
2026 | /// ``` |
2027 | /// use rayon::prelude::*; |
2028 | /// use rayon::iter::Either; |
2029 | /// |
2030 | /// let (first, (left, right)): (Vec<_>, (Vec<_>, Vec<_>)) |
2031 | /// = (0..8).into_par_iter().map(|x| { |
2032 | /// if x % 2 == 0 { |
2033 | /// (x, Either::Left(x * 4)) |
2034 | /// } else { |
2035 | /// (-x, Either::Right(x * 3)) |
2036 | /// } |
2037 | /// }).collect(); |
2038 | /// |
2039 | /// assert_eq!(first, [0, -1, 2, -3, 4, -5, 6, -7]); |
2040 | /// assert_eq!(left, [0, 8, 16, 24]); |
2041 | /// assert_eq!(right, [3, 9, 15, 21]); |
2042 | /// ``` |
2043 | /// |
2044 | /// All of that can _also_ be combined with short-circuiting collection of |
2045 | /// `Result` or `Option` types: |
2046 | /// |
2047 | /// ``` |
2048 | /// use rayon::prelude::*; |
2049 | /// use rayon::iter::Either; |
2050 | /// |
2051 | /// let result: Result<(Vec<_>, (Vec<_>, Vec<_>)), _> |
2052 | /// = (0..8).into_par_iter().map(|x| { |
2053 | /// if x > 5 { |
2054 | /// Err(x) |
2055 | /// } else if x % 2 == 0 { |
2056 | /// Ok((x, Either::Left(x * 4))) |
2057 | /// } else { |
2058 | /// Ok((-x, Either::Right(x * 3))) |
2059 | /// } |
2060 | /// }).collect(); |
2061 | /// |
2062 | /// let error = result.unwrap_err(); |
2063 | /// assert!(error == 6 || error == 7); |
2064 | /// ``` |
2065 | fn collect<C>(self) -> C |
2066 | where |
2067 | C: FromParallelIterator<Self::Item>, |
2068 | { |
2069 | C::from_par_iter(self) |
2070 | } |
2071 | |
2072 | /// Unzips the items of a parallel iterator into a pair of arbitrary |
2073 | /// `ParallelExtend` containers. |
2074 | /// |
2075 | /// You may prefer to use `unzip_into_vecs()`, which allocates more |
2076 | /// efficiently with precise knowledge of how many elements the |
2077 | /// iterator contains, and even allows you to reuse existing |
2078 | /// vectors' backing stores rather than allocating fresh vectors. |
2079 | /// |
2080 | /// # Examples |
2081 | /// |
2082 | /// ``` |
2083 | /// use rayon::prelude::*; |
2084 | /// |
2085 | /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)]; |
2086 | /// |
2087 | /// let (left, right): (Vec<_>, Vec<_>) = a.par_iter().cloned().unzip(); |
2088 | /// |
2089 | /// assert_eq!(left, [0, 1, 2, 3]); |
2090 | /// assert_eq!(right, [1, 2, 3, 4]); |
2091 | /// ``` |
2092 | /// |
2093 | /// Nested pairs can be unzipped too. |
2094 | /// |
2095 | /// ``` |
2096 | /// use rayon::prelude::*; |
2097 | /// |
2098 | /// let (values, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = (0..4).into_par_iter() |
2099 | /// .map(|i| (i, (i * i, i * i * i))) |
2100 | /// .unzip(); |
2101 | /// |
2102 | /// assert_eq!(values, [0, 1, 2, 3]); |
2103 | /// assert_eq!(squares, [0, 1, 4, 9]); |
2104 | /// assert_eq!(cubes, [0, 1, 8, 27]); |
2105 | /// ``` |
2106 | fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) |
2107 | where |
2108 | Self: ParallelIterator<Item = (A, B)>, |
2109 | FromA: Default + Send + ParallelExtend<A>, |
2110 | FromB: Default + Send + ParallelExtend<B>, |
2111 | A: Send, |
2112 | B: Send, |
2113 | { |
2114 | unzip::unzip(self) |
2115 | } |
2116 | |
2117 | /// Partitions the items of a parallel iterator into a pair of arbitrary |
2118 | /// `ParallelExtend` containers. Items for which the `predicate` returns |
2119 | /// true go into the first container, and the rest go into the second. |
2120 | /// |
2121 | /// Note: unlike the standard `Iterator::partition`, this allows distinct |
2122 | /// collection types for the left and right items. This is more flexible, |
2123 | /// but may require new type annotations when converting sequential code |
2124 | /// that used type inference assuming the two were the same. |
2125 | /// |
2126 | /// # Examples |
2127 | /// |
2128 | /// ``` |
2129 | /// use rayon::prelude::*; |
2130 | /// |
2131 | /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().partition(|x| x % 2 == 0); |
2132 | /// |
2133 | /// assert_eq!(left, [0, 2, 4, 6]); |
2134 | /// assert_eq!(right, [1, 3, 5, 7]); |
2135 | /// ``` |
2136 | fn partition<A, B, P>(self, predicate: P) -> (A, B) |
2137 | where |
2138 | A: Default + Send + ParallelExtend<Self::Item>, |
2139 | B: Default + Send + ParallelExtend<Self::Item>, |
2140 | P: Fn(&Self::Item) -> bool + Sync + Send, |
2141 | { |
2142 | unzip::partition(self, predicate) |
2143 | } |
2144 | |
2145 | /// Partitions and maps the items of a parallel iterator into a pair of |
2146 | /// arbitrary `ParallelExtend` containers. `Either::Left` items go into |
2147 | /// the first container, and `Either::Right` items go into the second. |
2148 | /// |
2149 | /// # Examples |
2150 | /// |
2151 | /// ``` |
2152 | /// use rayon::prelude::*; |
2153 | /// use rayon::iter::Either; |
2154 | /// |
2155 | /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter() |
2156 | /// .partition_map(|x| { |
2157 | /// if x % 2 == 0 { |
2158 | /// Either::Left(x * 4) |
2159 | /// } else { |
2160 | /// Either::Right(x * 3) |
2161 | /// } |
2162 | /// }); |
2163 | /// |
2164 | /// assert_eq!(left, [0, 8, 16, 24]); |
2165 | /// assert_eq!(right, [3, 9, 15, 21]); |
2166 | /// ``` |
2167 | /// |
2168 | /// Nested `Either` enums can be split as well. |
2169 | /// |
2170 | /// ``` |
2171 | /// use rayon::prelude::*; |
2172 | /// use rayon::iter::Either::*; |
2173 | /// |
2174 | /// let ((fizzbuzz, fizz), (buzz, other)): ((Vec<_>, Vec<_>), (Vec<_>, Vec<_>)) = (1..20) |
2175 | /// .into_par_iter() |
2176 | /// .partition_map(|x| match (x % 3, x % 5) { |
2177 | /// (0, 0) => Left(Left(x)), |
2178 | /// (0, _) => Left(Right(x)), |
2179 | /// (_, 0) => Right(Left(x)), |
2180 | /// (_, _) => Right(Right(x)), |
2181 | /// }); |
2182 | /// |
2183 | /// assert_eq!(fizzbuzz, [15]); |
2184 | /// assert_eq!(fizz, [3, 6, 9, 12, 18]); |
2185 | /// assert_eq!(buzz, [5, 10]); |
2186 | /// assert_eq!(other, [1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19]); |
2187 | /// ``` |
2188 | fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B) |
2189 | where |
2190 | A: Default + Send + ParallelExtend<L>, |
2191 | B: Default + Send + ParallelExtend<R>, |
2192 | P: Fn(Self::Item) -> Either<L, R> + Sync + Send, |
2193 | L: Send, |
2194 | R: Send, |
2195 | { |
2196 | unzip::partition_map(self, predicate) |
2197 | } |
2198 | |
2199 | /// Intersperses clones of an element between items of this iterator. |
2200 | /// |
2201 | /// # Examples |
2202 | /// |
2203 | /// ``` |
2204 | /// use rayon::prelude::*; |
2205 | /// |
2206 | /// let x = vec![1, 2, 3]; |
2207 | /// let r: Vec<_> = x.into_par_iter().intersperse(-1).collect(); |
2208 | /// |
2209 | /// assert_eq!(r, vec![1, -1, 2, -1, 3]); |
2210 | /// ``` |
2211 | fn intersperse(self, element: Self::Item) -> Intersperse<Self> |
2212 | where |
2213 | Self::Item: Clone, |
2214 | { |
2215 | Intersperse::new(self, element) |
2216 | } |
2217 | |
2218 | /// Creates an iterator that yields `n` elements from *anywhere* in the original iterator. |
2219 | /// |
2220 | /// This is similar to [`IndexedParallelIterator::take`] without being |
2221 | /// constrained to the "first" `n` of the original iterator order. The |
2222 | /// taken items will still maintain their relative order where that is |
2223 | /// visible in `collect`, `reduce`, and similar outputs. |
2224 | /// |
2225 | /// # Examples |
2226 | /// |
2227 | /// ``` |
2228 | /// use rayon::prelude::*; |
2229 | /// |
2230 | /// let result: Vec<_> = (0..100) |
2231 | /// .into_par_iter() |
2232 | /// .filter(|&x| x % 2 == 0) |
2233 | /// .take_any(5) |
2234 | /// .collect(); |
2235 | /// |
2236 | /// assert_eq!(result.len(), 5); |
2237 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2238 | /// ``` |
2239 | fn take_any(self, n: usize) -> TakeAny<Self> { |
2240 | TakeAny::new(self, n) |
2241 | } |
2242 | |
2243 | /// Creates an iterator that skips `n` elements from *anywhere* in the original iterator. |
2244 | /// |
2245 | /// This is similar to [`IndexedParallelIterator::skip`] without being |
2246 | /// constrained to the "first" `n` of the original iterator order. The |
2247 | /// remaining items will still maintain their relative order where that is |
2248 | /// visible in `collect`, `reduce`, and similar outputs. |
2249 | /// |
2250 | /// # Examples |
2251 | /// |
2252 | /// ``` |
2253 | /// use rayon::prelude::*; |
2254 | /// |
2255 | /// let result: Vec<_> = (0..100) |
2256 | /// .into_par_iter() |
2257 | /// .filter(|&x| x % 2 == 0) |
2258 | /// .skip_any(5) |
2259 | /// .collect(); |
2260 | /// |
2261 | /// assert_eq!(result.len(), 45); |
2262 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2263 | /// ``` |
2264 | fn skip_any(self, n: usize) -> SkipAny<Self> { |
2265 | SkipAny::new(self, n) |
2266 | } |
2267 | |
2268 | /// Creates an iterator that takes elements from *anywhere* in the original iterator |
2269 | /// until the given `predicate` returns `false`. |
2270 | /// |
2271 | /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a |
2272 | /// global condition unrelated to the item itself, or some combination thereof. |
2273 | /// |
2274 | /// If parallel calls to the `predicate` race and give different results, then the |
2275 | /// `true` results will still take those particular items, while respecting the `false` |
2276 | /// result from elsewhere to skip any further items. |
2277 | /// |
2278 | /// This is similar to [`Iterator::take_while`] without being constrained to the original |
2279 | /// iterator order. The taken items will still maintain their relative order where that is |
2280 | /// visible in `collect`, `reduce`, and similar outputs. |
2281 | /// |
2282 | /// # Examples |
2283 | /// |
2284 | /// ``` |
2285 | /// use rayon::prelude::*; |
2286 | /// |
2287 | /// let result: Vec<_> = (0..100) |
2288 | /// .into_par_iter() |
2289 | /// .take_any_while(|x| *x < 50) |
2290 | /// .collect(); |
2291 | /// |
2292 | /// assert!(result.len() <= 50); |
2293 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2294 | /// ``` |
2295 | /// |
2296 | /// ``` |
2297 | /// use rayon::prelude::*; |
2298 | /// use std::sync::atomic::AtomicUsize; |
2299 | /// use std::sync::atomic::Ordering::Relaxed; |
2300 | /// |
2301 | /// // Collect any group of items that sum <= 1000 |
2302 | /// let quota = AtomicUsize::new(1000); |
2303 | /// let result: Vec<_> = (0_usize..100) |
2304 | /// .into_par_iter() |
2305 | /// .take_any_while(|&x| { |
2306 | /// quota.fetch_update(Relaxed, Relaxed, |q| q.checked_sub(x)) |
2307 | /// .is_ok() |
2308 | /// }) |
2309 | /// .collect(); |
2310 | /// |
2311 | /// let sum = result.iter().sum::<usize>(); |
2312 | /// assert!(matches!(sum, 902..=1000)); |
2313 | /// ``` |
2314 | fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P> |
2315 | where |
2316 | P: Fn(&Self::Item) -> bool + Sync + Send, |
2317 | { |
2318 | TakeAnyWhile::new(self, predicate) |
2319 | } |
2320 | |
2321 | /// Creates an iterator that skips elements from *anywhere* in the original iterator |
2322 | /// until the given `predicate` returns `false`. |
2323 | /// |
2324 | /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a |
2325 | /// global condition unrelated to the item itself, or some combination thereof. |
2326 | /// |
2327 | /// If parallel calls to the `predicate` race and give different results, then the |
2328 | /// `true` results will still skip those particular items, while respecting the `false` |
2329 | /// result from elsewhere to skip any further items. |
2330 | /// |
2331 | /// This is similar to [`Iterator::skip_while`] without being constrained to the original |
2332 | /// iterator order. The remaining items will still maintain their relative order where that is |
2333 | /// visible in `collect`, `reduce`, and similar outputs. |
2334 | /// |
2335 | /// # Examples |
2336 | /// |
2337 | /// ``` |
2338 | /// use rayon::prelude::*; |
2339 | /// |
2340 | /// let result: Vec<_> = (0..100) |
2341 | /// .into_par_iter() |
2342 | /// .skip_any_while(|x| *x < 50) |
2343 | /// .collect(); |
2344 | /// |
2345 | /// assert!(result.len() >= 50); |
2346 | /// assert!(result.windows(2).all(|w| w[0] < w[1])); |
2347 | /// ``` |
2348 | fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P> |
2349 | where |
2350 | P: Fn(&Self::Item) -> bool + Sync + Send, |
2351 | { |
2352 | SkipAnyWhile::new(self, predicate) |
2353 | } |
2354 | |
2355 | /// Collects this iterator into a linked list of vectors. |
2356 | /// |
2357 | /// This is useful when you need to condense a parallel iterator into a collection, |
2358 | /// but have no specific requirements for what that collection should be. If you |
2359 | /// plan to store the collection longer-term, `Vec<T>` is, as always, likely the |
2360 | /// best default choice, despite the overhead that comes from concatenating each |
2361 | /// vector. Or, if this is an `IndexedParallelIterator`, you should also prefer to |
2362 | /// just collect to a `Vec<T>`. |
2363 | /// |
2364 | /// Internally, most [`FromParallelIterator`]/[`ParallelExtend`] implementations |
2365 | /// use this strategy; each job collecting their chunk of the iterator to a `Vec<T>` |
2366 | /// and those chunks getting merged into a `LinkedList`, before then extending the |
2367 | /// collection with each vector. This is a very efficient way to collect an |
2368 | /// unindexed parallel iterator, without much intermediate data movement. |
2369 | /// |
2370 | /// # Examples |
2371 | /// |
2372 | /// ``` |
2373 | /// # use std::collections::LinkedList; |
2374 | /// use rayon::prelude::*; |
2375 | /// |
2376 | /// let result: LinkedList<Vec<_>> = (0..=100) |
2377 | /// .into_par_iter() |
2378 | /// .filter(|x| x % 2 == 0) |
2379 | /// .flat_map(|x| 0..x) |
2380 | /// .collect_vec_list(); |
2381 | /// |
2382 | /// // `par_iter.collect_vec_list().into_iter().flatten()` turns |
2383 | /// // a parallel iterator into a serial one |
2384 | /// let total_len = result.into_iter().flatten().count(); |
2385 | /// assert_eq!(total_len, 2550); |
2386 | /// ``` |
2387 | fn collect_vec_list(self) -> LinkedList<Vec<Self::Item>> { |
2388 | match extend::fast_collect(self) { |
2389 | Either::Left(vec) => { |
2390 | let mut list = LinkedList::new(); |
2391 | if !vec.is_empty() { |
2392 | list.push_back(vec); |
2393 | } |
2394 | list |
2395 | } |
2396 | Either::Right(list) => list, |
2397 | } |
2398 | } |
2399 | |
2400 | /// Internal method used to define the behavior of this parallel |
2401 | /// iterator. You should not need to call this directly. |
2402 | /// |
2403 | /// This method causes the iterator `self` to start producing |
2404 | /// items and to feed them to the consumer `consumer` one by one. |
2405 | /// It may split the consumer before doing so to create the |
2406 | /// opportunity to produce in parallel. |
2407 | /// |
2408 | /// See the [README] for more details on the internals of parallel |
2409 | /// iterators. |
2410 | /// |
2411 | /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md |
2412 | fn drive_unindexed<C>(self, consumer: C) -> C::Result |
2413 | where |
2414 | C: UnindexedConsumer<Self::Item>; |
2415 | |
2416 | /// Internal method used to define the behavior of this parallel |
2417 | /// iterator. You should not need to call this directly. |
2418 | /// |
2419 | /// Returns the number of items produced by this iterator, if known |
2420 | /// statically. This can be used by consumers to trigger special fast |
2421 | /// paths. Therefore, if `Some(_)` is returned, this iterator must only |
2422 | /// use the (indexed) `Consumer` methods when driving a consumer, such |
2423 | /// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or |
2424 | /// other `UnindexedConsumer` methods -- or returning an inaccurate |
2425 | /// value -- may result in panics. |
2426 | /// |
2427 | /// This method is currently used to optimize `collect` for want |
2428 | /// of true Rust specialization; it may be removed when |
2429 | /// specialization is stable. |
2430 | fn opt_len(&self) -> Option<usize> { |
2431 | None |
2432 | } |
2433 | } |
2434 | |
2435 | impl<T: ParallelIterator> IntoParallelIterator for T { |
2436 | type Iter = T; |
2437 | type Item = T::Item; |
2438 | |
2439 | fn into_par_iter(self) -> T { |
2440 | self |
2441 | } |
2442 | } |
2443 | |
2444 | /// An iterator that supports "random access" to its data, meaning |
2445 | /// that you can split it at arbitrary indices and draw data from |
2446 | /// those points. |
2447 | /// |
2448 | /// **Note:** Not implemented for `u64`, `i64`, `u128`, or `i128` ranges |
2449 | // Waiting for `ExactSizeIterator::is_empty` to be stabilized. See rust-lang/rust#35428 |
2450 | #[allow (clippy::len_without_is_empty)] |
2451 | pub trait IndexedParallelIterator: ParallelIterator { |
2452 | /// Divides an iterator into sequential blocks of exponentially-increasing size. |
2453 | /// |
2454 | /// Normally, parallel iterators are recursively divided into tasks in parallel. |
2455 | /// This adaptor changes the default behavior by splitting the iterator into a **sequence** |
2456 | /// of parallel iterators of increasing sizes. |
2457 | /// Sizes grow exponentially in order to avoid creating |
2458 | /// too many blocks. This also allows to balance the current block with all previous ones. |
2459 | /// |
2460 | /// This can have many applications but the most notable ones are: |
2461 | /// - better performance with [`find_first()`][ParallelIterator::find_first] |
2462 | /// - more predictable performance with [`find_any()`][ParallelIterator::find_any] |
2463 | /// or any interruptible computation |
2464 | /// |
2465 | /// # Examples |
2466 | /// |
2467 | /// ``` |
2468 | /// use rayon::prelude::*; |
2469 | /// assert_eq!((0..10_000).into_par_iter() |
2470 | /// .by_exponential_blocks() |
2471 | /// .find_first(|&e| e==4_999), Some(4_999)) |
2472 | /// ``` |
2473 | /// |
2474 | /// In this example, without blocks, rayon will split the initial range into two but all work |
2475 | /// on the right hand side (from 5,000 onwards) is **useless** since the sequential algorithm |
2476 | /// never goes there. This means that if two threads are used there will be **no** speedup **at |
2477 | /// all**. |
2478 | /// |
2479 | /// `by_exponential_blocks` on the other hand will start with the leftmost range from 0 |
2480 | /// to `p` (threads number), continue with p to 3p, the 3p to 7p... |
2481 | /// |
2482 | /// Each subrange is treated in parallel, while all subranges are treated sequentially. |
2483 | /// We therefore ensure a logarithmic number of blocks (and overhead) while guaranteeing |
2484 | /// we stop at the first block containing the searched data. |
2485 | fn by_exponential_blocks(self) -> ExponentialBlocks<Self> { |
2486 | ExponentialBlocks::new(self) |
2487 | } |
2488 | |
2489 | /// Divides an iterator into sequential blocks of the given size. |
2490 | /// |
2491 | /// Normally, parallel iterators are recursively divided into tasks in parallel. |
2492 | /// This adaptor changes the default behavior by splitting the iterator into a **sequence** |
2493 | /// of parallel iterators of given `block_size`. |
2494 | /// The main application is to obtain better |
2495 | /// memory locality (especially if the reduce operation re-use folded data). |
2496 | /// |
2497 | /// **Panics** if `block_size` is 0. |
2498 | /// |
2499 | /// # Example |
2500 | /// ``` |
2501 | /// use rayon::prelude::*; |
2502 | /// // during most reductions v1 and v2 fit the cache |
2503 | /// let v = (0u32..10_000_000) |
2504 | /// .into_par_iter() |
2505 | /// .by_uniform_blocks(1_000_000) |
2506 | /// .fold(Vec::new, |mut v, e| { v.push(e); v}) |
2507 | /// .reduce(Vec::new, |mut v1, mut v2| { v1.append(&mut v2); v1}); |
2508 | /// assert_eq!(v, (0u32..10_000_000).collect::<Vec<u32>>()); |
2509 | /// ``` |
2510 | #[track_caller ] |
2511 | fn by_uniform_blocks(self, block_size: usize) -> UniformBlocks<Self> { |
2512 | assert!(block_size != 0, "block_size must not be zero" ); |
2513 | UniformBlocks::new(self, block_size) |
2514 | } |
2515 | |
2516 | /// Collects the results of the iterator into the specified |
2517 | /// vector. The vector is always cleared before execution |
2518 | /// begins. If possible, reusing the vector across calls can lead |
2519 | /// to better performance since it reuses the same backing buffer. |
2520 | /// |
2521 | /// # Examples |
2522 | /// |
2523 | /// ``` |
2524 | /// use rayon::prelude::*; |
2525 | /// |
2526 | /// // any prior data will be cleared |
2527 | /// let mut vec = vec![-1, -2, -3]; |
2528 | /// |
2529 | /// (0..5).into_par_iter() |
2530 | /// .collect_into_vec(&mut vec); |
2531 | /// |
2532 | /// assert_eq!(vec, [0, 1, 2, 3, 4]); |
2533 | /// ``` |
2534 | fn collect_into_vec(self, target: &mut Vec<Self::Item>) { |
2535 | collect::collect_into_vec(self, target); |
2536 | } |
2537 | |
2538 | /// Unzips the results of the iterator into the specified |
2539 | /// vectors. The vectors are always cleared before execution |
2540 | /// begins. If possible, reusing the vectors across calls can lead |
2541 | /// to better performance since they reuse the same backing buffer. |
2542 | /// |
2543 | /// # Examples |
2544 | /// |
2545 | /// ``` |
2546 | /// use rayon::prelude::*; |
2547 | /// |
2548 | /// // any prior data will be cleared |
2549 | /// let mut left = vec![42; 10]; |
2550 | /// let mut right = vec![-1; 10]; |
2551 | /// |
2552 | /// (10..15).into_par_iter() |
2553 | /// .enumerate() |
2554 | /// .unzip_into_vecs(&mut left, &mut right); |
2555 | /// |
2556 | /// assert_eq!(left, [0, 1, 2, 3, 4]); |
2557 | /// assert_eq!(right, [10, 11, 12, 13, 14]); |
2558 | /// ``` |
2559 | fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>) |
2560 | where |
2561 | Self: IndexedParallelIterator<Item = (A, B)>, |
2562 | A: Send, |
2563 | B: Send, |
2564 | { |
2565 | collect::unzip_into_vecs(self, left, right); |
2566 | } |
2567 | |
2568 | /// Iterates over tuples `(A, B)`, where the items `A` are from |
2569 | /// this iterator and `B` are from the iterator given as argument. |
2570 | /// Like the `zip` method on ordinary iterators, if the two |
2571 | /// iterators are of unequal length, you only get the items they |
2572 | /// have in common. |
2573 | /// |
2574 | /// # Examples |
2575 | /// |
2576 | /// ``` |
2577 | /// use rayon::prelude::*; |
2578 | /// |
2579 | /// let result: Vec<_> = (1..4) |
2580 | /// .into_par_iter() |
2581 | /// .zip(vec!['a' , 'b' , 'c' ]) |
2582 | /// .collect(); |
2583 | /// |
2584 | /// assert_eq!(result, [(1, 'a' ), (2, 'b' ), (3, 'c' )]); |
2585 | /// ``` |
2586 | fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter> |
2587 | where |
2588 | Z: IntoParallelIterator, |
2589 | Z::Iter: IndexedParallelIterator, |
2590 | { |
2591 | Zip::new(self, zip_op.into_par_iter()) |
2592 | } |
2593 | |
2594 | /// The same as `Zip`, but requires that both iterators have the same length. |
2595 | /// |
2596 | /// # Panics |
2597 | /// Will panic if `self` and `zip_op` are not the same length. |
2598 | /// |
2599 | /// ```should_panic |
2600 | /// use rayon::prelude::*; |
2601 | /// |
2602 | /// let one = [1u8]; |
2603 | /// let two = [2u8, 2]; |
2604 | /// let one_iter = one.par_iter(); |
2605 | /// let two_iter = two.par_iter(); |
2606 | /// |
2607 | /// // this will panic |
2608 | /// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect(); |
2609 | /// |
2610 | /// // we should never get here |
2611 | /// assert_eq!(1, zipped.len()); |
2612 | /// ``` |
2613 | #[track_caller ] |
2614 | fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, Z::Iter> |
2615 | where |
2616 | Z: IntoParallelIterator, |
2617 | Z::Iter: IndexedParallelIterator, |
2618 | { |
2619 | let zip_op_iter = zip_op.into_par_iter(); |
2620 | assert_eq!( |
2621 | self.len(), |
2622 | zip_op_iter.len(), |
2623 | "iterators must have the same length" |
2624 | ); |
2625 | ZipEq::new(self, zip_op_iter) |
2626 | } |
2627 | |
2628 | /// Interleaves elements of this iterator and the other given |
2629 | /// iterator. Alternately yields elements from this iterator and |
2630 | /// the given iterator, until both are exhausted. If one iterator |
2631 | /// is exhausted before the other, the last elements are provided |
2632 | /// from the other. |
2633 | /// |
2634 | /// # Examples |
2635 | /// |
2636 | /// ``` |
2637 | /// use rayon::prelude::*; |
2638 | /// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]); |
2639 | /// let r: Vec<i32> = x.into_par_iter().interleave(y).collect(); |
2640 | /// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]); |
2641 | /// ``` |
2642 | fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter> |
2643 | where |
2644 | I: IntoParallelIterator<Item = Self::Item>, |
2645 | I::Iter: IndexedParallelIterator<Item = Self::Item>, |
2646 | { |
2647 | Interleave::new(self, other.into_par_iter()) |
2648 | } |
2649 | |
2650 | /// Interleaves elements of this iterator and the other given |
2651 | /// iterator, until one is exhausted. |
2652 | /// |
2653 | /// # Examples |
2654 | /// |
2655 | /// ``` |
2656 | /// use rayon::prelude::*; |
2657 | /// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]); |
2658 | /// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect(); |
2659 | /// assert_eq!(r, vec![1, 5, 2, 6, 3]); |
2660 | /// ``` |
2661 | fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter> |
2662 | where |
2663 | I: IntoParallelIterator<Item = Self::Item>, |
2664 | I::Iter: IndexedParallelIterator<Item = Self::Item>, |
2665 | { |
2666 | InterleaveShortest::new(self, other.into_par_iter()) |
2667 | } |
2668 | |
2669 | /// Splits an iterator up into fixed-size chunks. |
2670 | /// |
2671 | /// Returns an iterator that returns `Vec`s of the given number of elements. |
2672 | /// If the number of elements in the iterator is not divisible by `chunk_size`, |
2673 | /// the last chunk may be shorter than `chunk_size`. |
2674 | /// |
2675 | /// See also [`par_chunks()`] and [`par_chunks_mut()`] for similar behavior on |
2676 | /// slices, without having to allocate intermediate `Vec`s for the chunks. |
2677 | /// |
2678 | /// [`par_chunks()`]: ../slice/trait.ParallelSlice.html#method.par_chunks |
2679 | /// [`par_chunks_mut()`]: ../slice/trait.ParallelSliceMut.html#method.par_chunks_mut |
2680 | /// |
2681 | /// **Panics** if `chunk_size` is 0. |
2682 | /// |
2683 | /// # Examples |
2684 | /// |
2685 | /// ``` |
2686 | /// use rayon::prelude::*; |
2687 | /// let a = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2688 | /// let r: Vec<Vec<i32>> = a.into_par_iter().chunks(3).collect(); |
2689 | /// assert_eq!(r, vec![vec![1,2,3], vec![4,5,6], vec![7,8,9], vec![10]]); |
2690 | /// ``` |
2691 | #[track_caller ] |
2692 | fn chunks(self, chunk_size: usize) -> Chunks<Self> { |
2693 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
2694 | Chunks::new(self, chunk_size) |
2695 | } |
2696 | |
2697 | /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on |
2698 | /// each chunk. |
2699 | /// |
2700 | /// Returns an iterator that produces a folded result for each chunk of items |
2701 | /// produced by this iterator. |
2702 | /// |
2703 | /// This works essentially like: |
2704 | /// |
2705 | /// ```text |
2706 | /// iter.chunks(chunk_size) |
2707 | /// .map(|chunk| |
2708 | /// chunk.into_iter() |
2709 | /// .fold(identity, fold_op) |
2710 | /// ) |
2711 | /// ``` |
2712 | /// |
2713 | /// except there is no per-chunk allocation overhead. |
2714 | /// |
2715 | /// [`fold()`]: std::iter::Iterator#method.fold |
2716 | /// |
2717 | /// **Panics** if `chunk_size` is 0. |
2718 | /// |
2719 | /// # Examples |
2720 | /// |
2721 | /// ``` |
2722 | /// use rayon::prelude::*; |
2723 | /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2724 | /// let chunk_sums = nums.into_par_iter().fold_chunks(2, || 0, |a, n| a + n).collect::<Vec<_>>(); |
2725 | /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]); |
2726 | /// ``` |
2727 | #[track_caller ] |
2728 | fn fold_chunks<T, ID, F>( |
2729 | self, |
2730 | chunk_size: usize, |
2731 | identity: ID, |
2732 | fold_op: F, |
2733 | ) -> FoldChunks<Self, ID, F> |
2734 | where |
2735 | ID: Fn() -> T + Send + Sync, |
2736 | F: Fn(T, Self::Item) -> T + Send + Sync, |
2737 | T: Send, |
2738 | { |
2739 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
2740 | FoldChunks::new(self, chunk_size, identity, fold_op) |
2741 | } |
2742 | |
2743 | /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on |
2744 | /// each chunk. |
2745 | /// |
2746 | /// Returns an iterator that produces a folded result for each chunk of items |
2747 | /// produced by this iterator. |
2748 | /// |
2749 | /// This works essentially like `fold_chunks(chunk_size, || init.clone(), fold_op)`, |
2750 | /// except it doesn't require the `init` type to be `Sync`, nor any other form of |
2751 | /// added synchronization. |
2752 | /// |
2753 | /// [`fold()`]: std::iter::Iterator#method.fold |
2754 | /// |
2755 | /// **Panics** if `chunk_size` is 0. |
2756 | /// |
2757 | /// # Examples |
2758 | /// |
2759 | /// ``` |
2760 | /// use rayon::prelude::*; |
2761 | /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
2762 | /// let chunk_sums = nums.into_par_iter().fold_chunks_with(2, 0, |a, n| a + n).collect::<Vec<_>>(); |
2763 | /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]); |
2764 | /// ``` |
2765 | #[track_caller ] |
2766 | fn fold_chunks_with<T, F>( |
2767 | self, |
2768 | chunk_size: usize, |
2769 | init: T, |
2770 | fold_op: F, |
2771 | ) -> FoldChunksWith<Self, T, F> |
2772 | where |
2773 | T: Send + Clone, |
2774 | F: Fn(T, Self::Item) -> T + Send + Sync, |
2775 | { |
2776 | assert!(chunk_size != 0, "chunk_size must not be zero" ); |
2777 | FoldChunksWith::new(self, chunk_size, init, fold_op) |
2778 | } |
2779 | |
2780 | /// Lexicographically compares the elements of this `ParallelIterator` with those of |
2781 | /// another. |
2782 | /// |
2783 | /// # Examples |
2784 | /// |
2785 | /// ``` |
2786 | /// use rayon::prelude::*; |
2787 | /// use std::cmp::Ordering::*; |
2788 | /// |
2789 | /// let x = vec![1, 2, 3]; |
2790 | /// assert_eq!(x.par_iter().cmp(&vec![1, 3, 0]), Less); |
2791 | /// assert_eq!(x.par_iter().cmp(&vec![1, 2, 3]), Equal); |
2792 | /// assert_eq!(x.par_iter().cmp(&vec![1, 2]), Greater); |
2793 | /// ``` |
2794 | fn cmp<I>(self, other: I) -> Ordering |
2795 | where |
2796 | I: IntoParallelIterator<Item = Self::Item>, |
2797 | I::Iter: IndexedParallelIterator, |
2798 | Self::Item: Ord, |
2799 | { |
2800 | #[inline ] |
2801 | fn ordering<T: Ord>((x, y): (T, T)) -> Ordering { |
2802 | Ord::cmp(&x, &y) |
2803 | } |
2804 | |
2805 | #[inline ] |
2806 | fn inequal(&ord: &Ordering) -> bool { |
2807 | ord != Ordering::Equal |
2808 | } |
2809 | |
2810 | let other = other.into_par_iter(); |
2811 | let ord_len = self.len().cmp(&other.len()); |
2812 | self.zip(other) |
2813 | .map(ordering) |
2814 | .find_first(inequal) |
2815 | .unwrap_or(ord_len) |
2816 | } |
2817 | |
2818 | /// Lexicographically compares the elements of this `ParallelIterator` with those of |
2819 | /// another. |
2820 | /// |
2821 | /// # Examples |
2822 | /// |
2823 | /// ``` |
2824 | /// use rayon::prelude::*; |
2825 | /// use std::cmp::Ordering::*; |
2826 | /// use std::f64::NAN; |
2827 | /// |
2828 | /// let x = vec![1.0, 2.0, 3.0]; |
2829 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 3.0, 0.0]), Some(Less)); |
2830 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0, 3.0]), Some(Equal)); |
2831 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0]), Some(Greater)); |
2832 | /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, NAN]), None); |
2833 | /// ``` |
2834 | fn partial_cmp<I>(self, other: I) -> Option<Ordering> |
2835 | where |
2836 | I: IntoParallelIterator, |
2837 | I::Iter: IndexedParallelIterator, |
2838 | Self::Item: PartialOrd<I::Item>, |
2839 | { |
2840 | #[inline ] |
2841 | fn ordering<T: PartialOrd<U>, U>((x, y): (T, U)) -> Option<Ordering> { |
2842 | PartialOrd::partial_cmp(&x, &y) |
2843 | } |
2844 | |
2845 | #[inline ] |
2846 | fn inequal(&ord: &Option<Ordering>) -> bool { |
2847 | ord != Some(Ordering::Equal) |
2848 | } |
2849 | |
2850 | let other = other.into_par_iter(); |
2851 | let ord_len = self.len().cmp(&other.len()); |
2852 | self.zip(other) |
2853 | .map(ordering) |
2854 | .find_first(inequal) |
2855 | .unwrap_or(Some(ord_len)) |
2856 | } |
2857 | |
2858 | /// Determines if the elements of this `ParallelIterator` |
2859 | /// are equal to those of another |
2860 | fn eq<I>(self, other: I) -> bool |
2861 | where |
2862 | I: IntoParallelIterator, |
2863 | I::Iter: IndexedParallelIterator, |
2864 | Self::Item: PartialEq<I::Item>, |
2865 | { |
2866 | #[inline ] |
2867 | fn eq<T: PartialEq<U>, U>((x, y): (T, U)) -> bool { |
2868 | PartialEq::eq(&x, &y) |
2869 | } |
2870 | |
2871 | let other = other.into_par_iter(); |
2872 | self.len() == other.len() && self.zip(other).all(eq) |
2873 | } |
2874 | |
2875 | /// Determines if the elements of this `ParallelIterator` |
2876 | /// are unequal to those of another |
2877 | fn ne<I>(self, other: I) -> bool |
2878 | where |
2879 | I: IntoParallelIterator, |
2880 | I::Iter: IndexedParallelIterator, |
2881 | Self::Item: PartialEq<I::Item>, |
2882 | { |
2883 | !self.eq(other) |
2884 | } |
2885 | |
2886 | /// Determines if the elements of this `ParallelIterator` |
2887 | /// are lexicographically less than those of another. |
2888 | fn lt<I>(self, other: I) -> bool |
2889 | where |
2890 | I: IntoParallelIterator, |
2891 | I::Iter: IndexedParallelIterator, |
2892 | Self::Item: PartialOrd<I::Item>, |
2893 | { |
2894 | self.partial_cmp(other) == Some(Ordering::Less) |
2895 | } |
2896 | |
2897 | /// Determines if the elements of this `ParallelIterator` |
2898 | /// are less or equal to those of another. |
2899 | fn le<I>(self, other: I) -> bool |
2900 | where |
2901 | I: IntoParallelIterator, |
2902 | I::Iter: IndexedParallelIterator, |
2903 | Self::Item: PartialOrd<I::Item>, |
2904 | { |
2905 | let ord = self.partial_cmp(other); |
2906 | ord == Some(Ordering::Equal) || ord == Some(Ordering::Less) |
2907 | } |
2908 | |
2909 | /// Determines if the elements of this `ParallelIterator` |
2910 | /// are lexicographically greater than those of another. |
2911 | fn gt<I>(self, other: I) -> bool |
2912 | where |
2913 | I: IntoParallelIterator, |
2914 | I::Iter: IndexedParallelIterator, |
2915 | Self::Item: PartialOrd<I::Item>, |
2916 | { |
2917 | self.partial_cmp(other) == Some(Ordering::Greater) |
2918 | } |
2919 | |
2920 | /// Determines if the elements of this `ParallelIterator` |
2921 | /// are less or equal to those of another. |
2922 | fn ge<I>(self, other: I) -> bool |
2923 | where |
2924 | I: IntoParallelIterator, |
2925 | I::Iter: IndexedParallelIterator, |
2926 | Self::Item: PartialOrd<I::Item>, |
2927 | { |
2928 | let ord = self.partial_cmp(other); |
2929 | ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater) |
2930 | } |
2931 | |
2932 | /// Yields an index along with each item. |
2933 | /// |
2934 | /// # Examples |
2935 | /// |
2936 | /// ``` |
2937 | /// use rayon::prelude::*; |
2938 | /// |
2939 | /// let chars = vec!['a' , 'b' , 'c' ]; |
2940 | /// let result: Vec<_> = chars |
2941 | /// .into_par_iter() |
2942 | /// .enumerate() |
2943 | /// .collect(); |
2944 | /// |
2945 | /// assert_eq!(result, [(0, 'a' ), (1, 'b' ), (2, 'c' )]); |
2946 | /// ``` |
2947 | fn enumerate(self) -> Enumerate<Self> { |
2948 | Enumerate::new(self) |
2949 | } |
2950 | |
2951 | /// Creates an iterator that steps by the given amount |
2952 | /// |
2953 | /// # Examples |
2954 | /// |
2955 | /// ``` |
2956 | ///use rayon::prelude::*; |
2957 | /// |
2958 | /// let range = (3..10); |
2959 | /// let result: Vec<i32> = range |
2960 | /// .into_par_iter() |
2961 | /// .step_by(3) |
2962 | /// .collect(); |
2963 | /// |
2964 | /// assert_eq!(result, [3, 6, 9]) |
2965 | /// ``` |
2966 | fn step_by(self, step: usize) -> StepBy<Self> { |
2967 | StepBy::new(self, step) |
2968 | } |
2969 | |
2970 | /// Creates an iterator that skips the first `n` elements. |
2971 | /// |
2972 | /// # Examples |
2973 | /// |
2974 | /// ``` |
2975 | /// use rayon::prelude::*; |
2976 | /// |
2977 | /// let result: Vec<_> = (0..100) |
2978 | /// .into_par_iter() |
2979 | /// .skip(95) |
2980 | /// .collect(); |
2981 | /// |
2982 | /// assert_eq!(result, [95, 96, 97, 98, 99]); |
2983 | /// ``` |
2984 | fn skip(self, n: usize) -> Skip<Self> { |
2985 | Skip::new(self, n) |
2986 | } |
2987 | |
2988 | /// Creates an iterator that yields the first `n` elements. |
2989 | /// |
2990 | /// # Examples |
2991 | /// |
2992 | /// ``` |
2993 | /// use rayon::prelude::*; |
2994 | /// |
2995 | /// let result: Vec<_> = (0..100) |
2996 | /// .into_par_iter() |
2997 | /// .take(5) |
2998 | /// .collect(); |
2999 | /// |
3000 | /// assert_eq!(result, [0, 1, 2, 3, 4]); |
3001 | /// ``` |
3002 | fn take(self, n: usize) -> Take<Self> { |
3003 | Take::new(self, n) |
3004 | } |
3005 | |
3006 | /// Searches for **some** item in the parallel iterator that |
3007 | /// matches the given predicate, and returns its index. Like |
3008 | /// `ParallelIterator::find_any`, the parallel search will not |
3009 | /// necessarily find the **first** match, and once a match is |
3010 | /// found we'll attempt to stop processing any more. |
3011 | /// |
3012 | /// # Examples |
3013 | /// |
3014 | /// ``` |
3015 | /// use rayon::prelude::*; |
3016 | /// |
3017 | /// let a = [1, 2, 3, 3]; |
3018 | /// |
3019 | /// let i = a.par_iter().position_any(|&x| x == 3).expect("found" ); |
3020 | /// assert!(i == 2 || i == 3); |
3021 | /// |
3022 | /// assert_eq!(a.par_iter().position_any(|&x| x == 100), None); |
3023 | /// ``` |
3024 | fn position_any<P>(self, predicate: P) -> Option<usize> |
3025 | where |
3026 | P: Fn(Self::Item) -> bool + Sync + Send, |
3027 | { |
3028 | #[inline ] |
3029 | fn check(&(_, p): &(usize, bool)) -> bool { |
3030 | p |
3031 | } |
3032 | |
3033 | let (i, _) = self.map(predicate).enumerate().find_any(check)?; |
3034 | Some(i) |
3035 | } |
3036 | |
3037 | /// Searches for the sequentially **first** item in the parallel iterator |
3038 | /// that matches the given predicate, and returns its index. |
3039 | /// |
3040 | /// Like `ParallelIterator::find_first`, once a match is found, |
3041 | /// all attempts to the right of the match will be stopped, while |
3042 | /// attempts to the left must continue in case an earlier match |
3043 | /// is found. |
3044 | /// |
3045 | /// Note that not all parallel iterators have a useful order, much like |
3046 | /// sequential `HashMap` iteration, so "first" may be nebulous. If you |
3047 | /// just want the first match that discovered anywhere in the iterator, |
3048 | /// `position_any` is a better choice. |
3049 | /// |
3050 | /// # Examples |
3051 | /// |
3052 | /// ``` |
3053 | /// use rayon::prelude::*; |
3054 | /// |
3055 | /// let a = [1, 2, 3, 3]; |
3056 | /// |
3057 | /// assert_eq!(a.par_iter().position_first(|&x| x == 3), Some(2)); |
3058 | /// |
3059 | /// assert_eq!(a.par_iter().position_first(|&x| x == 100), None); |
3060 | /// ``` |
3061 | fn position_first<P>(self, predicate: P) -> Option<usize> |
3062 | where |
3063 | P: Fn(Self::Item) -> bool + Sync + Send, |
3064 | { |
3065 | #[inline ] |
3066 | fn check(&(_, p): &(usize, bool)) -> bool { |
3067 | p |
3068 | } |
3069 | |
3070 | let (i, _) = self.map(predicate).enumerate().find_first(check)?; |
3071 | Some(i) |
3072 | } |
3073 | |
3074 | /// Searches for the sequentially **last** item in the parallel iterator |
3075 | /// that matches the given predicate, and returns its index. |
3076 | /// |
3077 | /// Like `ParallelIterator::find_last`, once a match is found, |
3078 | /// all attempts to the left of the match will be stopped, while |
3079 | /// attempts to the right must continue in case a later match |
3080 | /// is found. |
3081 | /// |
3082 | /// Note that not all parallel iterators have a useful order, much like |
3083 | /// sequential `HashMap` iteration, so "last" may be nebulous. When the |
3084 | /// order doesn't actually matter to you, `position_any` is a better |
3085 | /// choice. |
3086 | /// |
3087 | /// # Examples |
3088 | /// |
3089 | /// ``` |
3090 | /// use rayon::prelude::*; |
3091 | /// |
3092 | /// let a = [1, 2, 3, 3]; |
3093 | /// |
3094 | /// assert_eq!(a.par_iter().position_last(|&x| x == 3), Some(3)); |
3095 | /// |
3096 | /// assert_eq!(a.par_iter().position_last(|&x| x == 100), None); |
3097 | /// ``` |
3098 | fn position_last<P>(self, predicate: P) -> Option<usize> |
3099 | where |
3100 | P: Fn(Self::Item) -> bool + Sync + Send, |
3101 | { |
3102 | #[inline ] |
3103 | fn check(&(_, p): &(usize, bool)) -> bool { |
3104 | p |
3105 | } |
3106 | |
3107 | let (i, _) = self.map(predicate).enumerate().find_last(check)?; |
3108 | Some(i) |
3109 | } |
3110 | |
3111 | #[doc (hidden)] |
3112 | #[deprecated ( |
3113 | note = "parallel `position` does not search in order -- use `position_any`, \\ |
3114 | `position_first`, or `position_last`" |
3115 | )] |
3116 | fn position<P>(self, predicate: P) -> Option<usize> |
3117 | where |
3118 | P: Fn(Self::Item) -> bool + Sync + Send, |
3119 | { |
3120 | self.position_any(predicate) |
3121 | } |
3122 | |
3123 | /// Searches for items in the parallel iterator that match the given |
3124 | /// predicate, and returns their indices. |
3125 | /// |
3126 | /// # Examples |
3127 | /// |
3128 | /// ``` |
3129 | /// use rayon::prelude::*; |
3130 | /// |
3131 | /// let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29]; |
3132 | /// |
3133 | /// // Find the positions of primes congruent to 1 modulo 6 |
3134 | /// let p1mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 1).collect(); |
3135 | /// assert_eq!(p1mod6, [3, 5, 7]); // primes 7, 13, and 19 |
3136 | /// |
3137 | /// // Find the positions of primes congruent to 5 modulo 6 |
3138 | /// let p5mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 5).collect(); |
3139 | /// assert_eq!(p5mod6, [2, 4, 6, 8, 9]); // primes 5, 11, 17, 23, and 29 |
3140 | /// ``` |
3141 | fn positions<P>(self, predicate: P) -> Positions<Self, P> |
3142 | where |
3143 | P: Fn(Self::Item) -> bool + Sync + Send, |
3144 | { |
3145 | Positions::new(self, predicate) |
3146 | } |
3147 | |
3148 | /// Produces a new iterator with the elements of this iterator in |
3149 | /// reverse order. |
3150 | /// |
3151 | /// # Examples |
3152 | /// |
3153 | /// ``` |
3154 | /// use rayon::prelude::*; |
3155 | /// |
3156 | /// let result: Vec<_> = (0..5) |
3157 | /// .into_par_iter() |
3158 | /// .rev() |
3159 | /// .collect(); |
3160 | /// |
3161 | /// assert_eq!(result, [4, 3, 2, 1, 0]); |
3162 | /// ``` |
3163 | fn rev(self) -> Rev<Self> { |
3164 | Rev::new(self) |
3165 | } |
3166 | |
3167 | /// Sets the minimum length of iterators desired to process in each |
3168 | /// rayon job. Rayon will not split any smaller than this length, but |
3169 | /// of course an iterator could already be smaller to begin with. |
3170 | /// |
3171 | /// Producers like `zip` and `interleave` will use greater of the two |
3172 | /// minimums. |
3173 | /// Chained iterators and iterators inside `flat_map` may each use |
3174 | /// their own minimum length. |
3175 | /// |
3176 | /// # Examples |
3177 | /// |
3178 | /// ``` |
3179 | /// use rayon::prelude::*; |
3180 | /// |
3181 | /// let min = (0..1_000_000) |
3182 | /// .into_par_iter() |
3183 | /// .with_min_len(1234) |
3184 | /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment |
3185 | /// .min().unwrap(); |
3186 | /// |
3187 | /// assert!(min >= 1234); |
3188 | /// ``` |
3189 | fn with_min_len(self, min: usize) -> MinLen<Self> { |
3190 | MinLen::new(self, min) |
3191 | } |
3192 | |
3193 | /// Sets the maximum length of iterators desired to process in each |
3194 | /// rayon job. Rayon will try to split at least below this length, |
3195 | /// unless that would put it below the length from `with_min_len()`. |
3196 | /// For example, given min=10 and max=15, a length of 16 will not be |
3197 | /// split any further. |
3198 | /// |
3199 | /// Producers like `zip` and `interleave` will use lesser of the two |
3200 | /// maximums. |
3201 | /// Chained iterators and iterators inside `flat_map` may each use |
3202 | /// their own maximum length. |
3203 | /// |
3204 | /// # Examples |
3205 | /// |
3206 | /// ``` |
3207 | /// use rayon::prelude::*; |
3208 | /// |
3209 | /// let max = (0..1_000_000) |
3210 | /// .into_par_iter() |
3211 | /// .with_max_len(1234) |
3212 | /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment |
3213 | /// .max().unwrap(); |
3214 | /// |
3215 | /// assert!(max <= 1234); |
3216 | /// ``` |
3217 | fn with_max_len(self, max: usize) -> MaxLen<Self> { |
3218 | MaxLen::new(self, max) |
3219 | } |
3220 | |
3221 | /// Produces an exact count of how many items this iterator will |
3222 | /// produce, presuming no panic occurs. |
3223 | /// |
3224 | /// # Examples |
3225 | /// |
3226 | /// ``` |
3227 | /// use rayon::prelude::*; |
3228 | /// |
3229 | /// let par_iter = (0..100).into_par_iter().zip(vec![0; 10]); |
3230 | /// assert_eq!(par_iter.len(), 10); |
3231 | /// |
3232 | /// let vec: Vec<_> = par_iter.collect(); |
3233 | /// assert_eq!(vec.len(), 10); |
3234 | /// ``` |
3235 | fn len(&self) -> usize; |
3236 | |
3237 | /// Internal method used to define the behavior of this parallel |
3238 | /// iterator. You should not need to call this directly. |
3239 | /// |
3240 | /// This method causes the iterator `self` to start producing |
3241 | /// items and to feed them to the consumer `consumer` one by one. |
3242 | /// It may split the consumer before doing so to create the |
3243 | /// opportunity to produce in parallel. If a split does happen, it |
3244 | /// will inform the consumer of the index where the split should |
3245 | /// occur (unlike `ParallelIterator::drive_unindexed()`). |
3246 | /// |
3247 | /// See the [README] for more details on the internals of parallel |
3248 | /// iterators. |
3249 | /// |
3250 | /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md |
3251 | fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result; |
3252 | |
3253 | /// Internal method used to define the behavior of this parallel |
3254 | /// iterator. You should not need to call this directly. |
3255 | /// |
3256 | /// This method converts the iterator into a producer P and then |
3257 | /// invokes `callback.callback()` with P. Note that the type of |
3258 | /// this producer is not defined as part of the API, since |
3259 | /// `callback` must be defined generically for all producers. This |
3260 | /// allows the producer type to contain references; it also means |
3261 | /// that parallel iterators can adjust that type without causing a |
3262 | /// breaking change. |
3263 | /// |
3264 | /// See the [README] for more details on the internals of parallel |
3265 | /// iterators. |
3266 | /// |
3267 | /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md |
3268 | fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output; |
3269 | } |
3270 | |
3271 | /// `FromParallelIterator` implements the creation of a collection |
3272 | /// from a [`ParallelIterator`]. By implementing |
3273 | /// `FromParallelIterator` for a given type, you define how it will be |
3274 | /// created from an iterator. |
3275 | /// |
3276 | /// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method. |
3277 | /// |
3278 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
3279 | /// [`collect()`]: trait.ParallelIterator.html#method.collect |
3280 | /// |
3281 | /// # Examples |
3282 | /// |
3283 | /// Implementing `FromParallelIterator` for your type: |
3284 | /// |
3285 | /// ``` |
3286 | /// use rayon::prelude::*; |
3287 | /// use std::mem; |
3288 | /// |
3289 | /// struct BlackHole { |
3290 | /// mass: usize, |
3291 | /// } |
3292 | /// |
3293 | /// impl<T: Send> FromParallelIterator<T> for BlackHole { |
3294 | /// fn from_par_iter<I>(par_iter: I) -> Self |
3295 | /// where I: IntoParallelIterator<Item = T> |
3296 | /// { |
3297 | /// let par_iter = par_iter.into_par_iter(); |
3298 | /// BlackHole { |
3299 | /// mass: par_iter.count() * mem::size_of::<T>(), |
3300 | /// } |
3301 | /// } |
3302 | /// } |
3303 | /// |
3304 | /// let bh: BlackHole = (0i32..1000).into_par_iter().collect(); |
3305 | /// assert_eq!(bh.mass, 4000); |
3306 | /// ``` |
3307 | pub trait FromParallelIterator<T> |
3308 | where |
3309 | T: Send, |
3310 | { |
3311 | /// Creates an instance of the collection from the parallel iterator `par_iter`. |
3312 | /// |
3313 | /// If your collection is not naturally parallel, the easiest (and |
3314 | /// fastest) way to do this is often to collect `par_iter` into a |
3315 | /// [`LinkedList`] (via [`collect_vec_list`]) or another intermediate |
3316 | /// data structure and then sequentially extend your collection. However, |
3317 | /// a more 'native' technique is to use the [`par_iter.fold`] or |
3318 | /// [`par_iter.fold_with`] methods to create the collection. |
3319 | /// Alternatively, if your collection is 'natively' parallel, you |
3320 | /// can use `par_iter.for_each` to process each element in turn. |
3321 | /// |
3322 | /// [`LinkedList`]: https://doc.rust-lang.org/std/collections/struct.LinkedList.html |
3323 | /// [`collect_vec_list`]: ParallelIterator::collect_vec_list |
3324 | /// [`par_iter.fold`]: trait.ParallelIterator.html#method.fold |
3325 | /// [`par_iter.fold_with`]: trait.ParallelIterator.html#method.fold_with |
3326 | /// [`par_iter.for_each`]: trait.ParallelIterator.html#method.for_each |
3327 | fn from_par_iter<I>(par_iter: I) -> Self |
3328 | where |
3329 | I: IntoParallelIterator<Item = T>; |
3330 | } |
3331 | |
3332 | /// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`]. |
3333 | /// |
3334 | /// [`ParallelIterator`]: trait.ParallelIterator.html |
3335 | /// |
3336 | /// # Examples |
3337 | /// |
3338 | /// Implementing `ParallelExtend` for your type: |
3339 | /// |
3340 | /// ``` |
3341 | /// use rayon::prelude::*; |
3342 | /// use std::mem; |
3343 | /// |
3344 | /// struct BlackHole { |
3345 | /// mass: usize, |
3346 | /// } |
3347 | /// |
3348 | /// impl<T: Send> ParallelExtend<T> for BlackHole { |
3349 | /// fn par_extend<I>(&mut self, par_iter: I) |
3350 | /// where I: IntoParallelIterator<Item = T> |
3351 | /// { |
3352 | /// let par_iter = par_iter.into_par_iter(); |
3353 | /// self.mass += par_iter.count() * mem::size_of::<T>(); |
3354 | /// } |
3355 | /// } |
3356 | /// |
3357 | /// let mut bh = BlackHole { mass: 0 }; |
3358 | /// bh.par_extend(0i32..1000); |
3359 | /// assert_eq!(bh.mass, 4000); |
3360 | /// bh.par_extend(0i64..10); |
3361 | /// assert_eq!(bh.mass, 4080); |
3362 | /// ``` |
3363 | pub trait ParallelExtend<T> |
3364 | where |
3365 | T: Send, |
3366 | { |
3367 | /// Extends an instance of the collection with the elements drawn |
3368 | /// from the parallel iterator `par_iter`. |
3369 | /// |
3370 | /// # Examples |
3371 | /// |
3372 | /// ``` |
3373 | /// use rayon::prelude::*; |
3374 | /// |
3375 | /// let mut vec = vec![]; |
3376 | /// vec.par_extend(0..5); |
3377 | /// vec.par_extend((0..5).into_par_iter().map(|i| i * i)); |
3378 | /// assert_eq!(vec, [0, 1, 2, 3, 4, 0, 1, 4, 9, 16]); |
3379 | /// ``` |
3380 | fn par_extend<I>(&mut self, par_iter: I) |
3381 | where |
3382 | I: IntoParallelIterator<Item = T>; |
3383 | } |
3384 | |
3385 | /// `ParallelDrainFull` creates a parallel iterator that moves all items |
3386 | /// from a collection while retaining the original capacity. |
3387 | /// |
3388 | /// Types which are indexable typically implement [`ParallelDrainRange`] |
3389 | /// instead, where you can drain fully with `par_drain(..)`. |
3390 | /// |
3391 | /// [`ParallelDrainRange`]: trait.ParallelDrainRange.html |
3392 | pub trait ParallelDrainFull { |
3393 | /// The draining parallel iterator type that will be created. |
3394 | type Iter: ParallelIterator<Item = Self::Item>; |
3395 | |
3396 | /// The type of item that the parallel iterator will produce. |
3397 | /// This is usually the same as `IntoParallelIterator::Item`. |
3398 | type Item: Send; |
3399 | |
3400 | /// Returns a draining parallel iterator over an entire collection. |
3401 | /// |
3402 | /// When the iterator is dropped, all items are removed, even if the |
3403 | /// iterator was not fully consumed. If the iterator is leaked, for example |
3404 | /// using `std::mem::forget`, it is unspecified how many items are removed. |
3405 | /// |
3406 | /// # Examples |
3407 | /// |
3408 | /// ``` |
3409 | /// use rayon::prelude::*; |
3410 | /// use std::collections::{BinaryHeap, HashSet}; |
3411 | /// |
3412 | /// let squares: HashSet<i32> = (0..10).map(|x| x * x).collect(); |
3413 | /// |
3414 | /// let mut heap: BinaryHeap<_> = squares.iter().copied().collect(); |
3415 | /// assert_eq!( |
3416 | /// // heaps are drained in arbitrary order |
3417 | /// heap.par_drain() |
3418 | /// .inspect(|x| assert!(squares.contains(x))) |
3419 | /// .count(), |
3420 | /// squares.len(), |
3421 | /// ); |
3422 | /// assert!(heap.is_empty()); |
3423 | /// assert!(heap.capacity() >= squares.len()); |
3424 | /// ``` |
3425 | fn par_drain(self) -> Self::Iter; |
3426 | } |
3427 | |
3428 | /// `ParallelDrainRange` creates a parallel iterator that moves a range of items |
3429 | /// from a collection while retaining the original capacity. |
3430 | /// |
3431 | /// Types which are not indexable may implement [`ParallelDrainFull`] instead. |
3432 | /// |
3433 | /// [`ParallelDrainFull`]: trait.ParallelDrainFull.html |
3434 | pub trait ParallelDrainRange<Idx = usize> { |
3435 | /// The draining parallel iterator type that will be created. |
3436 | type Iter: ParallelIterator<Item = Self::Item>; |
3437 | |
3438 | /// The type of item that the parallel iterator will produce. |
3439 | /// This is usually the same as `IntoParallelIterator::Item`. |
3440 | type Item: Send; |
3441 | |
3442 | /// Returns a draining parallel iterator over a range of the collection. |
3443 | /// |
3444 | /// When the iterator is dropped, all items in the range are removed, even |
3445 | /// if the iterator was not fully consumed. If the iterator is leaked, for |
3446 | /// example using `std::mem::forget`, it is unspecified how many items are |
3447 | /// removed. |
3448 | /// |
3449 | /// # Examples |
3450 | /// |
3451 | /// ``` |
3452 | /// use rayon::prelude::*; |
3453 | /// |
3454 | /// let squares: Vec<i32> = (0..10).map(|x| x * x).collect(); |
3455 | /// |
3456 | /// println!("RangeFull" ); |
3457 | /// let mut vec = squares.clone(); |
3458 | /// assert!(vec.par_drain(..) |
3459 | /// .eq(squares.par_iter().copied())); |
3460 | /// assert!(vec.is_empty()); |
3461 | /// assert!(vec.capacity() >= squares.len()); |
3462 | /// |
3463 | /// println!("RangeFrom" ); |
3464 | /// let mut vec = squares.clone(); |
3465 | /// assert!(vec.par_drain(5..) |
3466 | /// .eq(squares[5..].par_iter().copied())); |
3467 | /// assert_eq!(&vec[..], &squares[..5]); |
3468 | /// assert!(vec.capacity() >= squares.len()); |
3469 | /// |
3470 | /// println!("RangeTo" ); |
3471 | /// let mut vec = squares.clone(); |
3472 | /// assert!(vec.par_drain(..5) |
3473 | /// .eq(squares[..5].par_iter().copied())); |
3474 | /// assert_eq!(&vec[..], &squares[5..]); |
3475 | /// assert!(vec.capacity() >= squares.len()); |
3476 | /// |
3477 | /// println!("RangeToInclusive" ); |
3478 | /// let mut vec = squares.clone(); |
3479 | /// assert!(vec.par_drain(..=5) |
3480 | /// .eq(squares[..=5].par_iter().copied())); |
3481 | /// assert_eq!(&vec[..], &squares[6..]); |
3482 | /// assert!(vec.capacity() >= squares.len()); |
3483 | /// |
3484 | /// println!("Range" ); |
3485 | /// let mut vec = squares.clone(); |
3486 | /// assert!(vec.par_drain(3..7) |
3487 | /// .eq(squares[3..7].par_iter().copied())); |
3488 | /// assert_eq!(&vec[..3], &squares[..3]); |
3489 | /// assert_eq!(&vec[3..], &squares[7..]); |
3490 | /// assert!(vec.capacity() >= squares.len()); |
3491 | /// |
3492 | /// println!("RangeInclusive" ); |
3493 | /// let mut vec = squares.clone(); |
3494 | /// assert!(vec.par_drain(3..=7) |
3495 | /// .eq(squares[3..=7].par_iter().copied())); |
3496 | /// assert_eq!(&vec[..3], &squares[..3]); |
3497 | /// assert_eq!(&vec[3..], &squares[8..]); |
3498 | /// assert!(vec.capacity() >= squares.len()); |
3499 | /// ``` |
3500 | fn par_drain<R: RangeBounds<Idx>>(self, range: R) -> Self::Iter; |
3501 | } |
3502 | |
3503 | /// We hide the `Try` trait in a private module, as it's only meant to be a |
3504 | /// stable clone of the standard library's `Try` trait, as yet unstable. |
3505 | mod private { |
3506 | use std::convert::Infallible; |
3507 | use std::ops::ControlFlow::{self, Break, Continue}; |
3508 | use std::task::Poll; |
3509 | |
3510 | /// Clone of `std::ops::Try`. |
3511 | /// |
3512 | /// Implementing this trait is not permitted outside of `rayon`. |
3513 | pub trait Try { |
3514 | private_decl! {} |
3515 | |
3516 | type Output; |
3517 | type Residual; |
3518 | |
3519 | fn from_output(output: Self::Output) -> Self; |
3520 | |
3521 | fn from_residual(residual: Self::Residual) -> Self; |
3522 | |
3523 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output>; |
3524 | } |
3525 | |
3526 | impl<B, C> Try for ControlFlow<B, C> { |
3527 | private_impl! {} |
3528 | |
3529 | type Output = C; |
3530 | type Residual = ControlFlow<B, Infallible>; |
3531 | |
3532 | fn from_output(output: Self::Output) -> Self { |
3533 | Continue(output) |
3534 | } |
3535 | |
3536 | fn from_residual(residual: Self::Residual) -> Self { |
3537 | match residual { |
3538 | Break(b) => Break(b), |
3539 | Continue(_) => unreachable!(), |
3540 | } |
3541 | } |
3542 | |
3543 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3544 | match self { |
3545 | Continue(c) => Continue(c), |
3546 | Break(b) => Break(Break(b)), |
3547 | } |
3548 | } |
3549 | } |
3550 | |
3551 | impl<T> Try for Option<T> { |
3552 | private_impl! {} |
3553 | |
3554 | type Output = T; |
3555 | type Residual = Option<Infallible>; |
3556 | |
3557 | fn from_output(output: Self::Output) -> Self { |
3558 | Some(output) |
3559 | } |
3560 | |
3561 | fn from_residual(residual: Self::Residual) -> Self { |
3562 | match residual { |
3563 | None => None, |
3564 | Some(_) => unreachable!(), |
3565 | } |
3566 | } |
3567 | |
3568 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3569 | match self { |
3570 | Some(c) => Continue(c), |
3571 | None => Break(None), |
3572 | } |
3573 | } |
3574 | } |
3575 | |
3576 | impl<T, E> Try for Result<T, E> { |
3577 | private_impl! {} |
3578 | |
3579 | type Output = T; |
3580 | type Residual = Result<Infallible, E>; |
3581 | |
3582 | fn from_output(output: Self::Output) -> Self { |
3583 | Ok(output) |
3584 | } |
3585 | |
3586 | fn from_residual(residual: Self::Residual) -> Self { |
3587 | match residual { |
3588 | Err(e) => Err(e), |
3589 | Ok(_) => unreachable!(), |
3590 | } |
3591 | } |
3592 | |
3593 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3594 | match self { |
3595 | Ok(c) => Continue(c), |
3596 | Err(e) => Break(Err(e)), |
3597 | } |
3598 | } |
3599 | } |
3600 | |
3601 | impl<T, E> Try for Poll<Result<T, E>> { |
3602 | private_impl! {} |
3603 | |
3604 | type Output = Poll<T>; |
3605 | type Residual = Result<Infallible, E>; |
3606 | |
3607 | fn from_output(output: Self::Output) -> Self { |
3608 | output.map(Ok) |
3609 | } |
3610 | |
3611 | fn from_residual(residual: Self::Residual) -> Self { |
3612 | match residual { |
3613 | Err(e) => Poll::Ready(Err(e)), |
3614 | Ok(_) => unreachable!(), |
3615 | } |
3616 | } |
3617 | |
3618 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3619 | match self { |
3620 | Poll::Pending => Continue(Poll::Pending), |
3621 | Poll::Ready(Ok(c)) => Continue(Poll::Ready(c)), |
3622 | Poll::Ready(Err(e)) => Break(Err(e)), |
3623 | } |
3624 | } |
3625 | } |
3626 | |
3627 | impl<T, E> Try for Poll<Option<Result<T, E>>> { |
3628 | private_impl! {} |
3629 | |
3630 | type Output = Poll<Option<T>>; |
3631 | type Residual = Result<Infallible, E>; |
3632 | |
3633 | fn from_output(output: Self::Output) -> Self { |
3634 | match output { |
3635 | Poll::Ready(o) => Poll::Ready(o.map(Ok)), |
3636 | Poll::Pending => Poll::Pending, |
3637 | } |
3638 | } |
3639 | |
3640 | fn from_residual(residual: Self::Residual) -> Self { |
3641 | match residual { |
3642 | Err(e) => Poll::Ready(Some(Err(e))), |
3643 | Ok(_) => unreachable!(), |
3644 | } |
3645 | } |
3646 | |
3647 | fn branch(self) -> ControlFlow<Self::Residual, Self::Output> { |
3648 | match self { |
3649 | Poll::Pending => Continue(Poll::Pending), |
3650 | Poll::Ready(None) => Continue(Poll::Ready(None)), |
3651 | Poll::Ready(Some(Ok(c))) => Continue(Poll::Ready(Some(c))), |
3652 | Poll::Ready(Some(Err(e))) => Break(Err(e)), |
3653 | } |
3654 | } |
3655 | } |
3656 | } |
3657 | |