1//! Traits for writing parallel programs using an iterator-style interface
2//!
3//! You will rarely need to interact with this module directly unless you have
4//! need to name one of the iterator types.
5//!
6//! Parallel iterators make it easy to write iterator-like chains that
7//! execute in parallel: typically all you have to do is convert the
8//! first `.iter()` (or `iter_mut()`, `into_iter()`, etc) method into
9//! `par_iter()` (or `par_iter_mut()`, `into_par_iter()`, etc). For
10//! example, to compute the sum of the squares of a sequence of
11//! integers, one might write:
12//!
13//! ```rust
14//! use rayon::prelude::*;
15//! fn sum_of_squares(input: &[i32]) -> i32 {
16//! input.par_iter()
17//! .map(|i| i * i)
18//! .sum()
19//! }
20//! ```
21//!
22//! Or, to increment all the integers in a slice, you could write:
23//!
24//! ```rust
25//! use rayon::prelude::*;
26//! fn increment_all(input: &mut [i32]) {
27//! input.par_iter_mut()
28//! .for_each(|p| *p += 1);
29//! }
30//! ```
31//!
32//! To use parallel iterators, first import the traits by adding
33//! something like `use rayon::prelude::*` to your module. You can
34//! then call `par_iter`, `par_iter_mut`, or `into_par_iter` to get a
35//! parallel iterator. Like a [regular iterator][], parallel
36//! iterators work by first constructing a computation and then
37//! executing it.
38//!
39//! In addition to `par_iter()` and friends, some types offer other
40//! ways to create (or consume) parallel iterators:
41//!
42//! - Slices (`&[T]`, `&mut [T]`) offer methods like `par_split` and
43//! `par_windows`, as well as various parallel sorting
44//! operations. See [the `ParallelSlice` trait] for the full list.
45//! - Strings (`&str`) offer methods like `par_split` and `par_lines`.
46//! See [the `ParallelString` trait] for the full list.
47//! - Various collections offer [`par_extend`], which grows a
48//! collection given a parallel iterator. (If you don't have a
49//! collection to extend, you can use [`collect()`] to create a new
50//! one from scratch.)
51//!
52//! [the `ParallelSlice` trait]: ../slice/trait.ParallelSlice.html
53//! [the `ParallelString` trait]: ../str/trait.ParallelString.html
54//! [`par_extend`]: trait.ParallelExtend.html
55//! [`collect()`]: trait.ParallelIterator.html#method.collect
56//!
57//! To see the full range of methods available on parallel iterators,
58//! check out the [`ParallelIterator`] and [`IndexedParallelIterator`]
59//! traits.
60//!
61//! If you'd like to build a custom parallel iterator, or to write your own
62//! combinator, then check out the [split] function and the [plumbing] module.
63//!
64//! [regular iterator]: https://doc.rust-lang.org/std/iter/trait.Iterator.html
65//! [`ParallelIterator`]: trait.ParallelIterator.html
66//! [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
67//! [split]: fn.split.html
68//! [plumbing]: plumbing/index.html
69//!
70//! Note: Several of the `ParallelIterator` methods rely on a `Try` trait which
71//! has been deliberately obscured from the public API. This trait is intended
72//! to mirror the unstable `std::ops::Try` with implementations for `Option` and
73//! `Result`, where `Some`/`Ok` values will let those iterators continue, but
74//! `None`/`Err` values will exit early.
75//!
76//! A note about object safety: It is currently _not_ possible to wrap
77//! a `ParallelIterator` (or any trait that depends on it) using a
78//! `Box<dyn ParallelIterator>` or other kind of dynamic allocation,
79//! because `ParallelIterator` is **not object-safe**.
80//! (This keeps the implementation simpler and allows extra optimizations.)
81
82use self::plumbing::*;
83use self::private::Try;
84pub use either::Either;
85use std::cmp::{self, Ordering};
86use std::collections::LinkedList;
87use std::iter::{Product, Sum};
88use std::ops::{Fn, RangeBounds};
89
90pub mod plumbing;
91
92#[cfg(test)]
93mod test;
94
95// There is a method to the madness here:
96//
97// - These modules are private but expose certain types to the end-user
98// (e.g., `enumerate::Enumerate`) -- specifically, the types that appear in the
99// public API surface of the `ParallelIterator` traits.
100// - In **this** module, those public types are always used unprefixed, which forces
101// us to add a `pub use` and helps identify if we missed anything.
102// - In contrast, items that appear **only** in the body of a method,
103// e.g. `find::find()`, are always used **prefixed**, so that they
104// can be readily distinguished.
105
106mod blocks;
107mod chain;
108mod chunks;
109mod cloned;
110mod collect;
111mod copied;
112mod empty;
113mod enumerate;
114mod extend;
115mod filter;
116mod filter_map;
117mod find;
118mod find_first_last;
119mod flat_map;
120mod flat_map_iter;
121mod flatten;
122mod flatten_iter;
123mod fold;
124mod fold_chunks;
125mod fold_chunks_with;
126mod for_each;
127mod from_par_iter;
128mod inspect;
129mod interleave;
130mod interleave_shortest;
131mod intersperse;
132mod len;
133mod map;
134mod map_with;
135mod multizip;
136mod noop;
137mod once;
138mod panic_fuse;
139mod par_bridge;
140mod positions;
141mod product;
142mod reduce;
143mod repeat;
144mod rev;
145mod skip;
146mod skip_any;
147mod skip_any_while;
148mod splitter;
149mod step_by;
150mod sum;
151mod take;
152mod take_any;
153mod take_any_while;
154mod try_fold;
155mod try_reduce;
156mod try_reduce_with;
157mod unzip;
158mod update;
159mod walk_tree;
160mod while_some;
161mod zip;
162mod zip_eq;
163
164pub use self::{
165 blocks::{ExponentialBlocks, UniformBlocks},
166 chain::Chain,
167 chunks::Chunks,
168 cloned::Cloned,
169 copied::Copied,
170 empty::{empty, Empty},
171 enumerate::Enumerate,
172 filter::Filter,
173 filter_map::FilterMap,
174 flat_map::FlatMap,
175 flat_map_iter::FlatMapIter,
176 flatten::Flatten,
177 flatten_iter::FlattenIter,
178 fold::{Fold, FoldWith},
179 fold_chunks::FoldChunks,
180 fold_chunks_with::FoldChunksWith,
181 inspect::Inspect,
182 interleave::Interleave,
183 interleave_shortest::InterleaveShortest,
184 intersperse::Intersperse,
185 len::{MaxLen, MinLen},
186 map::Map,
187 map_with::{MapInit, MapWith},
188 multizip::MultiZip,
189 once::{once, Once},
190 panic_fuse::PanicFuse,
191 par_bridge::{IterBridge, ParallelBridge},
192 positions::Positions,
193 repeat::{repeat, repeatn, Repeat, RepeatN},
194 rev::Rev,
195 skip::Skip,
196 skip_any::SkipAny,
197 skip_any_while::SkipAnyWhile,
198 splitter::{split, Split},
199 step_by::StepBy,
200 take::Take,
201 take_any::TakeAny,
202 take_any_while::TakeAnyWhile,
203 try_fold::{TryFold, TryFoldWith},
204 update::Update,
205 walk_tree::{
206 walk_tree, walk_tree_postfix, walk_tree_prefix, WalkTree, WalkTreePostfix, WalkTreePrefix,
207 },
208 while_some::WhileSome,
209 zip::Zip,
210 zip_eq::ZipEq,
211};
212
213/// `IntoParallelIterator` implements the conversion to a [`ParallelIterator`].
214///
215/// By implementing `IntoParallelIterator` for a type, you define how it will
216/// transformed into an iterator. This is a parallel version of the standard
217/// library's [`std::iter::IntoIterator`] trait.
218///
219/// [`ParallelIterator`]: trait.ParallelIterator.html
220/// [`std::iter::IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
221pub trait IntoParallelIterator {
222 /// The parallel iterator type that will be created.
223 type Iter: ParallelIterator<Item = Self::Item>;
224
225 /// The type of item that the parallel iterator will produce.
226 type Item: Send;
227
228 /// Converts `self` into a parallel iterator.
229 ///
230 /// # Examples
231 ///
232 /// ```
233 /// use rayon::prelude::*;
234 ///
235 /// println!("counting in parallel:");
236 /// (0..100).into_par_iter()
237 /// .for_each(|i| println!("{}", i));
238 /// ```
239 ///
240 /// This conversion is often implicit for arguments to methods like [`zip`].
241 ///
242 /// ```
243 /// use rayon::prelude::*;
244 ///
245 /// let v: Vec<_> = (0..5).into_par_iter().zip(5..10).collect();
246 /// assert_eq!(v, [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]);
247 /// ```
248 ///
249 /// [`zip`]: trait.IndexedParallelIterator.html#method.zip
250 fn into_par_iter(self) -> Self::Iter;
251}
252
253/// `IntoParallelRefIterator` implements the conversion to a
254/// [`ParallelIterator`], providing shared references to the data.
255///
256/// This is a parallel version of the `iter()` method
257/// defined by various collections.
258///
259/// This trait is automatically implemented
260/// `for I where &I: IntoParallelIterator`. In most cases, users
261/// will want to implement [`IntoParallelIterator`] rather than implement
262/// this trait directly.
263///
264/// [`ParallelIterator`]: trait.ParallelIterator.html
265/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
266pub trait IntoParallelRefIterator<'data> {
267 /// The type of the parallel iterator that will be returned.
268 type Iter: ParallelIterator<Item = Self::Item>;
269
270 /// The type of item that the parallel iterator will produce.
271 /// This will typically be an `&'data T` reference type.
272 type Item: Send + 'data;
273
274 /// Converts `self` into a parallel iterator.
275 ///
276 /// # Examples
277 ///
278 /// ```
279 /// use rayon::prelude::*;
280 ///
281 /// let v: Vec<_> = (0..100).collect();
282 /// assert_eq!(v.par_iter().sum::<i32>(), 100 * 99 / 2);
283 ///
284 /// // `v.par_iter()` is shorthand for `(&v).into_par_iter()`,
285 /// // producing the exact same references.
286 /// assert!(v.par_iter().zip(&v)
287 /// .all(|(a, b)| std::ptr::eq(a, b)));
288 /// ```
289 fn par_iter(&'data self) -> Self::Iter;
290}
291
292impl<'data, I: 'data + ?Sized> IntoParallelRefIterator<'data> for I
293where
294 &'data I: IntoParallelIterator,
295{
296 type Iter = <&'data I as IntoParallelIterator>::Iter;
297 type Item = <&'data I as IntoParallelIterator>::Item;
298
299 fn par_iter(&'data self) -> Self::Iter {
300 self.into_par_iter()
301 }
302}
303
304/// `IntoParallelRefMutIterator` implements the conversion to a
305/// [`ParallelIterator`], providing mutable references to the data.
306///
307/// This is a parallel version of the `iter_mut()` method
308/// defined by various collections.
309///
310/// This trait is automatically implemented
311/// `for I where &mut I: IntoParallelIterator`. In most cases, users
312/// will want to implement [`IntoParallelIterator`] rather than implement
313/// this trait directly.
314///
315/// [`ParallelIterator`]: trait.ParallelIterator.html
316/// [`IntoParallelIterator`]: trait.IntoParallelIterator.html
317pub trait IntoParallelRefMutIterator<'data> {
318 /// The type of iterator that will be created.
319 type Iter: ParallelIterator<Item = Self::Item>;
320
321 /// The type of item that will be produced; this is typically an
322 /// `&'data mut T` reference.
323 type Item: Send + 'data;
324
325 /// Creates the parallel iterator from `self`.
326 ///
327 /// # Examples
328 ///
329 /// ```
330 /// use rayon::prelude::*;
331 ///
332 /// let mut v = vec![0usize; 5];
333 /// v.par_iter_mut().enumerate().for_each(|(i, x)| *x = i);
334 /// assert_eq!(v, [0, 1, 2, 3, 4]);
335 /// ```
336 fn par_iter_mut(&'data mut self) -> Self::Iter;
337}
338
339impl<'data, I: 'data + ?Sized> IntoParallelRefMutIterator<'data> for I
340where
341 &'data mut I: IntoParallelIterator,
342{
343 type Iter = <&'data mut I as IntoParallelIterator>::Iter;
344 type Item = <&'data mut I as IntoParallelIterator>::Item;
345
346 fn par_iter_mut(&'data mut self) -> Self::Iter {
347 self.into_par_iter()
348 }
349}
350
351/// Parallel version of the standard iterator trait.
352///
353/// The combinators on this trait are available on **all** parallel
354/// iterators. Additional methods can be found on the
355/// [`IndexedParallelIterator`] trait: those methods are only
356/// available for parallel iterators where the number of items is
357/// known in advance (so, e.g., after invoking `filter`, those methods
358/// become unavailable).
359///
360/// For examples of using parallel iterators, see [the docs on the
361/// `iter` module][iter].
362///
363/// [iter]: index.html
364/// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
365pub trait ParallelIterator: Sized + Send {
366 /// The type of item that this parallel iterator produces.
367 /// For example, if you use the [`for_each`] method, this is the type of
368 /// item that your closure will be invoked with.
369 ///
370 /// [`for_each`]: #method.for_each
371 type Item: Send;
372
373 /// Executes `OP` on each item produced by the iterator, in parallel.
374 ///
375 /// # Examples
376 ///
377 /// ```
378 /// use rayon::prelude::*;
379 ///
380 /// (0..100).into_par_iter().for_each(|x| println!("{:?}", x));
381 /// ```
382 fn for_each<OP>(self, op: OP)
383 where
384 OP: Fn(Self::Item) + Sync + Send,
385 {
386 for_each::for_each(self, &op)
387 }
388
389 /// Executes `OP` on the given `init` value with each item produced by
390 /// the iterator, in parallel.
391 ///
392 /// The `init` value will be cloned only as needed to be paired with
393 /// the group of items in each rayon job. It does not require the type
394 /// to be `Sync`.
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// use std::sync::mpsc::channel;
400 /// use rayon::prelude::*;
401 ///
402 /// let (sender, receiver) = channel();
403 ///
404 /// (0..5).into_par_iter().for_each_with(sender, |s, x| s.send(x).unwrap());
405 ///
406 /// let mut res: Vec<_> = receiver.iter().collect();
407 ///
408 /// res.sort();
409 ///
410 /// assert_eq!(&res[..], &[0, 1, 2, 3, 4])
411 /// ```
412 fn for_each_with<OP, T>(self, init: T, op: OP)
413 where
414 OP: Fn(&mut T, Self::Item) + Sync + Send,
415 T: Send + Clone,
416 {
417 self.map_with(init, op).collect()
418 }
419
420 /// Executes `OP` on a value returned by `init` with each item produced by
421 /// the iterator, in parallel.
422 ///
423 /// The `init` function will be called only as needed for a value to be
424 /// paired with the group of items in each rayon job. There is no
425 /// constraint on that returned type at all!
426 ///
427 /// # Examples
428 ///
429 /// ```
430 /// use rand::Rng;
431 /// use rayon::prelude::*;
432 ///
433 /// let mut v = vec![0u8; 1_000_000];
434 ///
435 /// v.par_chunks_mut(1000)
436 /// .for_each_init(
437 /// || rand::thread_rng(),
438 /// |rng, chunk| rng.fill(chunk),
439 /// );
440 ///
441 /// // There's a remote chance that this will fail...
442 /// for i in 0u8..=255 {
443 /// assert!(v.contains(&i));
444 /// }
445 /// ```
446 fn for_each_init<OP, INIT, T>(self, init: INIT, op: OP)
447 where
448 OP: Fn(&mut T, Self::Item) + Sync + Send,
449 INIT: Fn() -> T + Sync + Send,
450 {
451 self.map_init(init, op).collect()
452 }
453
454 /// Executes a fallible `OP` on each item produced by the iterator, in parallel.
455 ///
456 /// If the `OP` returns `Result::Err` or `Option::None`, we will attempt to
457 /// stop processing the rest of the items in the iterator as soon as
458 /// possible, and we will return that terminating value. Otherwise, we will
459 /// return an empty `Result::Ok(())` or `Option::Some(())`. If there are
460 /// multiple errors in parallel, it is not specified which will be returned.
461 ///
462 /// # Examples
463 ///
464 /// ```
465 /// use rayon::prelude::*;
466 /// use std::io::{self, Write};
467 ///
468 /// // This will stop iteration early if there's any write error, like
469 /// // having piped output get closed on the other end.
470 /// (0..100).into_par_iter()
471 /// .try_for_each(|x| writeln!(io::stdout(), "{:?}", x))
472 /// .expect("expected no write errors");
473 /// ```
474 fn try_for_each<OP, R>(self, op: OP) -> R
475 where
476 OP: Fn(Self::Item) -> R + Sync + Send,
477 R: Try<Output = ()> + Send,
478 {
479 fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R {
480 R::from_output(())
481 }
482
483 self.map(op).try_reduce(<()>::default, ok)
484 }
485
486 /// Executes a fallible `OP` on the given `init` value with each item
487 /// produced by the iterator, in parallel.
488 ///
489 /// This combines the `init` semantics of [`for_each_with()`] and the
490 /// failure semantics of [`try_for_each()`].
491 ///
492 /// [`for_each_with()`]: #method.for_each_with
493 /// [`try_for_each()`]: #method.try_for_each
494 ///
495 /// # Examples
496 ///
497 /// ```
498 /// use std::sync::mpsc::channel;
499 /// use rayon::prelude::*;
500 ///
501 /// let (sender, receiver) = channel();
502 ///
503 /// (0..5).into_par_iter()
504 /// .try_for_each_with(sender, |s, x| s.send(x))
505 /// .expect("expected no send errors");
506 ///
507 /// let mut res: Vec<_> = receiver.iter().collect();
508 ///
509 /// res.sort();
510 ///
511 /// assert_eq!(&res[..], &[0, 1, 2, 3, 4])
512 /// ```
513 fn try_for_each_with<OP, T, R>(self, init: T, op: OP) -> R
514 where
515 OP: Fn(&mut T, Self::Item) -> R + Sync + Send,
516 T: Send + Clone,
517 R: Try<Output = ()> + Send,
518 {
519 fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R {
520 R::from_output(())
521 }
522
523 self.map_with(init, op).try_reduce(<()>::default, ok)
524 }
525
526 /// Executes a fallible `OP` on a value returned by `init` with each item
527 /// produced by the iterator, in parallel.
528 ///
529 /// This combines the `init` semantics of [`for_each_init()`] and the
530 /// failure semantics of [`try_for_each()`].
531 ///
532 /// [`for_each_init()`]: #method.for_each_init
533 /// [`try_for_each()`]: #method.try_for_each
534 ///
535 /// # Examples
536 ///
537 /// ```
538 /// use rand::Rng;
539 /// use rayon::prelude::*;
540 ///
541 /// let mut v = vec![0u8; 1_000_000];
542 ///
543 /// v.par_chunks_mut(1000)
544 /// .try_for_each_init(
545 /// || rand::thread_rng(),
546 /// |rng, chunk| rng.try_fill(chunk),
547 /// )
548 /// .expect("expected no rand errors");
549 ///
550 /// // There's a remote chance that this will fail...
551 /// for i in 0u8..=255 {
552 /// assert!(v.contains(&i));
553 /// }
554 /// ```
555 fn try_for_each_init<OP, INIT, T, R>(self, init: INIT, op: OP) -> R
556 where
557 OP: Fn(&mut T, Self::Item) -> R + Sync + Send,
558 INIT: Fn() -> T + Sync + Send,
559 R: Try<Output = ()> + Send,
560 {
561 fn ok<R: Try<Output = ()>>(_: (), _: ()) -> R {
562 R::from_output(())
563 }
564
565 self.map_init(init, op).try_reduce(<()>::default, ok)
566 }
567
568 /// Counts the number of items in this parallel iterator.
569 ///
570 /// # Examples
571 ///
572 /// ```
573 /// use rayon::prelude::*;
574 ///
575 /// let count = (0..100).into_par_iter().count();
576 ///
577 /// assert_eq!(count, 100);
578 /// ```
579 fn count(self) -> usize {
580 fn one<T>(_: T) -> usize {
581 1
582 }
583
584 self.map(one).sum()
585 }
586
587 /// Applies `map_op` to each item of this iterator, producing a new
588 /// iterator with the results.
589 ///
590 /// # Examples
591 ///
592 /// ```
593 /// use rayon::prelude::*;
594 ///
595 /// let mut par_iter = (0..5).into_par_iter().map(|x| x * 2);
596 ///
597 /// let doubles: Vec<_> = par_iter.collect();
598 ///
599 /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]);
600 /// ```
601 fn map<F, R>(self, map_op: F) -> Map<Self, F>
602 where
603 F: Fn(Self::Item) -> R + Sync + Send,
604 R: Send,
605 {
606 Map::new(self, map_op)
607 }
608
609 /// Applies `map_op` to the given `init` value with each item of this
610 /// iterator, producing a new iterator with the results.
611 ///
612 /// The `init` value will be cloned only as needed to be paired with
613 /// the group of items in each rayon job. It does not require the type
614 /// to be `Sync`.
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// use std::sync::mpsc::channel;
620 /// use rayon::prelude::*;
621 ///
622 /// let (sender, receiver) = channel();
623 ///
624 /// let a: Vec<_> = (0..5)
625 /// .into_par_iter() // iterating over i32
626 /// .map_with(sender, |s, x| {
627 /// s.send(x).unwrap(); // sending i32 values through the channel
628 /// x // returning i32
629 /// })
630 /// .collect(); // collecting the returned values into a vector
631 ///
632 /// let mut b: Vec<_> = receiver.iter() // iterating over the values in the channel
633 /// .collect(); // and collecting them
634 /// b.sort();
635 ///
636 /// assert_eq!(a, b);
637 /// ```
638 fn map_with<F, T, R>(self, init: T, map_op: F) -> MapWith<Self, T, F>
639 where
640 F: Fn(&mut T, Self::Item) -> R + Sync + Send,
641 T: Send + Clone,
642 R: Send,
643 {
644 MapWith::new(self, init, map_op)
645 }
646
647 /// Applies `map_op` to a value returned by `init` with each item of this
648 /// iterator, producing a new iterator with the results.
649 ///
650 /// The `init` function will be called only as needed for a value to be
651 /// paired with the group of items in each rayon job. There is no
652 /// constraint on that returned type at all!
653 ///
654 /// # Examples
655 ///
656 /// ```
657 /// use rand::Rng;
658 /// use rayon::prelude::*;
659 ///
660 /// let a: Vec<_> = (1i32..1_000_000)
661 /// .into_par_iter()
662 /// .map_init(
663 /// || rand::thread_rng(), // get the thread-local RNG
664 /// |rng, x| if rng.gen() { // randomly negate items
665 /// -x
666 /// } else {
667 /// x
668 /// },
669 /// ).collect();
670 ///
671 /// // There's a remote chance that this will fail...
672 /// assert!(a.iter().any(|&x| x < 0));
673 /// assert!(a.iter().any(|&x| x > 0));
674 /// ```
675 fn map_init<F, INIT, T, R>(self, init: INIT, map_op: F) -> MapInit<Self, INIT, F>
676 where
677 F: Fn(&mut T, Self::Item) -> R + Sync + Send,
678 INIT: Fn() -> T + Sync + Send,
679 R: Send,
680 {
681 MapInit::new(self, init, map_op)
682 }
683
684 /// Creates an iterator which clones all of its elements. This may be
685 /// useful when you have an iterator over `&T`, but you need `T`, and
686 /// that type implements `Clone`. See also [`copied()`].
687 ///
688 /// [`copied()`]: #method.copied
689 ///
690 /// # Examples
691 ///
692 /// ```
693 /// use rayon::prelude::*;
694 ///
695 /// let a = [1, 2, 3];
696 ///
697 /// let v_cloned: Vec<_> = a.par_iter().cloned().collect();
698 ///
699 /// // cloned is the same as .map(|&x| x), for integers
700 /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect();
701 ///
702 /// assert_eq!(v_cloned, vec![1, 2, 3]);
703 /// assert_eq!(v_map, vec![1, 2, 3]);
704 /// ```
705 fn cloned<'a, T>(self) -> Cloned<Self>
706 where
707 T: 'a + Clone + Send,
708 Self: ParallelIterator<Item = &'a T>,
709 {
710 Cloned::new(self)
711 }
712
713 /// Creates an iterator which copies all of its elements. This may be
714 /// useful when you have an iterator over `&T`, but you need `T`, and
715 /// that type implements `Copy`. See also [`cloned()`].
716 ///
717 /// [`cloned()`]: #method.cloned
718 ///
719 /// # Examples
720 ///
721 /// ```
722 /// use rayon::prelude::*;
723 ///
724 /// let a = [1, 2, 3];
725 ///
726 /// let v_copied: Vec<_> = a.par_iter().copied().collect();
727 ///
728 /// // copied is the same as .map(|&x| x), for integers
729 /// let v_map: Vec<_> = a.par_iter().map(|&x| x).collect();
730 ///
731 /// assert_eq!(v_copied, vec![1, 2, 3]);
732 /// assert_eq!(v_map, vec![1, 2, 3]);
733 /// ```
734 fn copied<'a, T>(self) -> Copied<Self>
735 where
736 T: 'a + Copy + Send,
737 Self: ParallelIterator<Item = &'a T>,
738 {
739 Copied::new(self)
740 }
741
742 /// Applies `inspect_op` to a reference to each item of this iterator,
743 /// producing a new iterator passing through the original items. This is
744 /// often useful for debugging to see what's happening in iterator stages.
745 ///
746 /// # Examples
747 ///
748 /// ```
749 /// use rayon::prelude::*;
750 ///
751 /// let a = [1, 4, 2, 3];
752 ///
753 /// // this iterator sequence is complex.
754 /// let sum = a.par_iter()
755 /// .cloned()
756 /// .filter(|&x| x % 2 == 0)
757 /// .reduce(|| 0, |sum, i| sum + i);
758 ///
759 /// println!("{}", sum);
760 ///
761 /// // let's add some inspect() calls to investigate what's happening
762 /// let sum = a.par_iter()
763 /// .cloned()
764 /// .inspect(|x| println!("about to filter: {}", x))
765 /// .filter(|&x| x % 2 == 0)
766 /// .inspect(|x| println!("made it through filter: {}", x))
767 /// .reduce(|| 0, |sum, i| sum + i);
768 ///
769 /// println!("{}", sum);
770 /// ```
771 fn inspect<OP>(self, inspect_op: OP) -> Inspect<Self, OP>
772 where
773 OP: Fn(&Self::Item) + Sync + Send,
774 {
775 Inspect::new(self, inspect_op)
776 }
777
778 /// Mutates each item of this iterator before yielding it.
779 ///
780 /// # Examples
781 ///
782 /// ```
783 /// use rayon::prelude::*;
784 ///
785 /// let par_iter = (0..5).into_par_iter().update(|x| {*x *= 2;});
786 ///
787 /// let doubles: Vec<_> = par_iter.collect();
788 ///
789 /// assert_eq!(&doubles[..], &[0, 2, 4, 6, 8]);
790 /// ```
791 fn update<F>(self, update_op: F) -> Update<Self, F>
792 where
793 F: Fn(&mut Self::Item) + Sync + Send,
794 {
795 Update::new(self, update_op)
796 }
797
798 /// Applies `filter_op` to each item of this iterator, producing a new
799 /// iterator with only the items that gave `true` results.
800 ///
801 /// # Examples
802 ///
803 /// ```
804 /// use rayon::prelude::*;
805 ///
806 /// let mut par_iter = (0..10).into_par_iter().filter(|x| x % 2 == 0);
807 ///
808 /// let even_numbers: Vec<_> = par_iter.collect();
809 ///
810 /// assert_eq!(&even_numbers[..], &[0, 2, 4, 6, 8]);
811 /// ```
812 fn filter<P>(self, filter_op: P) -> Filter<Self, P>
813 where
814 P: Fn(&Self::Item) -> bool + Sync + Send,
815 {
816 Filter::new(self, filter_op)
817 }
818
819 /// Applies `filter_op` to each item of this iterator to get an `Option`,
820 /// producing a new iterator with only the items from `Some` results.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// use rayon::prelude::*;
826 ///
827 /// let mut par_iter = (0..10).into_par_iter()
828 /// .filter_map(|x| {
829 /// if x % 2 == 0 { Some(x * 3) }
830 /// else { None }
831 /// });
832 ///
833 /// let even_numbers: Vec<_> = par_iter.collect();
834 ///
835 /// assert_eq!(&even_numbers[..], &[0, 6, 12, 18, 24]);
836 /// ```
837 fn filter_map<P, R>(self, filter_op: P) -> FilterMap<Self, P>
838 where
839 P: Fn(Self::Item) -> Option<R> + Sync + Send,
840 R: Send,
841 {
842 FilterMap::new(self, filter_op)
843 }
844
845 /// Applies `map_op` to each item of this iterator to get nested parallel iterators,
846 /// producing a new parallel iterator that flattens these back into one.
847 ///
848 /// See also [`flat_map_iter`](#method.flat_map_iter).
849 ///
850 /// # Examples
851 ///
852 /// ```
853 /// use rayon::prelude::*;
854 ///
855 /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]];
856 ///
857 /// let par_iter = a.par_iter().cloned().flat_map(|a| a.to_vec());
858 ///
859 /// let vec: Vec<_> = par_iter.collect();
860 ///
861 /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]);
862 /// ```
863 fn flat_map<F, PI>(self, map_op: F) -> FlatMap<Self, F>
864 where
865 F: Fn(Self::Item) -> PI + Sync + Send,
866 PI: IntoParallelIterator,
867 {
868 FlatMap::new(self, map_op)
869 }
870
871 /// Applies `map_op` to each item of this iterator to get nested serial iterators,
872 /// producing a new parallel iterator that flattens these back into one.
873 ///
874 /// # `flat_map_iter` versus `flat_map`
875 ///
876 /// These two methods are similar but behave slightly differently. With [`flat_map`],
877 /// each of the nested iterators must be a parallel iterator, and they will be further
878 /// split up with nested parallelism. With `flat_map_iter`, each nested iterator is a
879 /// sequential `Iterator`, and we only parallelize _between_ them, while the items
880 /// produced by each nested iterator are processed sequentially.
881 ///
882 /// When choosing between these methods, consider whether nested parallelism suits the
883 /// potential iterators at hand. If there's little computation involved, or its length
884 /// is much less than the outer parallel iterator, then it may perform better to avoid
885 /// the overhead of parallelism, just flattening sequentially with `flat_map_iter`.
886 /// If there is a lot of computation, potentially outweighing the outer parallel
887 /// iterator, then the nested parallelism of `flat_map` may be worthwhile.
888 ///
889 /// [`flat_map`]: #method.flat_map
890 ///
891 /// # Examples
892 ///
893 /// ```
894 /// use rayon::prelude::*;
895 /// use std::cell::RefCell;
896 ///
897 /// let a = [[1, 2], [3, 4], [5, 6], [7, 8]];
898 ///
899 /// let par_iter = a.par_iter().flat_map_iter(|a| {
900 /// // The serial iterator doesn't have to be thread-safe, just its items.
901 /// let cell_iter = RefCell::new(a.iter().cloned());
902 /// std::iter::from_fn(move || cell_iter.borrow_mut().next())
903 /// });
904 ///
905 /// let vec: Vec<_> = par_iter.collect();
906 ///
907 /// assert_eq!(&vec[..], &[1, 2, 3, 4, 5, 6, 7, 8]);
908 /// ```
909 fn flat_map_iter<F, SI>(self, map_op: F) -> FlatMapIter<Self, F>
910 where
911 F: Fn(Self::Item) -> SI + Sync + Send,
912 SI: IntoIterator,
913 SI::Item: Send,
914 {
915 FlatMapIter::new(self, map_op)
916 }
917
918 /// An adaptor that flattens parallel-iterable `Item`s into one large iterator.
919 ///
920 /// See also [`flatten_iter`](#method.flatten_iter).
921 ///
922 /// # Examples
923 ///
924 /// ```
925 /// use rayon::prelude::*;
926 ///
927 /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]];
928 /// let y: Vec<_> = x.into_par_iter().flatten().collect();
929 ///
930 /// assert_eq!(y, vec![1, 2, 3, 4]);
931 /// ```
932 fn flatten(self) -> Flatten<Self>
933 where
934 Self::Item: IntoParallelIterator,
935 {
936 Flatten::new(self)
937 }
938
939 /// An adaptor that flattens serial-iterable `Item`s into one large iterator.
940 ///
941 /// See also [`flatten`](#method.flatten) and the analogous comparison of
942 /// [`flat_map_iter` versus `flat_map`](#flat_map_iter-versus-flat_map).
943 ///
944 /// # Examples
945 ///
946 /// ```
947 /// use rayon::prelude::*;
948 ///
949 /// let x: Vec<Vec<_>> = vec![vec![1, 2], vec![3, 4]];
950 /// let iters: Vec<_> = x.into_iter().map(Vec::into_iter).collect();
951 /// let y: Vec<_> = iters.into_par_iter().flatten_iter().collect();
952 ///
953 /// assert_eq!(y, vec![1, 2, 3, 4]);
954 /// ```
955 fn flatten_iter(self) -> FlattenIter<Self>
956 where
957 Self::Item: IntoIterator,
958 <Self::Item as IntoIterator>::Item: Send,
959 {
960 FlattenIter::new(self)
961 }
962
963 /// Reduces the items in the iterator into one item using `op`.
964 /// The argument `identity` should be a closure that can produce
965 /// "identity" value which may be inserted into the sequence as
966 /// needed to create opportunities for parallel execution. So, for
967 /// example, if you are doing a summation, then `identity()` ought
968 /// to produce something that represents the zero for your type
969 /// (but consider just calling `sum()` in that case).
970 ///
971 /// # Examples
972 ///
973 /// ```
974 /// // Iterate over a sequence of pairs `(x0, y0), ..., (xN, yN)`
975 /// // and use reduce to compute one pair `(x0 + ... + xN, y0 + ... + yN)`
976 /// // where the first/second elements are summed separately.
977 /// use rayon::prelude::*;
978 /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
979 /// .par_iter() // iterating over &(i32, i32)
980 /// .cloned() // iterating over (i32, i32)
981 /// .reduce(|| (0, 0), // the "identity" is 0 in both columns
982 /// |a, b| (a.0 + b.0, a.1 + b.1));
983 /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
984 /// ```
985 ///
986 /// **Note:** unlike a sequential `fold` operation, the order in
987 /// which `op` will be applied to reduce the result is not fully
988 /// specified. So `op` should be [associative] or else the results
989 /// will be non-deterministic. And of course `identity()` should
990 /// produce a true identity.
991 ///
992 /// [associative]: https://en.wikipedia.org/wiki/Associative_property
993 fn reduce<OP, ID>(self, identity: ID, op: OP) -> Self::Item
994 where
995 OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
996 ID: Fn() -> Self::Item + Sync + Send,
997 {
998 reduce::reduce(self, identity, op)
999 }
1000
1001 /// Reduces the items in the iterator into one item using `op`.
1002 /// If the iterator is empty, `None` is returned; otherwise,
1003 /// `Some` is returned.
1004 ///
1005 /// This version of `reduce` is simple but somewhat less
1006 /// efficient. If possible, it is better to call `reduce()`, which
1007 /// requires an identity element.
1008 ///
1009 /// # Examples
1010 ///
1011 /// ```
1012 /// use rayon::prelude::*;
1013 /// let sums = [(0, 1), (5, 6), (16, 2), (8, 9)]
1014 /// .par_iter() // iterating over &(i32, i32)
1015 /// .cloned() // iterating over (i32, i32)
1016 /// .reduce_with(|a, b| (a.0 + b.0, a.1 + b.1))
1017 /// .unwrap();
1018 /// assert_eq!(sums, (0 + 5 + 16 + 8, 1 + 6 + 2 + 9));
1019 /// ```
1020 ///
1021 /// **Note:** unlike a sequential `fold` operation, the order in
1022 /// which `op` will be applied to reduce the result is not fully
1023 /// specified. So `op` should be [associative] or else the results
1024 /// will be non-deterministic.
1025 ///
1026 /// [associative]: https://en.wikipedia.org/wiki/Associative_property
1027 fn reduce_with<OP>(self, op: OP) -> Option<Self::Item>
1028 where
1029 OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
1030 {
1031 fn opt_fold<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, T) -> Option<T> {
1032 move |opt_a, b| match opt_a {
1033 Some(a) => Some(op(a, b)),
1034 None => Some(b),
1035 }
1036 }
1037
1038 fn opt_reduce<T>(op: impl Fn(T, T) -> T) -> impl Fn(Option<T>, Option<T>) -> Option<T> {
1039 move |opt_a, opt_b| match (opt_a, opt_b) {
1040 (Some(a), Some(b)) => Some(op(a, b)),
1041 (Some(v), None) | (None, Some(v)) => Some(v),
1042 (None, None) => None,
1043 }
1044 }
1045
1046 self.fold(<_>::default, opt_fold(&op))
1047 .reduce(<_>::default, opt_reduce(&op))
1048 }
1049
1050 /// Reduces the items in the iterator into one item using a fallible `op`.
1051 /// The `identity` argument is used the same way as in [`reduce()`].
1052 ///
1053 /// [`reduce()`]: #method.reduce
1054 ///
1055 /// If a `Result::Err` or `Option::None` item is found, or if `op` reduces
1056 /// to one, we will attempt to stop processing the rest of the items in the
1057 /// iterator as soon as possible, and we will return that terminating value.
1058 /// Otherwise, we will return the final reduced `Result::Ok(T)` or
1059 /// `Option::Some(T)`. If there are multiple errors in parallel, it is not
1060 /// specified which will be returned.
1061 ///
1062 /// # Examples
1063 ///
1064 /// ```
1065 /// use rayon::prelude::*;
1066 ///
1067 /// // Compute the sum of squares, being careful about overflow.
1068 /// fn sum_squares<I: IntoParallelIterator<Item = i32>>(iter: I) -> Option<i32> {
1069 /// iter.into_par_iter()
1070 /// .map(|i| i.checked_mul(i)) // square each item,
1071 /// .try_reduce(|| 0, i32::checked_add) // and add them up!
1072 /// }
1073 /// assert_eq!(sum_squares(0..5), Some(0 + 1 + 4 + 9 + 16));
1074 ///
1075 /// // The sum might overflow
1076 /// assert_eq!(sum_squares(0..10_000), None);
1077 ///
1078 /// // Or the squares might overflow before it even reaches `try_reduce`
1079 /// assert_eq!(sum_squares(1_000_000..1_000_001), None);
1080 /// ```
1081 fn try_reduce<T, OP, ID>(self, identity: ID, op: OP) -> Self::Item
1082 where
1083 OP: Fn(T, T) -> Self::Item + Sync + Send,
1084 ID: Fn() -> T + Sync + Send,
1085 Self::Item: Try<Output = T>,
1086 {
1087 try_reduce::try_reduce(self, identity, op)
1088 }
1089
1090 /// Reduces the items in the iterator into one item using a fallible `op`.
1091 ///
1092 /// Like [`reduce_with()`], if the iterator is empty, `None` is returned;
1093 /// otherwise, `Some` is returned. Beyond that, it behaves like
1094 /// [`try_reduce()`] for handling `Err`/`None`.
1095 ///
1096 /// [`reduce_with()`]: #method.reduce_with
1097 /// [`try_reduce()`]: #method.try_reduce
1098 ///
1099 /// For instance, with `Option` items, the return value may be:
1100 /// - `None`, the iterator was empty
1101 /// - `Some(None)`, we stopped after encountering `None`.
1102 /// - `Some(Some(x))`, the entire iterator reduced to `x`.
1103 ///
1104 /// With `Result` items, the nesting is more obvious:
1105 /// - `None`, the iterator was empty
1106 /// - `Some(Err(e))`, we stopped after encountering an error `e`.
1107 /// - `Some(Ok(x))`, the entire iterator reduced to `x`.
1108 ///
1109 /// # Examples
1110 ///
1111 /// ```
1112 /// use rayon::prelude::*;
1113 ///
1114 /// let files = ["/dev/null", "/does/not/exist"];
1115 ///
1116 /// // Find the biggest file
1117 /// files.into_par_iter()
1118 /// .map(|path| std::fs::metadata(path).map(|m| (path, m.len())))
1119 /// .try_reduce_with(|a, b| {
1120 /// Ok(if a.1 >= b.1 { a } else { b })
1121 /// })
1122 /// .expect("Some value, since the iterator is not empty")
1123 /// .expect_err("not found");
1124 /// ```
1125 fn try_reduce_with<T, OP>(self, op: OP) -> Option<Self::Item>
1126 where
1127 OP: Fn(T, T) -> Self::Item + Sync + Send,
1128 Self::Item: Try<Output = T>,
1129 {
1130 try_reduce_with::try_reduce_with(self, op)
1131 }
1132
1133 /// Parallel fold is similar to sequential fold except that the
1134 /// sequence of items may be subdivided before it is
1135 /// folded. Consider a list of numbers like `22 3 77 89 46`. If
1136 /// you used sequential fold to add them (`fold(0, |a,b| a+b)`,
1137 /// you would wind up first adding 0 + 22, then 22 + 3, then 25 +
1138 /// 77, and so forth. The **parallel fold** works similarly except
1139 /// that it first breaks up your list into sublists, and hence
1140 /// instead of yielding up a single sum at the end, it yields up
1141 /// multiple sums. The number of results is nondeterministic, as
1142 /// is the point where the breaks occur.
1143 ///
1144 /// So if we did the same parallel fold (`fold(0, |a,b| a+b)`) on
1145 /// our example list, we might wind up with a sequence of two numbers,
1146 /// like so:
1147 ///
1148 /// ```notrust
1149 /// 22 3 77 89 46
1150 /// | |
1151 /// 102 135
1152 /// ```
1153 ///
1154 /// Or perhaps these three numbers:
1155 ///
1156 /// ```notrust
1157 /// 22 3 77 89 46
1158 /// | | |
1159 /// 102 89 46
1160 /// ```
1161 ///
1162 /// In general, Rayon will attempt to find good breaking points
1163 /// that keep all of your cores busy.
1164 ///
1165 /// ### Fold versus reduce
1166 ///
1167 /// The `fold()` and `reduce()` methods each take an identity element
1168 /// and a combining function, but they operate rather differently.
1169 ///
1170 /// `reduce()` requires that the identity function has the same
1171 /// type as the things you are iterating over, and it fully
1172 /// reduces the list of items into a single item. So, for example,
1173 /// imagine we are iterating over a list of bytes `bytes: [128_u8,
1174 /// 64_u8, 64_u8]`. If we used `bytes.reduce(|| 0_u8, |a: u8, b:
1175 /// u8| a + b)`, we would get an overflow. This is because `0`,
1176 /// `a`, and `b` here are all bytes, just like the numbers in the
1177 /// list (I wrote the types explicitly above, but those are the
1178 /// only types you can use). To avoid the overflow, we would need
1179 /// to do something like `bytes.map(|b| b as u32).reduce(|| 0, |a,
1180 /// b| a + b)`, in which case our result would be `256`.
1181 ///
1182 /// In contrast, with `fold()`, the identity function does not
1183 /// have to have the same type as the things you are iterating
1184 /// over, and you potentially get back many results. So, if we
1185 /// continue with the `bytes` example from the previous paragraph,
1186 /// we could do `bytes.fold(|| 0_u32, |a, b| a + (b as u32))` to
1187 /// convert our bytes into `u32`. And of course we might not get
1188 /// back a single sum.
1189 ///
1190 /// There is a more subtle distinction as well, though it's
1191 /// actually implied by the above points. When you use `reduce()`,
1192 /// your reduction function is sometimes called with values that
1193 /// were never part of your original parallel iterator (for
1194 /// example, both the left and right might be a partial sum). With
1195 /// `fold()`, in contrast, the left value in the fold function is
1196 /// always the accumulator, and the right value is always from
1197 /// your original sequence.
1198 ///
1199 /// ### Fold vs Map/Reduce
1200 ///
1201 /// Fold makes sense if you have some operation where it is
1202 /// cheaper to create groups of elements at a time. For example,
1203 /// imagine collecting characters into a string. If you were going
1204 /// to use map/reduce, you might try this:
1205 ///
1206 /// ```
1207 /// use rayon::prelude::*;
1208 ///
1209 /// let s =
1210 /// ['a', 'b', 'c', 'd', 'e']
1211 /// .par_iter()
1212 /// .map(|c: &char| format!("{}", c))
1213 /// .reduce(|| String::new(),
1214 /// |mut a: String, b: String| { a.push_str(&b); a });
1215 ///
1216 /// assert_eq!(s, "abcde");
1217 /// ```
1218 ///
1219 /// Because reduce produces the same type of element as its input,
1220 /// you have to first map each character into a string, and then
1221 /// you can reduce them. This means we create one string per
1222 /// element in our iterator -- not so great. Using `fold`, we can
1223 /// do this instead:
1224 ///
1225 /// ```
1226 /// use rayon::prelude::*;
1227 ///
1228 /// let s =
1229 /// ['a', 'b', 'c', 'd', 'e']
1230 /// .par_iter()
1231 /// .fold(|| String::new(),
1232 /// |mut s: String, c: &char| { s.push(*c); s })
1233 /// .reduce(|| String::new(),
1234 /// |mut a: String, b: String| { a.push_str(&b); a });
1235 ///
1236 /// assert_eq!(s, "abcde");
1237 /// ```
1238 ///
1239 /// Now `fold` will process groups of our characters at a time,
1240 /// and we only make one string per group. We should wind up with
1241 /// some small-ish number of strings roughly proportional to the
1242 /// number of CPUs you have (it will ultimately depend on how busy
1243 /// your processors are). Note that we still need to do a reduce
1244 /// afterwards to combine those groups of strings into a single
1245 /// string.
1246 ///
1247 /// You could use a similar trick to save partial results (e.g., a
1248 /// cache) or something similar.
1249 ///
1250 /// ### Combining fold with other operations
1251 ///
1252 /// You can combine `fold` with `reduce` if you want to produce a
1253 /// single value. This is then roughly equivalent to a map/reduce
1254 /// combination in effect:
1255 ///
1256 /// ```
1257 /// use rayon::prelude::*;
1258 ///
1259 /// let bytes = 0..22_u8;
1260 /// let sum = bytes.into_par_iter()
1261 /// .fold(|| 0_u32, |a: u32, b: u8| a + (b as u32))
1262 /// .sum::<u32>();
1263 ///
1264 /// assert_eq!(sum, (0..22).sum()); // compare to sequential
1265 /// ```
1266 fn fold<T, ID, F>(self, identity: ID, fold_op: F) -> Fold<Self, ID, F>
1267 where
1268 F: Fn(T, Self::Item) -> T + Sync + Send,
1269 ID: Fn() -> T + Sync + Send,
1270 T: Send,
1271 {
1272 Fold::new(self, identity, fold_op)
1273 }
1274
1275 /// Applies `fold_op` to the given `init` value with each item of this
1276 /// iterator, finally producing the value for further use.
1277 ///
1278 /// This works essentially like `fold(|| init.clone(), fold_op)`, except
1279 /// it doesn't require the `init` type to be `Sync`, nor any other form
1280 /// of added synchronization.
1281 ///
1282 /// # Examples
1283 ///
1284 /// ```
1285 /// use rayon::prelude::*;
1286 ///
1287 /// let bytes = 0..22_u8;
1288 /// let sum = bytes.into_par_iter()
1289 /// .fold_with(0_u32, |a: u32, b: u8| a + (b as u32))
1290 /// .sum::<u32>();
1291 ///
1292 /// assert_eq!(sum, (0..22).sum()); // compare to sequential
1293 /// ```
1294 fn fold_with<F, T>(self, init: T, fold_op: F) -> FoldWith<Self, T, F>
1295 where
1296 F: Fn(T, Self::Item) -> T + Sync + Send,
1297 T: Send + Clone,
1298 {
1299 FoldWith::new(self, init, fold_op)
1300 }
1301
1302 /// Performs a fallible parallel fold.
1303 ///
1304 /// This is a variation of [`fold()`] for operations which can fail with
1305 /// `Option::None` or `Result::Err`. The first such failure stops
1306 /// processing the local set of items, without affecting other folds in the
1307 /// iterator's subdivisions.
1308 ///
1309 /// Often, `try_fold()` will be followed by [`try_reduce()`]
1310 /// for a final reduction and global short-circuiting effect.
1311 ///
1312 /// [`fold()`]: #method.fold
1313 /// [`try_reduce()`]: #method.try_reduce
1314 ///
1315 /// # Examples
1316 ///
1317 /// ```
1318 /// use rayon::prelude::*;
1319 ///
1320 /// let bytes = 0..22_u8;
1321 /// let sum = bytes.into_par_iter()
1322 /// .try_fold(|| 0_u32, |a: u32, b: u8| a.checked_add(b as u32))
1323 /// .try_reduce(|| 0, u32::checked_add);
1324 ///
1325 /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential
1326 /// ```
1327 fn try_fold<T, R, ID, F>(self, identity: ID, fold_op: F) -> TryFold<Self, R, ID, F>
1328 where
1329 F: Fn(T, Self::Item) -> R + Sync + Send,
1330 ID: Fn() -> T + Sync + Send,
1331 R: Try<Output = T> + Send,
1332 {
1333 TryFold::new(self, identity, fold_op)
1334 }
1335
1336 /// Performs a fallible parallel fold with a cloneable `init` value.
1337 ///
1338 /// This combines the `init` semantics of [`fold_with()`] and the failure
1339 /// semantics of [`try_fold()`].
1340 ///
1341 /// [`fold_with()`]: #method.fold_with
1342 /// [`try_fold()`]: #method.try_fold
1343 ///
1344 /// ```
1345 /// use rayon::prelude::*;
1346 ///
1347 /// let bytes = 0..22_u8;
1348 /// let sum = bytes.into_par_iter()
1349 /// .try_fold_with(0_u32, |a: u32, b: u8| a.checked_add(b as u32))
1350 /// .try_reduce(|| 0, u32::checked_add);
1351 ///
1352 /// assert_eq!(sum, Some((0..22).sum())); // compare to sequential
1353 /// ```
1354 fn try_fold_with<F, T, R>(self, init: T, fold_op: F) -> TryFoldWith<Self, R, F>
1355 where
1356 F: Fn(T, Self::Item) -> R + Sync + Send,
1357 R: Try<Output = T> + Send,
1358 T: Clone + Send,
1359 {
1360 TryFoldWith::new(self, init, fold_op)
1361 }
1362
1363 /// Sums up the items in the iterator.
1364 ///
1365 /// Note that the order in items will be reduced is not specified,
1366 /// so if the `+` operator is not truly [associative] \(as is the
1367 /// case for floating point numbers), then the results are not
1368 /// fully deterministic.
1369 ///
1370 /// [associative]: https://en.wikipedia.org/wiki/Associative_property
1371 ///
1372 /// Basically equivalent to `self.reduce(|| 0, |a, b| a + b)`,
1373 /// except that the type of `0` and the `+` operation may vary
1374 /// depending on the type of value being produced.
1375 ///
1376 /// # Examples
1377 ///
1378 /// ```
1379 /// use rayon::prelude::*;
1380 ///
1381 /// let a = [1, 5, 7];
1382 ///
1383 /// let sum: i32 = a.par_iter().sum();
1384 ///
1385 /// assert_eq!(sum, 13);
1386 /// ```
1387 fn sum<S>(self) -> S
1388 where
1389 S: Send + Sum<Self::Item> + Sum<S>,
1390 {
1391 sum::sum(self)
1392 }
1393
1394 /// Multiplies all the items in the iterator.
1395 ///
1396 /// Note that the order in items will be reduced is not specified,
1397 /// so if the `*` operator is not truly [associative] \(as is the
1398 /// case for floating point numbers), then the results are not
1399 /// fully deterministic.
1400 ///
1401 /// [associative]: https://en.wikipedia.org/wiki/Associative_property
1402 ///
1403 /// Basically equivalent to `self.reduce(|| 1, |a, b| a * b)`,
1404 /// except that the type of `1` and the `*` operation may vary
1405 /// depending on the type of value being produced.
1406 ///
1407 /// # Examples
1408 ///
1409 /// ```
1410 /// use rayon::prelude::*;
1411 ///
1412 /// fn factorial(n: u32) -> u32 {
1413 /// (1..n+1).into_par_iter().product()
1414 /// }
1415 ///
1416 /// assert_eq!(factorial(0), 1);
1417 /// assert_eq!(factorial(1), 1);
1418 /// assert_eq!(factorial(5), 120);
1419 /// ```
1420 fn product<P>(self) -> P
1421 where
1422 P: Send + Product<Self::Item> + Product<P>,
1423 {
1424 product::product(self)
1425 }
1426
1427 /// Computes the minimum of all the items in the iterator. If the
1428 /// iterator is empty, `None` is returned; otherwise, `Some(min)`
1429 /// is returned.
1430 ///
1431 /// Note that the order in which the items will be reduced is not
1432 /// specified, so if the `Ord` impl is not truly associative, then
1433 /// the results are not deterministic.
1434 ///
1435 /// Basically equivalent to `self.reduce_with(|a, b| cmp::min(a, b))`.
1436 ///
1437 /// # Examples
1438 ///
1439 /// ```
1440 /// use rayon::prelude::*;
1441 ///
1442 /// let a = [45, 74, 32];
1443 ///
1444 /// assert_eq!(a.par_iter().min(), Some(&32));
1445 ///
1446 /// let b: [i32; 0] = [];
1447 ///
1448 /// assert_eq!(b.par_iter().min(), None);
1449 /// ```
1450 fn min(self) -> Option<Self::Item>
1451 where
1452 Self::Item: Ord,
1453 {
1454 self.reduce_with(cmp::min)
1455 }
1456
1457 /// Computes the minimum of all the items in the iterator with respect to
1458 /// the given comparison function. If the iterator is empty, `None` is
1459 /// returned; otherwise, `Some(min)` is returned.
1460 ///
1461 /// Note that the order in which the items will be reduced is not
1462 /// specified, so if the comparison function is not associative, then
1463 /// the results are not deterministic.
1464 ///
1465 /// # Examples
1466 ///
1467 /// ```
1468 /// use rayon::prelude::*;
1469 ///
1470 /// let a = [-3_i32, 77, 53, 240, -1];
1471 ///
1472 /// assert_eq!(a.par_iter().min_by(|x, y| x.cmp(y)), Some(&-3));
1473 /// ```
1474 fn min_by<F>(self, f: F) -> Option<Self::Item>
1475 where
1476 F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering,
1477 {
1478 fn min<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T {
1479 move |a, b| match f(&a, &b) {
1480 Ordering::Greater => b,
1481 _ => a,
1482 }
1483 }
1484
1485 self.reduce_with(min(f))
1486 }
1487
1488 /// Computes the item that yields the minimum value for the given
1489 /// function. If the iterator is empty, `None` is returned;
1490 /// otherwise, `Some(item)` is returned.
1491 ///
1492 /// Note that the order in which the items will be reduced is not
1493 /// specified, so if the `Ord` impl is not truly associative, then
1494 /// the results are not deterministic.
1495 ///
1496 /// # Examples
1497 ///
1498 /// ```
1499 /// use rayon::prelude::*;
1500 ///
1501 /// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
1502 ///
1503 /// assert_eq!(a.par_iter().min_by_key(|x| x.abs()), Some(&2));
1504 /// ```
1505 fn min_by_key<K, F>(self, f: F) -> Option<Self::Item>
1506 where
1507 K: Ord + Send,
1508 F: Sync + Send + Fn(&Self::Item) -> K,
1509 {
1510 fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) {
1511 move |x| (f(&x), x)
1512 }
1513
1514 fn min_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) {
1515 match (a.0).cmp(&b.0) {
1516 Ordering::Greater => b,
1517 _ => a,
1518 }
1519 }
1520
1521 let (_, x) = self.map(key(f)).reduce_with(min_key)?;
1522 Some(x)
1523 }
1524
1525 /// Computes the maximum of all the items in the iterator. If the
1526 /// iterator is empty, `None` is returned; otherwise, `Some(max)`
1527 /// is returned.
1528 ///
1529 /// Note that the order in which the items will be reduced is not
1530 /// specified, so if the `Ord` impl is not truly associative, then
1531 /// the results are not deterministic.
1532 ///
1533 /// Basically equivalent to `self.reduce_with(|a, b| cmp::max(a, b))`.
1534 ///
1535 /// # Examples
1536 ///
1537 /// ```
1538 /// use rayon::prelude::*;
1539 ///
1540 /// let a = [45, 74, 32];
1541 ///
1542 /// assert_eq!(a.par_iter().max(), Some(&74));
1543 ///
1544 /// let b: [i32; 0] = [];
1545 ///
1546 /// assert_eq!(b.par_iter().max(), None);
1547 /// ```
1548 fn max(self) -> Option<Self::Item>
1549 where
1550 Self::Item: Ord,
1551 {
1552 self.reduce_with(cmp::max)
1553 }
1554
1555 /// Computes the maximum of all the items in the iterator with respect to
1556 /// the given comparison function. If the iterator is empty, `None` is
1557 /// returned; otherwise, `Some(max)` is returned.
1558 ///
1559 /// Note that the order in which the items will be reduced is not
1560 /// specified, so if the comparison function is not associative, then
1561 /// the results are not deterministic.
1562 ///
1563 /// # Examples
1564 ///
1565 /// ```
1566 /// use rayon::prelude::*;
1567 ///
1568 /// let a = [-3_i32, 77, 53, 240, -1];
1569 ///
1570 /// assert_eq!(a.par_iter().max_by(|x, y| x.abs().cmp(&y.abs())), Some(&240));
1571 /// ```
1572 fn max_by<F>(self, f: F) -> Option<Self::Item>
1573 where
1574 F: Sync + Send + Fn(&Self::Item, &Self::Item) -> Ordering,
1575 {
1576 fn max<T>(f: impl Fn(&T, &T) -> Ordering) -> impl Fn(T, T) -> T {
1577 move |a, b| match f(&a, &b) {
1578 Ordering::Greater => a,
1579 _ => b,
1580 }
1581 }
1582
1583 self.reduce_with(max(f))
1584 }
1585
1586 /// Computes the item that yields the maximum value for the given
1587 /// function. If the iterator is empty, `None` is returned;
1588 /// otherwise, `Some(item)` is returned.
1589 ///
1590 /// Note that the order in which the items will be reduced is not
1591 /// specified, so if the `Ord` impl is not truly associative, then
1592 /// the results are not deterministic.
1593 ///
1594 /// # Examples
1595 ///
1596 /// ```
1597 /// use rayon::prelude::*;
1598 ///
1599 /// let a = [-3_i32, 34, 2, 5, -10, -3, -23];
1600 ///
1601 /// assert_eq!(a.par_iter().max_by_key(|x| x.abs()), Some(&34));
1602 /// ```
1603 fn max_by_key<K, F>(self, f: F) -> Option<Self::Item>
1604 where
1605 K: Ord + Send,
1606 F: Sync + Send + Fn(&Self::Item) -> K,
1607 {
1608 fn key<T, K>(f: impl Fn(&T) -> K) -> impl Fn(T) -> (K, T) {
1609 move |x| (f(&x), x)
1610 }
1611
1612 fn max_key<T, K: Ord>(a: (K, T), b: (K, T)) -> (K, T) {
1613 match (a.0).cmp(&b.0) {
1614 Ordering::Greater => a,
1615 _ => b,
1616 }
1617 }
1618
1619 let (_, x) = self.map(key(f)).reduce_with(max_key)?;
1620 Some(x)
1621 }
1622
1623 /// Takes two iterators and creates a new iterator over both.
1624 ///
1625 /// # Examples
1626 ///
1627 /// ```
1628 /// use rayon::prelude::*;
1629 ///
1630 /// let a = [0, 1, 2];
1631 /// let b = [9, 8, 7];
1632 ///
1633 /// let par_iter = a.par_iter().chain(b.par_iter());
1634 ///
1635 /// let chained: Vec<_> = par_iter.cloned().collect();
1636 ///
1637 /// assert_eq!(&chained[..], &[0, 1, 2, 9, 8, 7]);
1638 /// ```
1639 fn chain<C>(self, chain: C) -> Chain<Self, C::Iter>
1640 where
1641 C: IntoParallelIterator<Item = Self::Item>,
1642 {
1643 Chain::new(self, chain.into_par_iter())
1644 }
1645
1646 /// Searches for **some** item in the parallel iterator that
1647 /// matches the given predicate and returns it. This operation
1648 /// is similar to [`find` on sequential iterators][find] but
1649 /// the item returned may not be the **first** one in the parallel
1650 /// sequence which matches, since we search the entire sequence in parallel.
1651 ///
1652 /// Once a match is found, we will attempt to stop processing
1653 /// the rest of the items in the iterator as soon as possible
1654 /// (just as `find` stops iterating once a match is found).
1655 ///
1656 /// [find]: https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find
1657 ///
1658 /// # Examples
1659 ///
1660 /// ```
1661 /// use rayon::prelude::*;
1662 ///
1663 /// let a = [1, 2, 3, 3];
1664 ///
1665 /// assert_eq!(a.par_iter().find_any(|&&x| x == 3), Some(&3));
1666 ///
1667 /// assert_eq!(a.par_iter().find_any(|&&x| x == 100), None);
1668 /// ```
1669 fn find_any<P>(self, predicate: P) -> Option<Self::Item>
1670 where
1671 P: Fn(&Self::Item) -> bool + Sync + Send,
1672 {
1673 find::find(self, predicate)
1674 }
1675
1676 /// Searches for the sequentially **first** item in the parallel iterator
1677 /// that matches the given predicate and returns it.
1678 ///
1679 /// Once a match is found, all attempts to the right of the match
1680 /// will be stopped, while attempts to the left must continue in case
1681 /// an earlier match is found.
1682 ///
1683 /// For added performance, you might consider using `find_first` in conjunction with
1684 /// [`by_exponential_blocks()`][IndexedParallelIterator::by_exponential_blocks].
1685 ///
1686 /// Note that not all parallel iterators have a useful order, much like
1687 /// sequential `HashMap` iteration, so "first" may be nebulous. If you
1688 /// just want the first match that discovered anywhere in the iterator,
1689 /// `find_any` is a better choice.
1690 ///
1691 /// # Examples
1692 ///
1693 /// ```
1694 /// use rayon::prelude::*;
1695 ///
1696 /// let a = [1, 2, 3, 3];
1697 ///
1698 /// assert_eq!(a.par_iter().find_first(|&&x| x == 3), Some(&3));
1699 ///
1700 /// assert_eq!(a.par_iter().find_first(|&&x| x == 100), None);
1701 /// ```
1702 fn find_first<P>(self, predicate: P) -> Option<Self::Item>
1703 where
1704 P: Fn(&Self::Item) -> bool + Sync + Send,
1705 {
1706 find_first_last::find_first(self, predicate)
1707 }
1708
1709 /// Searches for the sequentially **last** item in the parallel iterator
1710 /// that matches the given predicate and returns it.
1711 ///
1712 /// Once a match is found, all attempts to the left of the match
1713 /// will be stopped, while attempts to the right must continue in case
1714 /// a later match is found.
1715 ///
1716 /// Note that not all parallel iterators have a useful order, much like
1717 /// sequential `HashMap` iteration, so "last" may be nebulous. When the
1718 /// order doesn't actually matter to you, `find_any` is a better choice.
1719 ///
1720 /// # Examples
1721 ///
1722 /// ```
1723 /// use rayon::prelude::*;
1724 ///
1725 /// let a = [1, 2, 3, 3];
1726 ///
1727 /// assert_eq!(a.par_iter().find_last(|&&x| x == 3), Some(&3));
1728 ///
1729 /// assert_eq!(a.par_iter().find_last(|&&x| x == 100), None);
1730 /// ```
1731 fn find_last<P>(self, predicate: P) -> Option<Self::Item>
1732 where
1733 P: Fn(&Self::Item) -> bool + Sync + Send,
1734 {
1735 find_first_last::find_last(self, predicate)
1736 }
1737
1738 /// Applies the given predicate to the items in the parallel iterator
1739 /// and returns **any** non-None result of the map operation.
1740 ///
1741 /// Once a non-None value is produced from the map operation, we will
1742 /// attempt to stop processing the rest of the items in the iterator
1743 /// as soon as possible.
1744 ///
1745 /// Note that this method only returns **some** item in the parallel
1746 /// iterator that is not None from the map predicate. The item returned
1747 /// may not be the **first** non-None value produced in the parallel
1748 /// sequence, since the entire sequence is mapped over in parallel.
1749 ///
1750 /// # Examples
1751 ///
1752 /// ```
1753 /// use rayon::prelude::*;
1754 ///
1755 /// let c = ["lol", "NaN", "5", "5"];
1756 ///
1757 /// let found_number = c.par_iter().find_map_any(|s| s.parse().ok());
1758 ///
1759 /// assert_eq!(found_number, Some(5));
1760 /// ```
1761 fn find_map_any<P, R>(self, predicate: P) -> Option<R>
1762 where
1763 P: Fn(Self::Item) -> Option<R> + Sync + Send,
1764 R: Send,
1765 {
1766 fn yes<T>(_: &T) -> bool {
1767 true
1768 }
1769 self.filter_map(predicate).find_any(yes)
1770 }
1771
1772 /// Applies the given predicate to the items in the parallel iterator and
1773 /// returns the sequentially **first** non-None result of the map operation.
1774 ///
1775 /// Once a non-None value is produced from the map operation, all attempts
1776 /// to the right of the match will be stopped, while attempts to the left
1777 /// must continue in case an earlier match is found.
1778 ///
1779 /// Note that not all parallel iterators have a useful order, much like
1780 /// sequential `HashMap` iteration, so "first" may be nebulous. If you
1781 /// just want the first non-None value discovered anywhere in the iterator,
1782 /// `find_map_any` is a better choice.
1783 ///
1784 /// # Examples
1785 ///
1786 /// ```
1787 /// use rayon::prelude::*;
1788 ///
1789 /// let c = ["lol", "NaN", "2", "5"];
1790 ///
1791 /// let first_number = c.par_iter().find_map_first(|s| s.parse().ok());
1792 ///
1793 /// assert_eq!(first_number, Some(2));
1794 /// ```
1795 fn find_map_first<P, R>(self, predicate: P) -> Option<R>
1796 where
1797 P: Fn(Self::Item) -> Option<R> + Sync + Send,
1798 R: Send,
1799 {
1800 fn yes<T>(_: &T) -> bool {
1801 true
1802 }
1803 self.filter_map(predicate).find_first(yes)
1804 }
1805
1806 /// Applies the given predicate to the items in the parallel iterator and
1807 /// returns the sequentially **last** non-None result of the map operation.
1808 ///
1809 /// Once a non-None value is produced from the map operation, all attempts
1810 /// to the left of the match will be stopped, while attempts to the right
1811 /// must continue in case a later match is found.
1812 ///
1813 /// Note that not all parallel iterators have a useful order, much like
1814 /// sequential `HashMap` iteration, so "first" may be nebulous. If you
1815 /// just want the first non-None value discovered anywhere in the iterator,
1816 /// `find_map_any` is a better choice.
1817 ///
1818 /// # Examples
1819 ///
1820 /// ```
1821 /// use rayon::prelude::*;
1822 ///
1823 /// let c = ["lol", "NaN", "2", "5"];
1824 ///
1825 /// let last_number = c.par_iter().find_map_last(|s| s.parse().ok());
1826 ///
1827 /// assert_eq!(last_number, Some(5));
1828 /// ```
1829 fn find_map_last<P, R>(self, predicate: P) -> Option<R>
1830 where
1831 P: Fn(Self::Item) -> Option<R> + Sync + Send,
1832 R: Send,
1833 {
1834 fn yes<T>(_: &T) -> bool {
1835 true
1836 }
1837 self.filter_map(predicate).find_last(yes)
1838 }
1839
1840 #[doc(hidden)]
1841 #[deprecated(note = "parallel `find` does not search in order -- use `find_any`, \\
1842 `find_first`, or `find_last`")]
1843 fn find<P>(self, predicate: P) -> Option<Self::Item>
1844 where
1845 P: Fn(&Self::Item) -> bool + Sync + Send,
1846 {
1847 self.find_any(predicate)
1848 }
1849
1850 /// Searches for **some** item in the parallel iterator that
1851 /// matches the given predicate, and if so returns true. Once
1852 /// a match is found, we'll attempt to stop process the rest
1853 /// of the items. Proving that there's no match, returning false,
1854 /// does require visiting every item.
1855 ///
1856 /// # Examples
1857 ///
1858 /// ```
1859 /// use rayon::prelude::*;
1860 ///
1861 /// let a = [0, 12, 3, 4, 0, 23, 0];
1862 ///
1863 /// let is_valid = a.par_iter().any(|&x| x > 10);
1864 ///
1865 /// assert!(is_valid);
1866 /// ```
1867 fn any<P>(self, predicate: P) -> bool
1868 where
1869 P: Fn(Self::Item) -> bool + Sync + Send,
1870 {
1871 self.map(predicate).find_any(bool::clone).is_some()
1872 }
1873
1874 /// Tests that every item in the parallel iterator matches the given
1875 /// predicate, and if so returns true. If a counter-example is found,
1876 /// we'll attempt to stop processing more items, then return false.
1877 ///
1878 /// # Examples
1879 ///
1880 /// ```
1881 /// use rayon::prelude::*;
1882 ///
1883 /// let a = [0, 12, 3, 4, 0, 23, 0];
1884 ///
1885 /// let is_valid = a.par_iter().all(|&x| x > 10);
1886 ///
1887 /// assert!(!is_valid);
1888 /// ```
1889 fn all<P>(self, predicate: P) -> bool
1890 where
1891 P: Fn(Self::Item) -> bool + Sync + Send,
1892 {
1893 #[inline]
1894 fn is_false(x: &bool) -> bool {
1895 !x
1896 }
1897
1898 self.map(predicate).find_any(is_false).is_none()
1899 }
1900
1901 /// Creates an iterator over the `Some` items of this iterator, halting
1902 /// as soon as any `None` is found.
1903 ///
1904 /// # Examples
1905 ///
1906 /// ```
1907 /// use rayon::prelude::*;
1908 /// use std::sync::atomic::{AtomicUsize, Ordering};
1909 ///
1910 /// let counter = AtomicUsize::new(0);
1911 /// let value = (0_i32..2048)
1912 /// .into_par_iter()
1913 /// .map(|x| {
1914 /// counter.fetch_add(1, Ordering::SeqCst);
1915 /// if x < 1024 { Some(x) } else { None }
1916 /// })
1917 /// .while_some()
1918 /// .max();
1919 ///
1920 /// assert!(value < Some(1024));
1921 /// assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one
1922 /// ```
1923 fn while_some<T>(self) -> WhileSome<Self>
1924 where
1925 Self: ParallelIterator<Item = Option<T>>,
1926 T: Send,
1927 {
1928 WhileSome::new(self)
1929 }
1930
1931 /// Wraps an iterator with a fuse in case of panics, to halt all threads
1932 /// as soon as possible.
1933 ///
1934 /// Panics within parallel iterators are always propagated to the caller,
1935 /// but they don't always halt the rest of the iterator right away, due to
1936 /// the internal semantics of [`join`]. This adaptor makes a greater effort
1937 /// to stop processing other items sooner, with the cost of additional
1938 /// synchronization overhead, which may also inhibit some optimizations.
1939 ///
1940 /// [`join`]: ../fn.join.html#panics
1941 ///
1942 /// # Examples
1943 ///
1944 /// If this code didn't use `panic_fuse()`, it would continue processing
1945 /// many more items in other threads (with long sleep delays) before the
1946 /// panic is finally propagated.
1947 ///
1948 /// ```should_panic
1949 /// use rayon::prelude::*;
1950 /// use std::{thread, time};
1951 ///
1952 /// (0..1_000_000)
1953 /// .into_par_iter()
1954 /// .panic_fuse()
1955 /// .for_each(|i| {
1956 /// // simulate some work
1957 /// thread::sleep(time::Duration::from_secs(1));
1958 /// assert!(i > 0); // oops!
1959 /// });
1960 /// ```
1961 fn panic_fuse(self) -> PanicFuse<Self> {
1962 PanicFuse::new(self)
1963 }
1964
1965 /// Creates a fresh collection containing all the elements produced
1966 /// by this parallel iterator.
1967 ///
1968 /// You may prefer [`collect_into_vec()`] implemented on
1969 /// [`IndexedParallelIterator`], if your underlying iterator also implements
1970 /// it. [`collect_into_vec()`] allocates efficiently with precise knowledge
1971 /// of how many elements the iterator contains, and even allows you to reuse
1972 /// an existing vector's backing store rather than allocating a fresh vector.
1973 ///
1974 /// See also [`collect_vec_list()`][Self::collect_vec_list] for collecting
1975 /// into a `LinkedList<Vec<T>>`.
1976 ///
1977 /// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
1978 /// [`collect_into_vec()`]:
1979 /// trait.IndexedParallelIterator.html#method.collect_into_vec
1980 ///
1981 /// # Examples
1982 ///
1983 /// ```
1984 /// use rayon::prelude::*;
1985 ///
1986 /// let sync_vec: Vec<_> = (0..100).into_iter().collect();
1987 ///
1988 /// let async_vec: Vec<_> = (0..100).into_par_iter().collect();
1989 ///
1990 /// assert_eq!(sync_vec, async_vec);
1991 /// ```
1992 ///
1993 /// You can collect a pair of collections like [`unzip`](#method.unzip)
1994 /// for paired items:
1995 ///
1996 /// ```
1997 /// use rayon::prelude::*;
1998 ///
1999 /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)];
2000 /// let (first, second): (Vec<_>, Vec<_>) = a.into_par_iter().collect();
2001 ///
2002 /// assert_eq!(first, [0, 1, 2, 3]);
2003 /// assert_eq!(second, [1, 2, 3, 4]);
2004 /// ```
2005 ///
2006 /// Or like [`partition_map`](#method.partition_map) for `Either` items:
2007 ///
2008 /// ```
2009 /// use rayon::prelude::*;
2010 /// use rayon::iter::Either;
2011 ///
2012 /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().map(|x| {
2013 /// if x % 2 == 0 {
2014 /// Either::Left(x * 4)
2015 /// } else {
2016 /// Either::Right(x * 3)
2017 /// }
2018 /// }).collect();
2019 ///
2020 /// assert_eq!(left, [0, 8, 16, 24]);
2021 /// assert_eq!(right, [3, 9, 15, 21]);
2022 /// ```
2023 ///
2024 /// You can even collect an arbitrarily-nested combination of pairs and `Either`:
2025 ///
2026 /// ```
2027 /// use rayon::prelude::*;
2028 /// use rayon::iter::Either;
2029 ///
2030 /// let (first, (left, right)): (Vec<_>, (Vec<_>, Vec<_>))
2031 /// = (0..8).into_par_iter().map(|x| {
2032 /// if x % 2 == 0 {
2033 /// (x, Either::Left(x * 4))
2034 /// } else {
2035 /// (-x, Either::Right(x * 3))
2036 /// }
2037 /// }).collect();
2038 ///
2039 /// assert_eq!(first, [0, -1, 2, -3, 4, -5, 6, -7]);
2040 /// assert_eq!(left, [0, 8, 16, 24]);
2041 /// assert_eq!(right, [3, 9, 15, 21]);
2042 /// ```
2043 ///
2044 /// All of that can _also_ be combined with short-circuiting collection of
2045 /// `Result` or `Option` types:
2046 ///
2047 /// ```
2048 /// use rayon::prelude::*;
2049 /// use rayon::iter::Either;
2050 ///
2051 /// let result: Result<(Vec<_>, (Vec<_>, Vec<_>)), _>
2052 /// = (0..8).into_par_iter().map(|x| {
2053 /// if x > 5 {
2054 /// Err(x)
2055 /// } else if x % 2 == 0 {
2056 /// Ok((x, Either::Left(x * 4)))
2057 /// } else {
2058 /// Ok((-x, Either::Right(x * 3)))
2059 /// }
2060 /// }).collect();
2061 ///
2062 /// let error = result.unwrap_err();
2063 /// assert!(error == 6 || error == 7);
2064 /// ```
2065 fn collect<C>(self) -> C
2066 where
2067 C: FromParallelIterator<Self::Item>,
2068 {
2069 C::from_par_iter(self)
2070 }
2071
2072 /// Unzips the items of a parallel iterator into a pair of arbitrary
2073 /// `ParallelExtend` containers.
2074 ///
2075 /// You may prefer to use `unzip_into_vecs()`, which allocates more
2076 /// efficiently with precise knowledge of how many elements the
2077 /// iterator contains, and even allows you to reuse existing
2078 /// vectors' backing stores rather than allocating fresh vectors.
2079 ///
2080 /// # Examples
2081 ///
2082 /// ```
2083 /// use rayon::prelude::*;
2084 ///
2085 /// let a = [(0, 1), (1, 2), (2, 3), (3, 4)];
2086 ///
2087 /// let (left, right): (Vec<_>, Vec<_>) = a.par_iter().cloned().unzip();
2088 ///
2089 /// assert_eq!(left, [0, 1, 2, 3]);
2090 /// assert_eq!(right, [1, 2, 3, 4]);
2091 /// ```
2092 ///
2093 /// Nested pairs can be unzipped too.
2094 ///
2095 /// ```
2096 /// use rayon::prelude::*;
2097 ///
2098 /// let (values, (squares, cubes)): (Vec<_>, (Vec<_>, Vec<_>)) = (0..4).into_par_iter()
2099 /// .map(|i| (i, (i * i, i * i * i)))
2100 /// .unzip();
2101 ///
2102 /// assert_eq!(values, [0, 1, 2, 3]);
2103 /// assert_eq!(squares, [0, 1, 4, 9]);
2104 /// assert_eq!(cubes, [0, 1, 8, 27]);
2105 /// ```
2106 fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
2107 where
2108 Self: ParallelIterator<Item = (A, B)>,
2109 FromA: Default + Send + ParallelExtend<A>,
2110 FromB: Default + Send + ParallelExtend<B>,
2111 A: Send,
2112 B: Send,
2113 {
2114 unzip::unzip(self)
2115 }
2116
2117 /// Partitions the items of a parallel iterator into a pair of arbitrary
2118 /// `ParallelExtend` containers. Items for which the `predicate` returns
2119 /// true go into the first container, and the rest go into the second.
2120 ///
2121 /// Note: unlike the standard `Iterator::partition`, this allows distinct
2122 /// collection types for the left and right items. This is more flexible,
2123 /// but may require new type annotations when converting sequential code
2124 /// that used type inference assuming the two were the same.
2125 ///
2126 /// # Examples
2127 ///
2128 /// ```
2129 /// use rayon::prelude::*;
2130 ///
2131 /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter().partition(|x| x % 2 == 0);
2132 ///
2133 /// assert_eq!(left, [0, 2, 4, 6]);
2134 /// assert_eq!(right, [1, 3, 5, 7]);
2135 /// ```
2136 fn partition<A, B, P>(self, predicate: P) -> (A, B)
2137 where
2138 A: Default + Send + ParallelExtend<Self::Item>,
2139 B: Default + Send + ParallelExtend<Self::Item>,
2140 P: Fn(&Self::Item) -> bool + Sync + Send,
2141 {
2142 unzip::partition(self, predicate)
2143 }
2144
2145 /// Partitions and maps the items of a parallel iterator into a pair of
2146 /// arbitrary `ParallelExtend` containers. `Either::Left` items go into
2147 /// the first container, and `Either::Right` items go into the second.
2148 ///
2149 /// # Examples
2150 ///
2151 /// ```
2152 /// use rayon::prelude::*;
2153 /// use rayon::iter::Either;
2154 ///
2155 /// let (left, right): (Vec<_>, Vec<_>) = (0..8).into_par_iter()
2156 /// .partition_map(|x| {
2157 /// if x % 2 == 0 {
2158 /// Either::Left(x * 4)
2159 /// } else {
2160 /// Either::Right(x * 3)
2161 /// }
2162 /// });
2163 ///
2164 /// assert_eq!(left, [0, 8, 16, 24]);
2165 /// assert_eq!(right, [3, 9, 15, 21]);
2166 /// ```
2167 ///
2168 /// Nested `Either` enums can be split as well.
2169 ///
2170 /// ```
2171 /// use rayon::prelude::*;
2172 /// use rayon::iter::Either::*;
2173 ///
2174 /// let ((fizzbuzz, fizz), (buzz, other)): ((Vec<_>, Vec<_>), (Vec<_>, Vec<_>)) = (1..20)
2175 /// .into_par_iter()
2176 /// .partition_map(|x| match (x % 3, x % 5) {
2177 /// (0, 0) => Left(Left(x)),
2178 /// (0, _) => Left(Right(x)),
2179 /// (_, 0) => Right(Left(x)),
2180 /// (_, _) => Right(Right(x)),
2181 /// });
2182 ///
2183 /// assert_eq!(fizzbuzz, [15]);
2184 /// assert_eq!(fizz, [3, 6, 9, 12, 18]);
2185 /// assert_eq!(buzz, [5, 10]);
2186 /// assert_eq!(other, [1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19]);
2187 /// ```
2188 fn partition_map<A, B, P, L, R>(self, predicate: P) -> (A, B)
2189 where
2190 A: Default + Send + ParallelExtend<L>,
2191 B: Default + Send + ParallelExtend<R>,
2192 P: Fn(Self::Item) -> Either<L, R> + Sync + Send,
2193 L: Send,
2194 R: Send,
2195 {
2196 unzip::partition_map(self, predicate)
2197 }
2198
2199 /// Intersperses clones of an element between items of this iterator.
2200 ///
2201 /// # Examples
2202 ///
2203 /// ```
2204 /// use rayon::prelude::*;
2205 ///
2206 /// let x = vec![1, 2, 3];
2207 /// let r: Vec<_> = x.into_par_iter().intersperse(-1).collect();
2208 ///
2209 /// assert_eq!(r, vec![1, -1, 2, -1, 3]);
2210 /// ```
2211 fn intersperse(self, element: Self::Item) -> Intersperse<Self>
2212 where
2213 Self::Item: Clone,
2214 {
2215 Intersperse::new(self, element)
2216 }
2217
2218 /// Creates an iterator that yields `n` elements from *anywhere* in the original iterator.
2219 ///
2220 /// This is similar to [`IndexedParallelIterator::take`] without being
2221 /// constrained to the "first" `n` of the original iterator order. The
2222 /// taken items will still maintain their relative order where that is
2223 /// visible in `collect`, `reduce`, and similar outputs.
2224 ///
2225 /// # Examples
2226 ///
2227 /// ```
2228 /// use rayon::prelude::*;
2229 ///
2230 /// let result: Vec<_> = (0..100)
2231 /// .into_par_iter()
2232 /// .filter(|&x| x % 2 == 0)
2233 /// .take_any(5)
2234 /// .collect();
2235 ///
2236 /// assert_eq!(result.len(), 5);
2237 /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2238 /// ```
2239 fn take_any(self, n: usize) -> TakeAny<Self> {
2240 TakeAny::new(self, n)
2241 }
2242
2243 /// Creates an iterator that skips `n` elements from *anywhere* in the original iterator.
2244 ///
2245 /// This is similar to [`IndexedParallelIterator::skip`] without being
2246 /// constrained to the "first" `n` of the original iterator order. The
2247 /// remaining items will still maintain their relative order where that is
2248 /// visible in `collect`, `reduce`, and similar outputs.
2249 ///
2250 /// # Examples
2251 ///
2252 /// ```
2253 /// use rayon::prelude::*;
2254 ///
2255 /// let result: Vec<_> = (0..100)
2256 /// .into_par_iter()
2257 /// .filter(|&x| x % 2 == 0)
2258 /// .skip_any(5)
2259 /// .collect();
2260 ///
2261 /// assert_eq!(result.len(), 45);
2262 /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2263 /// ```
2264 fn skip_any(self, n: usize) -> SkipAny<Self> {
2265 SkipAny::new(self, n)
2266 }
2267
2268 /// Creates an iterator that takes elements from *anywhere* in the original iterator
2269 /// until the given `predicate` returns `false`.
2270 ///
2271 /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a
2272 /// global condition unrelated to the item itself, or some combination thereof.
2273 ///
2274 /// If parallel calls to the `predicate` race and give different results, then the
2275 /// `true` results will still take those particular items, while respecting the `false`
2276 /// result from elsewhere to skip any further items.
2277 ///
2278 /// This is similar to [`Iterator::take_while`] without being constrained to the original
2279 /// iterator order. The taken items will still maintain their relative order where that is
2280 /// visible in `collect`, `reduce`, and similar outputs.
2281 ///
2282 /// # Examples
2283 ///
2284 /// ```
2285 /// use rayon::prelude::*;
2286 ///
2287 /// let result: Vec<_> = (0..100)
2288 /// .into_par_iter()
2289 /// .take_any_while(|x| *x < 50)
2290 /// .collect();
2291 ///
2292 /// assert!(result.len() <= 50);
2293 /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2294 /// ```
2295 ///
2296 /// ```
2297 /// use rayon::prelude::*;
2298 /// use std::sync::atomic::AtomicUsize;
2299 /// use std::sync::atomic::Ordering::Relaxed;
2300 ///
2301 /// // Collect any group of items that sum <= 1000
2302 /// let quota = AtomicUsize::new(1000);
2303 /// let result: Vec<_> = (0_usize..100)
2304 /// .into_par_iter()
2305 /// .take_any_while(|&x| {
2306 /// quota.fetch_update(Relaxed, Relaxed, |q| q.checked_sub(x))
2307 /// .is_ok()
2308 /// })
2309 /// .collect();
2310 ///
2311 /// let sum = result.iter().sum::<usize>();
2312 /// assert!(matches!(sum, 902..=1000));
2313 /// ```
2314 fn take_any_while<P>(self, predicate: P) -> TakeAnyWhile<Self, P>
2315 where
2316 P: Fn(&Self::Item) -> bool + Sync + Send,
2317 {
2318 TakeAnyWhile::new(self, predicate)
2319 }
2320
2321 /// Creates an iterator that skips elements from *anywhere* in the original iterator
2322 /// until the given `predicate` returns `false`.
2323 ///
2324 /// The `predicate` may be anything -- e.g. it could be checking a fact about the item, a
2325 /// global condition unrelated to the item itself, or some combination thereof.
2326 ///
2327 /// If parallel calls to the `predicate` race and give different results, then the
2328 /// `true` results will still skip those particular items, while respecting the `false`
2329 /// result from elsewhere to skip any further items.
2330 ///
2331 /// This is similar to [`Iterator::skip_while`] without being constrained to the original
2332 /// iterator order. The remaining items will still maintain their relative order where that is
2333 /// visible in `collect`, `reduce`, and similar outputs.
2334 ///
2335 /// # Examples
2336 ///
2337 /// ```
2338 /// use rayon::prelude::*;
2339 ///
2340 /// let result: Vec<_> = (0..100)
2341 /// .into_par_iter()
2342 /// .skip_any_while(|x| *x < 50)
2343 /// .collect();
2344 ///
2345 /// assert!(result.len() >= 50);
2346 /// assert!(result.windows(2).all(|w| w[0] < w[1]));
2347 /// ```
2348 fn skip_any_while<P>(self, predicate: P) -> SkipAnyWhile<Self, P>
2349 where
2350 P: Fn(&Self::Item) -> bool + Sync + Send,
2351 {
2352 SkipAnyWhile::new(self, predicate)
2353 }
2354
2355 /// Collects this iterator into a linked list of vectors.
2356 ///
2357 /// This is useful when you need to condense a parallel iterator into a collection,
2358 /// but have no specific requirements for what that collection should be. If you
2359 /// plan to store the collection longer-term, `Vec<T>` is, as always, likely the
2360 /// best default choice, despite the overhead that comes from concatenating each
2361 /// vector. Or, if this is an `IndexedParallelIterator`, you should also prefer to
2362 /// just collect to a `Vec<T>`.
2363 ///
2364 /// Internally, most [`FromParallelIterator`]/[`ParallelExtend`] implementations
2365 /// use this strategy; each job collecting their chunk of the iterator to a `Vec<T>`
2366 /// and those chunks getting merged into a `LinkedList`, before then extending the
2367 /// collection with each vector. This is a very efficient way to collect an
2368 /// unindexed parallel iterator, without much intermediate data movement.
2369 ///
2370 /// # Examples
2371 ///
2372 /// ```
2373 /// # use std::collections::LinkedList;
2374 /// use rayon::prelude::*;
2375 ///
2376 /// let result: LinkedList<Vec<_>> = (0..=100)
2377 /// .into_par_iter()
2378 /// .filter(|x| x % 2 == 0)
2379 /// .flat_map(|x| 0..x)
2380 /// .collect_vec_list();
2381 ///
2382 /// // `par_iter.collect_vec_list().into_iter().flatten()` turns
2383 /// // a parallel iterator into a serial one
2384 /// let total_len = result.into_iter().flatten().count();
2385 /// assert_eq!(total_len, 2550);
2386 /// ```
2387 fn collect_vec_list(self) -> LinkedList<Vec<Self::Item>> {
2388 match extend::fast_collect(self) {
2389 Either::Left(vec) => {
2390 let mut list = LinkedList::new();
2391 if !vec.is_empty() {
2392 list.push_back(vec);
2393 }
2394 list
2395 }
2396 Either::Right(list) => list,
2397 }
2398 }
2399
2400 /// Internal method used to define the behavior of this parallel
2401 /// iterator. You should not need to call this directly.
2402 ///
2403 /// This method causes the iterator `self` to start producing
2404 /// items and to feed them to the consumer `consumer` one by one.
2405 /// It may split the consumer before doing so to create the
2406 /// opportunity to produce in parallel.
2407 ///
2408 /// See the [README] for more details on the internals of parallel
2409 /// iterators.
2410 ///
2411 /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md
2412 fn drive_unindexed<C>(self, consumer: C) -> C::Result
2413 where
2414 C: UnindexedConsumer<Self::Item>;
2415
2416 /// Internal method used to define the behavior of this parallel
2417 /// iterator. You should not need to call this directly.
2418 ///
2419 /// Returns the number of items produced by this iterator, if known
2420 /// statically. This can be used by consumers to trigger special fast
2421 /// paths. Therefore, if `Some(_)` is returned, this iterator must only
2422 /// use the (indexed) `Consumer` methods when driving a consumer, such
2423 /// as `split_at()`. Calling `UnindexedConsumer::split_off_left()` or
2424 /// other `UnindexedConsumer` methods -- or returning an inaccurate
2425 /// value -- may result in panics.
2426 ///
2427 /// This method is currently used to optimize `collect` for want
2428 /// of true Rust specialization; it may be removed when
2429 /// specialization is stable.
2430 fn opt_len(&self) -> Option<usize> {
2431 None
2432 }
2433}
2434
2435impl<T: ParallelIterator> IntoParallelIterator for T {
2436 type Iter = T;
2437 type Item = T::Item;
2438
2439 fn into_par_iter(self) -> T {
2440 self
2441 }
2442}
2443
2444/// An iterator that supports "random access" to its data, meaning
2445/// that you can split it at arbitrary indices and draw data from
2446/// those points.
2447///
2448/// **Note:** Not implemented for `u64`, `i64`, `u128`, or `i128` ranges
2449// Waiting for `ExactSizeIterator::is_empty` to be stabilized. See rust-lang/rust#35428
2450#[allow(clippy::len_without_is_empty)]
2451pub trait IndexedParallelIterator: ParallelIterator {
2452 /// Divides an iterator into sequential blocks of exponentially-increasing size.
2453 ///
2454 /// Normally, parallel iterators are recursively divided into tasks in parallel.
2455 /// This adaptor changes the default behavior by splitting the iterator into a **sequence**
2456 /// of parallel iterators of increasing sizes.
2457 /// Sizes grow exponentially in order to avoid creating
2458 /// too many blocks. This also allows to balance the current block with all previous ones.
2459 ///
2460 /// This can have many applications but the most notable ones are:
2461 /// - better performance with [`find_first()`][ParallelIterator::find_first]
2462 /// - more predictable performance with [`find_any()`][ParallelIterator::find_any]
2463 /// or any interruptible computation
2464 ///
2465 /// # Examples
2466 ///
2467 /// ```
2468 /// use rayon::prelude::*;
2469 /// assert_eq!((0..10_000).into_par_iter()
2470 /// .by_exponential_blocks()
2471 /// .find_first(|&e| e==4_999), Some(4_999))
2472 /// ```
2473 ///
2474 /// In this example, without blocks, rayon will split the initial range into two but all work
2475 /// on the right hand side (from 5,000 onwards) is **useless** since the sequential algorithm
2476 /// never goes there. This means that if two threads are used there will be **no** speedup **at
2477 /// all**.
2478 ///
2479 /// `by_exponential_blocks` on the other hand will start with the leftmost range from 0
2480 /// to `p` (threads number), continue with p to 3p, the 3p to 7p...
2481 ///
2482 /// Each subrange is treated in parallel, while all subranges are treated sequentially.
2483 /// We therefore ensure a logarithmic number of blocks (and overhead) while guaranteeing
2484 /// we stop at the first block containing the searched data.
2485 fn by_exponential_blocks(self) -> ExponentialBlocks<Self> {
2486 ExponentialBlocks::new(self)
2487 }
2488
2489 /// Divides an iterator into sequential blocks of the given size.
2490 ///
2491 /// Normally, parallel iterators are recursively divided into tasks in parallel.
2492 /// This adaptor changes the default behavior by splitting the iterator into a **sequence**
2493 /// of parallel iterators of given `block_size`.
2494 /// The main application is to obtain better
2495 /// memory locality (especially if the reduce operation re-use folded data).
2496 ///
2497 /// **Panics** if `block_size` is 0.
2498 ///
2499 /// # Example
2500 /// ```
2501 /// use rayon::prelude::*;
2502 /// // during most reductions v1 and v2 fit the cache
2503 /// let v = (0u32..10_000_000)
2504 /// .into_par_iter()
2505 /// .by_uniform_blocks(1_000_000)
2506 /// .fold(Vec::new, |mut v, e| { v.push(e); v})
2507 /// .reduce(Vec::new, |mut v1, mut v2| { v1.append(&mut v2); v1});
2508 /// assert_eq!(v, (0u32..10_000_000).collect::<Vec<u32>>());
2509 /// ```
2510 #[track_caller]
2511 fn by_uniform_blocks(self, block_size: usize) -> UniformBlocks<Self> {
2512 assert!(block_size != 0, "block_size must not be zero");
2513 UniformBlocks::new(self, block_size)
2514 }
2515
2516 /// Collects the results of the iterator into the specified
2517 /// vector. The vector is always cleared before execution
2518 /// begins. If possible, reusing the vector across calls can lead
2519 /// to better performance since it reuses the same backing buffer.
2520 ///
2521 /// # Examples
2522 ///
2523 /// ```
2524 /// use rayon::prelude::*;
2525 ///
2526 /// // any prior data will be cleared
2527 /// let mut vec = vec![-1, -2, -3];
2528 ///
2529 /// (0..5).into_par_iter()
2530 /// .collect_into_vec(&mut vec);
2531 ///
2532 /// assert_eq!(vec, [0, 1, 2, 3, 4]);
2533 /// ```
2534 fn collect_into_vec(self, target: &mut Vec<Self::Item>) {
2535 collect::collect_into_vec(self, target);
2536 }
2537
2538 /// Unzips the results of the iterator into the specified
2539 /// vectors. The vectors are always cleared before execution
2540 /// begins. If possible, reusing the vectors across calls can lead
2541 /// to better performance since they reuse the same backing buffer.
2542 ///
2543 /// # Examples
2544 ///
2545 /// ```
2546 /// use rayon::prelude::*;
2547 ///
2548 /// // any prior data will be cleared
2549 /// let mut left = vec![42; 10];
2550 /// let mut right = vec![-1; 10];
2551 ///
2552 /// (10..15).into_par_iter()
2553 /// .enumerate()
2554 /// .unzip_into_vecs(&mut left, &mut right);
2555 ///
2556 /// assert_eq!(left, [0, 1, 2, 3, 4]);
2557 /// assert_eq!(right, [10, 11, 12, 13, 14]);
2558 /// ```
2559 fn unzip_into_vecs<A, B>(self, left: &mut Vec<A>, right: &mut Vec<B>)
2560 where
2561 Self: IndexedParallelIterator<Item = (A, B)>,
2562 A: Send,
2563 B: Send,
2564 {
2565 collect::unzip_into_vecs(self, left, right);
2566 }
2567
2568 /// Iterates over tuples `(A, B)`, where the items `A` are from
2569 /// this iterator and `B` are from the iterator given as argument.
2570 /// Like the `zip` method on ordinary iterators, if the two
2571 /// iterators are of unequal length, you only get the items they
2572 /// have in common.
2573 ///
2574 /// # Examples
2575 ///
2576 /// ```
2577 /// use rayon::prelude::*;
2578 ///
2579 /// let result: Vec<_> = (1..4)
2580 /// .into_par_iter()
2581 /// .zip(vec!['a', 'b', 'c'])
2582 /// .collect();
2583 ///
2584 /// assert_eq!(result, [(1, 'a'), (2, 'b'), (3, 'c')]);
2585 /// ```
2586 fn zip<Z>(self, zip_op: Z) -> Zip<Self, Z::Iter>
2587 where
2588 Z: IntoParallelIterator,
2589 Z::Iter: IndexedParallelIterator,
2590 {
2591 Zip::new(self, zip_op.into_par_iter())
2592 }
2593
2594 /// The same as `Zip`, but requires that both iterators have the same length.
2595 ///
2596 /// # Panics
2597 /// Will panic if `self` and `zip_op` are not the same length.
2598 ///
2599 /// ```should_panic
2600 /// use rayon::prelude::*;
2601 ///
2602 /// let one = [1u8];
2603 /// let two = [2u8, 2];
2604 /// let one_iter = one.par_iter();
2605 /// let two_iter = two.par_iter();
2606 ///
2607 /// // this will panic
2608 /// let zipped: Vec<(&u8, &u8)> = one_iter.zip_eq(two_iter).collect();
2609 ///
2610 /// // we should never get here
2611 /// assert_eq!(1, zipped.len());
2612 /// ```
2613 #[track_caller]
2614 fn zip_eq<Z>(self, zip_op: Z) -> ZipEq<Self, Z::Iter>
2615 where
2616 Z: IntoParallelIterator,
2617 Z::Iter: IndexedParallelIterator,
2618 {
2619 let zip_op_iter = zip_op.into_par_iter();
2620 assert_eq!(
2621 self.len(),
2622 zip_op_iter.len(),
2623 "iterators must have the same length"
2624 );
2625 ZipEq::new(self, zip_op_iter)
2626 }
2627
2628 /// Interleaves elements of this iterator and the other given
2629 /// iterator. Alternately yields elements from this iterator and
2630 /// the given iterator, until both are exhausted. If one iterator
2631 /// is exhausted before the other, the last elements are provided
2632 /// from the other.
2633 ///
2634 /// # Examples
2635 ///
2636 /// ```
2637 /// use rayon::prelude::*;
2638 /// let (x, y) = (vec![1, 2], vec![3, 4, 5, 6]);
2639 /// let r: Vec<i32> = x.into_par_iter().interleave(y).collect();
2640 /// assert_eq!(r, vec![1, 3, 2, 4, 5, 6]);
2641 /// ```
2642 fn interleave<I>(self, other: I) -> Interleave<Self, I::Iter>
2643 where
2644 I: IntoParallelIterator<Item = Self::Item>,
2645 I::Iter: IndexedParallelIterator<Item = Self::Item>,
2646 {
2647 Interleave::new(self, other.into_par_iter())
2648 }
2649
2650 /// Interleaves elements of this iterator and the other given
2651 /// iterator, until one is exhausted.
2652 ///
2653 /// # Examples
2654 ///
2655 /// ```
2656 /// use rayon::prelude::*;
2657 /// let (x, y) = (vec![1, 2, 3, 4], vec![5, 6]);
2658 /// let r: Vec<i32> = x.into_par_iter().interleave_shortest(y).collect();
2659 /// assert_eq!(r, vec![1, 5, 2, 6, 3]);
2660 /// ```
2661 fn interleave_shortest<I>(self, other: I) -> InterleaveShortest<Self, I::Iter>
2662 where
2663 I: IntoParallelIterator<Item = Self::Item>,
2664 I::Iter: IndexedParallelIterator<Item = Self::Item>,
2665 {
2666 InterleaveShortest::new(self, other.into_par_iter())
2667 }
2668
2669 /// Splits an iterator up into fixed-size chunks.
2670 ///
2671 /// Returns an iterator that returns `Vec`s of the given number of elements.
2672 /// If the number of elements in the iterator is not divisible by `chunk_size`,
2673 /// the last chunk may be shorter than `chunk_size`.
2674 ///
2675 /// See also [`par_chunks()`] and [`par_chunks_mut()`] for similar behavior on
2676 /// slices, without having to allocate intermediate `Vec`s for the chunks.
2677 ///
2678 /// [`par_chunks()`]: ../slice/trait.ParallelSlice.html#method.par_chunks
2679 /// [`par_chunks_mut()`]: ../slice/trait.ParallelSliceMut.html#method.par_chunks_mut
2680 ///
2681 /// **Panics** if `chunk_size` is 0.
2682 ///
2683 /// # Examples
2684 ///
2685 /// ```
2686 /// use rayon::prelude::*;
2687 /// let a = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2688 /// let r: Vec<Vec<i32>> = a.into_par_iter().chunks(3).collect();
2689 /// assert_eq!(r, vec![vec![1,2,3], vec![4,5,6], vec![7,8,9], vec![10]]);
2690 /// ```
2691 #[track_caller]
2692 fn chunks(self, chunk_size: usize) -> Chunks<Self> {
2693 assert!(chunk_size != 0, "chunk_size must not be zero");
2694 Chunks::new(self, chunk_size)
2695 }
2696
2697 /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on
2698 /// each chunk.
2699 ///
2700 /// Returns an iterator that produces a folded result for each chunk of items
2701 /// produced by this iterator.
2702 ///
2703 /// This works essentially like:
2704 ///
2705 /// ```text
2706 /// iter.chunks(chunk_size)
2707 /// .map(|chunk|
2708 /// chunk.into_iter()
2709 /// .fold(identity, fold_op)
2710 /// )
2711 /// ```
2712 ///
2713 /// except there is no per-chunk allocation overhead.
2714 ///
2715 /// [`fold()`]: std::iter::Iterator#method.fold
2716 ///
2717 /// **Panics** if `chunk_size` is 0.
2718 ///
2719 /// # Examples
2720 ///
2721 /// ```
2722 /// use rayon::prelude::*;
2723 /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2724 /// let chunk_sums = nums.into_par_iter().fold_chunks(2, || 0, |a, n| a + n).collect::<Vec<_>>();
2725 /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]);
2726 /// ```
2727 #[track_caller]
2728 fn fold_chunks<T, ID, F>(
2729 self,
2730 chunk_size: usize,
2731 identity: ID,
2732 fold_op: F,
2733 ) -> FoldChunks<Self, ID, F>
2734 where
2735 ID: Fn() -> T + Send + Sync,
2736 F: Fn(T, Self::Item) -> T + Send + Sync,
2737 T: Send,
2738 {
2739 assert!(chunk_size != 0, "chunk_size must not be zero");
2740 FoldChunks::new(self, chunk_size, identity, fold_op)
2741 }
2742
2743 /// Splits an iterator into fixed-size chunks, performing a sequential [`fold()`] on
2744 /// each chunk.
2745 ///
2746 /// Returns an iterator that produces a folded result for each chunk of items
2747 /// produced by this iterator.
2748 ///
2749 /// This works essentially like `fold_chunks(chunk_size, || init.clone(), fold_op)`,
2750 /// except it doesn't require the `init` type to be `Sync`, nor any other form of
2751 /// added synchronization.
2752 ///
2753 /// [`fold()`]: std::iter::Iterator#method.fold
2754 ///
2755 /// **Panics** if `chunk_size` is 0.
2756 ///
2757 /// # Examples
2758 ///
2759 /// ```
2760 /// use rayon::prelude::*;
2761 /// let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
2762 /// let chunk_sums = nums.into_par_iter().fold_chunks_with(2, 0, |a, n| a + n).collect::<Vec<_>>();
2763 /// assert_eq!(chunk_sums, vec![3, 7, 11, 15, 19]);
2764 /// ```
2765 #[track_caller]
2766 fn fold_chunks_with<T, F>(
2767 self,
2768 chunk_size: usize,
2769 init: T,
2770 fold_op: F,
2771 ) -> FoldChunksWith<Self, T, F>
2772 where
2773 T: Send + Clone,
2774 F: Fn(T, Self::Item) -> T + Send + Sync,
2775 {
2776 assert!(chunk_size != 0, "chunk_size must not be zero");
2777 FoldChunksWith::new(self, chunk_size, init, fold_op)
2778 }
2779
2780 /// Lexicographically compares the elements of this `ParallelIterator` with those of
2781 /// another.
2782 ///
2783 /// # Examples
2784 ///
2785 /// ```
2786 /// use rayon::prelude::*;
2787 /// use std::cmp::Ordering::*;
2788 ///
2789 /// let x = vec![1, 2, 3];
2790 /// assert_eq!(x.par_iter().cmp(&vec![1, 3, 0]), Less);
2791 /// assert_eq!(x.par_iter().cmp(&vec![1, 2, 3]), Equal);
2792 /// assert_eq!(x.par_iter().cmp(&vec![1, 2]), Greater);
2793 /// ```
2794 fn cmp<I>(self, other: I) -> Ordering
2795 where
2796 I: IntoParallelIterator<Item = Self::Item>,
2797 I::Iter: IndexedParallelIterator,
2798 Self::Item: Ord,
2799 {
2800 #[inline]
2801 fn ordering<T: Ord>((x, y): (T, T)) -> Ordering {
2802 Ord::cmp(&x, &y)
2803 }
2804
2805 #[inline]
2806 fn inequal(&ord: &Ordering) -> bool {
2807 ord != Ordering::Equal
2808 }
2809
2810 let other = other.into_par_iter();
2811 let ord_len = self.len().cmp(&other.len());
2812 self.zip(other)
2813 .map(ordering)
2814 .find_first(inequal)
2815 .unwrap_or(ord_len)
2816 }
2817
2818 /// Lexicographically compares the elements of this `ParallelIterator` with those of
2819 /// another.
2820 ///
2821 /// # Examples
2822 ///
2823 /// ```
2824 /// use rayon::prelude::*;
2825 /// use std::cmp::Ordering::*;
2826 /// use std::f64::NAN;
2827 ///
2828 /// let x = vec![1.0, 2.0, 3.0];
2829 /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 3.0, 0.0]), Some(Less));
2830 /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0, 3.0]), Some(Equal));
2831 /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, 2.0]), Some(Greater));
2832 /// assert_eq!(x.par_iter().partial_cmp(&vec![1.0, NAN]), None);
2833 /// ```
2834 fn partial_cmp<I>(self, other: I) -> Option<Ordering>
2835 where
2836 I: IntoParallelIterator,
2837 I::Iter: IndexedParallelIterator,
2838 Self::Item: PartialOrd<I::Item>,
2839 {
2840 #[inline]
2841 fn ordering<T: PartialOrd<U>, U>((x, y): (T, U)) -> Option<Ordering> {
2842 PartialOrd::partial_cmp(&x, &y)
2843 }
2844
2845 #[inline]
2846 fn inequal(&ord: &Option<Ordering>) -> bool {
2847 ord != Some(Ordering::Equal)
2848 }
2849
2850 let other = other.into_par_iter();
2851 let ord_len = self.len().cmp(&other.len());
2852 self.zip(other)
2853 .map(ordering)
2854 .find_first(inequal)
2855 .unwrap_or(Some(ord_len))
2856 }
2857
2858 /// Determines if the elements of this `ParallelIterator`
2859 /// are equal to those of another
2860 fn eq<I>(self, other: I) -> bool
2861 where
2862 I: IntoParallelIterator,
2863 I::Iter: IndexedParallelIterator,
2864 Self::Item: PartialEq<I::Item>,
2865 {
2866 #[inline]
2867 fn eq<T: PartialEq<U>, U>((x, y): (T, U)) -> bool {
2868 PartialEq::eq(&x, &y)
2869 }
2870
2871 let other = other.into_par_iter();
2872 self.len() == other.len() && self.zip(other).all(eq)
2873 }
2874
2875 /// Determines if the elements of this `ParallelIterator`
2876 /// are unequal to those of another
2877 fn ne<I>(self, other: I) -> bool
2878 where
2879 I: IntoParallelIterator,
2880 I::Iter: IndexedParallelIterator,
2881 Self::Item: PartialEq<I::Item>,
2882 {
2883 !self.eq(other)
2884 }
2885
2886 /// Determines if the elements of this `ParallelIterator`
2887 /// are lexicographically less than those of another.
2888 fn lt<I>(self, other: I) -> bool
2889 where
2890 I: IntoParallelIterator,
2891 I::Iter: IndexedParallelIterator,
2892 Self::Item: PartialOrd<I::Item>,
2893 {
2894 self.partial_cmp(other) == Some(Ordering::Less)
2895 }
2896
2897 /// Determines if the elements of this `ParallelIterator`
2898 /// are less or equal to those of another.
2899 fn le<I>(self, other: I) -> bool
2900 where
2901 I: IntoParallelIterator,
2902 I::Iter: IndexedParallelIterator,
2903 Self::Item: PartialOrd<I::Item>,
2904 {
2905 let ord = self.partial_cmp(other);
2906 ord == Some(Ordering::Equal) || ord == Some(Ordering::Less)
2907 }
2908
2909 /// Determines if the elements of this `ParallelIterator`
2910 /// are lexicographically greater than those of another.
2911 fn gt<I>(self, other: I) -> bool
2912 where
2913 I: IntoParallelIterator,
2914 I::Iter: IndexedParallelIterator,
2915 Self::Item: PartialOrd<I::Item>,
2916 {
2917 self.partial_cmp(other) == Some(Ordering::Greater)
2918 }
2919
2920 /// Determines if the elements of this `ParallelIterator`
2921 /// are less or equal to those of another.
2922 fn ge<I>(self, other: I) -> bool
2923 where
2924 I: IntoParallelIterator,
2925 I::Iter: IndexedParallelIterator,
2926 Self::Item: PartialOrd<I::Item>,
2927 {
2928 let ord = self.partial_cmp(other);
2929 ord == Some(Ordering::Equal) || ord == Some(Ordering::Greater)
2930 }
2931
2932 /// Yields an index along with each item.
2933 ///
2934 /// # Examples
2935 ///
2936 /// ```
2937 /// use rayon::prelude::*;
2938 ///
2939 /// let chars = vec!['a', 'b', 'c'];
2940 /// let result: Vec<_> = chars
2941 /// .into_par_iter()
2942 /// .enumerate()
2943 /// .collect();
2944 ///
2945 /// assert_eq!(result, [(0, 'a'), (1, 'b'), (2, 'c')]);
2946 /// ```
2947 fn enumerate(self) -> Enumerate<Self> {
2948 Enumerate::new(self)
2949 }
2950
2951 /// Creates an iterator that steps by the given amount
2952 ///
2953 /// # Examples
2954 ///
2955 /// ```
2956 ///use rayon::prelude::*;
2957 ///
2958 /// let range = (3..10);
2959 /// let result: Vec<i32> = range
2960 /// .into_par_iter()
2961 /// .step_by(3)
2962 /// .collect();
2963 ///
2964 /// assert_eq!(result, [3, 6, 9])
2965 /// ```
2966 fn step_by(self, step: usize) -> StepBy<Self> {
2967 StepBy::new(self, step)
2968 }
2969
2970 /// Creates an iterator that skips the first `n` elements.
2971 ///
2972 /// # Examples
2973 ///
2974 /// ```
2975 /// use rayon::prelude::*;
2976 ///
2977 /// let result: Vec<_> = (0..100)
2978 /// .into_par_iter()
2979 /// .skip(95)
2980 /// .collect();
2981 ///
2982 /// assert_eq!(result, [95, 96, 97, 98, 99]);
2983 /// ```
2984 fn skip(self, n: usize) -> Skip<Self> {
2985 Skip::new(self, n)
2986 }
2987
2988 /// Creates an iterator that yields the first `n` elements.
2989 ///
2990 /// # Examples
2991 ///
2992 /// ```
2993 /// use rayon::prelude::*;
2994 ///
2995 /// let result: Vec<_> = (0..100)
2996 /// .into_par_iter()
2997 /// .take(5)
2998 /// .collect();
2999 ///
3000 /// assert_eq!(result, [0, 1, 2, 3, 4]);
3001 /// ```
3002 fn take(self, n: usize) -> Take<Self> {
3003 Take::new(self, n)
3004 }
3005
3006 /// Searches for **some** item in the parallel iterator that
3007 /// matches the given predicate, and returns its index. Like
3008 /// `ParallelIterator::find_any`, the parallel search will not
3009 /// necessarily find the **first** match, and once a match is
3010 /// found we'll attempt to stop processing any more.
3011 ///
3012 /// # Examples
3013 ///
3014 /// ```
3015 /// use rayon::prelude::*;
3016 ///
3017 /// let a = [1, 2, 3, 3];
3018 ///
3019 /// let i = a.par_iter().position_any(|&x| x == 3).expect("found");
3020 /// assert!(i == 2 || i == 3);
3021 ///
3022 /// assert_eq!(a.par_iter().position_any(|&x| x == 100), None);
3023 /// ```
3024 fn position_any<P>(self, predicate: P) -> Option<usize>
3025 where
3026 P: Fn(Self::Item) -> bool + Sync + Send,
3027 {
3028 #[inline]
3029 fn check(&(_, p): &(usize, bool)) -> bool {
3030 p
3031 }
3032
3033 let (i, _) = self.map(predicate).enumerate().find_any(check)?;
3034 Some(i)
3035 }
3036
3037 /// Searches for the sequentially **first** item in the parallel iterator
3038 /// that matches the given predicate, and returns its index.
3039 ///
3040 /// Like `ParallelIterator::find_first`, once a match is found,
3041 /// all attempts to the right of the match will be stopped, while
3042 /// attempts to the left must continue in case an earlier match
3043 /// is found.
3044 ///
3045 /// Note that not all parallel iterators have a useful order, much like
3046 /// sequential `HashMap` iteration, so "first" may be nebulous. If you
3047 /// just want the first match that discovered anywhere in the iterator,
3048 /// `position_any` is a better choice.
3049 ///
3050 /// # Examples
3051 ///
3052 /// ```
3053 /// use rayon::prelude::*;
3054 ///
3055 /// let a = [1, 2, 3, 3];
3056 ///
3057 /// assert_eq!(a.par_iter().position_first(|&x| x == 3), Some(2));
3058 ///
3059 /// assert_eq!(a.par_iter().position_first(|&x| x == 100), None);
3060 /// ```
3061 fn position_first<P>(self, predicate: P) -> Option<usize>
3062 where
3063 P: Fn(Self::Item) -> bool + Sync + Send,
3064 {
3065 #[inline]
3066 fn check(&(_, p): &(usize, bool)) -> bool {
3067 p
3068 }
3069
3070 let (i, _) = self.map(predicate).enumerate().find_first(check)?;
3071 Some(i)
3072 }
3073
3074 /// Searches for the sequentially **last** item in the parallel iterator
3075 /// that matches the given predicate, and returns its index.
3076 ///
3077 /// Like `ParallelIterator::find_last`, once a match is found,
3078 /// all attempts to the left of the match will be stopped, while
3079 /// attempts to the right must continue in case a later match
3080 /// is found.
3081 ///
3082 /// Note that not all parallel iterators have a useful order, much like
3083 /// sequential `HashMap` iteration, so "last" may be nebulous. When the
3084 /// order doesn't actually matter to you, `position_any` is a better
3085 /// choice.
3086 ///
3087 /// # Examples
3088 ///
3089 /// ```
3090 /// use rayon::prelude::*;
3091 ///
3092 /// let a = [1, 2, 3, 3];
3093 ///
3094 /// assert_eq!(a.par_iter().position_last(|&x| x == 3), Some(3));
3095 ///
3096 /// assert_eq!(a.par_iter().position_last(|&x| x == 100), None);
3097 /// ```
3098 fn position_last<P>(self, predicate: P) -> Option<usize>
3099 where
3100 P: Fn(Self::Item) -> bool + Sync + Send,
3101 {
3102 #[inline]
3103 fn check(&(_, p): &(usize, bool)) -> bool {
3104 p
3105 }
3106
3107 let (i, _) = self.map(predicate).enumerate().find_last(check)?;
3108 Some(i)
3109 }
3110
3111 #[doc(hidden)]
3112 #[deprecated(
3113 note = "parallel `position` does not search in order -- use `position_any`, \\
3114 `position_first`, or `position_last`"
3115 )]
3116 fn position<P>(self, predicate: P) -> Option<usize>
3117 where
3118 P: Fn(Self::Item) -> bool + Sync + Send,
3119 {
3120 self.position_any(predicate)
3121 }
3122
3123 /// Searches for items in the parallel iterator that match the given
3124 /// predicate, and returns their indices.
3125 ///
3126 /// # Examples
3127 ///
3128 /// ```
3129 /// use rayon::prelude::*;
3130 ///
3131 /// let primes = vec![2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
3132 ///
3133 /// // Find the positions of primes congruent to 1 modulo 6
3134 /// let p1mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 1).collect();
3135 /// assert_eq!(p1mod6, [3, 5, 7]); // primes 7, 13, and 19
3136 ///
3137 /// // Find the positions of primes congruent to 5 modulo 6
3138 /// let p5mod6: Vec<_> = primes.par_iter().positions(|&p| p % 6 == 5).collect();
3139 /// assert_eq!(p5mod6, [2, 4, 6, 8, 9]); // primes 5, 11, 17, 23, and 29
3140 /// ```
3141 fn positions<P>(self, predicate: P) -> Positions<Self, P>
3142 where
3143 P: Fn(Self::Item) -> bool + Sync + Send,
3144 {
3145 Positions::new(self, predicate)
3146 }
3147
3148 /// Produces a new iterator with the elements of this iterator in
3149 /// reverse order.
3150 ///
3151 /// # Examples
3152 ///
3153 /// ```
3154 /// use rayon::prelude::*;
3155 ///
3156 /// let result: Vec<_> = (0..5)
3157 /// .into_par_iter()
3158 /// .rev()
3159 /// .collect();
3160 ///
3161 /// assert_eq!(result, [4, 3, 2, 1, 0]);
3162 /// ```
3163 fn rev(self) -> Rev<Self> {
3164 Rev::new(self)
3165 }
3166
3167 /// Sets the minimum length of iterators desired to process in each
3168 /// rayon job. Rayon will not split any smaller than this length, but
3169 /// of course an iterator could already be smaller to begin with.
3170 ///
3171 /// Producers like `zip` and `interleave` will use greater of the two
3172 /// minimums.
3173 /// Chained iterators and iterators inside `flat_map` may each use
3174 /// their own minimum length.
3175 ///
3176 /// # Examples
3177 ///
3178 /// ```
3179 /// use rayon::prelude::*;
3180 ///
3181 /// let min = (0..1_000_000)
3182 /// .into_par_iter()
3183 /// .with_min_len(1234)
3184 /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment
3185 /// .min().unwrap();
3186 ///
3187 /// assert!(min >= 1234);
3188 /// ```
3189 fn with_min_len(self, min: usize) -> MinLen<Self> {
3190 MinLen::new(self, min)
3191 }
3192
3193 /// Sets the maximum length of iterators desired to process in each
3194 /// rayon job. Rayon will try to split at least below this length,
3195 /// unless that would put it below the length from `with_min_len()`.
3196 /// For example, given min=10 and max=15, a length of 16 will not be
3197 /// split any further.
3198 ///
3199 /// Producers like `zip` and `interleave` will use lesser of the two
3200 /// maximums.
3201 /// Chained iterators and iterators inside `flat_map` may each use
3202 /// their own maximum length.
3203 ///
3204 /// # Examples
3205 ///
3206 /// ```
3207 /// use rayon::prelude::*;
3208 ///
3209 /// let max = (0..1_000_000)
3210 /// .into_par_iter()
3211 /// .with_max_len(1234)
3212 /// .fold(|| 0, |acc, _| acc + 1) // count how many are in this segment
3213 /// .max().unwrap();
3214 ///
3215 /// assert!(max <= 1234);
3216 /// ```
3217 fn with_max_len(self, max: usize) -> MaxLen<Self> {
3218 MaxLen::new(self, max)
3219 }
3220
3221 /// Produces an exact count of how many items this iterator will
3222 /// produce, presuming no panic occurs.
3223 ///
3224 /// # Examples
3225 ///
3226 /// ```
3227 /// use rayon::prelude::*;
3228 ///
3229 /// let par_iter = (0..100).into_par_iter().zip(vec![0; 10]);
3230 /// assert_eq!(par_iter.len(), 10);
3231 ///
3232 /// let vec: Vec<_> = par_iter.collect();
3233 /// assert_eq!(vec.len(), 10);
3234 /// ```
3235 fn len(&self) -> usize;
3236
3237 /// Internal method used to define the behavior of this parallel
3238 /// iterator. You should not need to call this directly.
3239 ///
3240 /// This method causes the iterator `self` to start producing
3241 /// items and to feed them to the consumer `consumer` one by one.
3242 /// It may split the consumer before doing so to create the
3243 /// opportunity to produce in parallel. If a split does happen, it
3244 /// will inform the consumer of the index where the split should
3245 /// occur (unlike `ParallelIterator::drive_unindexed()`).
3246 ///
3247 /// See the [README] for more details on the internals of parallel
3248 /// iterators.
3249 ///
3250 /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md
3251 fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result;
3252
3253 /// Internal method used to define the behavior of this parallel
3254 /// iterator. You should not need to call this directly.
3255 ///
3256 /// This method converts the iterator into a producer P and then
3257 /// invokes `callback.callback()` with P. Note that the type of
3258 /// this producer is not defined as part of the API, since
3259 /// `callback` must be defined generically for all producers. This
3260 /// allows the producer type to contain references; it also means
3261 /// that parallel iterators can adjust that type without causing a
3262 /// breaking change.
3263 ///
3264 /// See the [README] for more details on the internals of parallel
3265 /// iterators.
3266 ///
3267 /// [README]: https://github.com/rayon-rs/rayon/blob/main/src/iter/plumbing/README.md
3268 fn with_producer<CB: ProducerCallback<Self::Item>>(self, callback: CB) -> CB::Output;
3269}
3270
3271/// `FromParallelIterator` implements the creation of a collection
3272/// from a [`ParallelIterator`]. By implementing
3273/// `FromParallelIterator` for a given type, you define how it will be
3274/// created from an iterator.
3275///
3276/// `FromParallelIterator` is used through [`ParallelIterator`]'s [`collect()`] method.
3277///
3278/// [`ParallelIterator`]: trait.ParallelIterator.html
3279/// [`collect()`]: trait.ParallelIterator.html#method.collect
3280///
3281/// # Examples
3282///
3283/// Implementing `FromParallelIterator` for your type:
3284///
3285/// ```
3286/// use rayon::prelude::*;
3287/// use std::mem;
3288///
3289/// struct BlackHole {
3290/// mass: usize,
3291/// }
3292///
3293/// impl<T: Send> FromParallelIterator<T> for BlackHole {
3294/// fn from_par_iter<I>(par_iter: I) -> Self
3295/// where I: IntoParallelIterator<Item = T>
3296/// {
3297/// let par_iter = par_iter.into_par_iter();
3298/// BlackHole {
3299/// mass: par_iter.count() * mem::size_of::<T>(),
3300/// }
3301/// }
3302/// }
3303///
3304/// let bh: BlackHole = (0i32..1000).into_par_iter().collect();
3305/// assert_eq!(bh.mass, 4000);
3306/// ```
3307pub trait FromParallelIterator<T>
3308where
3309 T: Send,
3310{
3311 /// Creates an instance of the collection from the parallel iterator `par_iter`.
3312 ///
3313 /// If your collection is not naturally parallel, the easiest (and
3314 /// fastest) way to do this is often to collect `par_iter` into a
3315 /// [`LinkedList`] (via [`collect_vec_list`]) or another intermediate
3316 /// data structure and then sequentially extend your collection. However,
3317 /// a more 'native' technique is to use the [`par_iter.fold`] or
3318 /// [`par_iter.fold_with`] methods to create the collection.
3319 /// Alternatively, if your collection is 'natively' parallel, you
3320 /// can use `par_iter.for_each` to process each element in turn.
3321 ///
3322 /// [`LinkedList`]: https://doc.rust-lang.org/std/collections/struct.LinkedList.html
3323 /// [`collect_vec_list`]: ParallelIterator::collect_vec_list
3324 /// [`par_iter.fold`]: trait.ParallelIterator.html#method.fold
3325 /// [`par_iter.fold_with`]: trait.ParallelIterator.html#method.fold_with
3326 /// [`par_iter.for_each`]: trait.ParallelIterator.html#method.for_each
3327 fn from_par_iter<I>(par_iter: I) -> Self
3328 where
3329 I: IntoParallelIterator<Item = T>;
3330}
3331
3332/// `ParallelExtend` extends an existing collection with items from a [`ParallelIterator`].
3333///
3334/// [`ParallelIterator`]: trait.ParallelIterator.html
3335///
3336/// # Examples
3337///
3338/// Implementing `ParallelExtend` for your type:
3339///
3340/// ```
3341/// use rayon::prelude::*;
3342/// use std::mem;
3343///
3344/// struct BlackHole {
3345/// mass: usize,
3346/// }
3347///
3348/// impl<T: Send> ParallelExtend<T> for BlackHole {
3349/// fn par_extend<I>(&mut self, par_iter: I)
3350/// where I: IntoParallelIterator<Item = T>
3351/// {
3352/// let par_iter = par_iter.into_par_iter();
3353/// self.mass += par_iter.count() * mem::size_of::<T>();
3354/// }
3355/// }
3356///
3357/// let mut bh = BlackHole { mass: 0 };
3358/// bh.par_extend(0i32..1000);
3359/// assert_eq!(bh.mass, 4000);
3360/// bh.par_extend(0i64..10);
3361/// assert_eq!(bh.mass, 4080);
3362/// ```
3363pub trait ParallelExtend<T>
3364where
3365 T: Send,
3366{
3367 /// Extends an instance of the collection with the elements drawn
3368 /// from the parallel iterator `par_iter`.
3369 ///
3370 /// # Examples
3371 ///
3372 /// ```
3373 /// use rayon::prelude::*;
3374 ///
3375 /// let mut vec = vec![];
3376 /// vec.par_extend(0..5);
3377 /// vec.par_extend((0..5).into_par_iter().map(|i| i * i));
3378 /// assert_eq!(vec, [0, 1, 2, 3, 4, 0, 1, 4, 9, 16]);
3379 /// ```
3380 fn par_extend<I>(&mut self, par_iter: I)
3381 where
3382 I: IntoParallelIterator<Item = T>;
3383}
3384
3385/// `ParallelDrainFull` creates a parallel iterator that moves all items
3386/// from a collection while retaining the original capacity.
3387///
3388/// Types which are indexable typically implement [`ParallelDrainRange`]
3389/// instead, where you can drain fully with `par_drain(..)`.
3390///
3391/// [`ParallelDrainRange`]: trait.ParallelDrainRange.html
3392pub trait ParallelDrainFull {
3393 /// The draining parallel iterator type that will be created.
3394 type Iter: ParallelIterator<Item = Self::Item>;
3395
3396 /// The type of item that the parallel iterator will produce.
3397 /// This is usually the same as `IntoParallelIterator::Item`.
3398 type Item: Send;
3399
3400 /// Returns a draining parallel iterator over an entire collection.
3401 ///
3402 /// When the iterator is dropped, all items are removed, even if the
3403 /// iterator was not fully consumed. If the iterator is leaked, for example
3404 /// using `std::mem::forget`, it is unspecified how many items are removed.
3405 ///
3406 /// # Examples
3407 ///
3408 /// ```
3409 /// use rayon::prelude::*;
3410 /// use std::collections::{BinaryHeap, HashSet};
3411 ///
3412 /// let squares: HashSet<i32> = (0..10).map(|x| x * x).collect();
3413 ///
3414 /// let mut heap: BinaryHeap<_> = squares.iter().copied().collect();
3415 /// assert_eq!(
3416 /// // heaps are drained in arbitrary order
3417 /// heap.par_drain()
3418 /// .inspect(|x| assert!(squares.contains(x)))
3419 /// .count(),
3420 /// squares.len(),
3421 /// );
3422 /// assert!(heap.is_empty());
3423 /// assert!(heap.capacity() >= squares.len());
3424 /// ```
3425 fn par_drain(self) -> Self::Iter;
3426}
3427
3428/// `ParallelDrainRange` creates a parallel iterator that moves a range of items
3429/// from a collection while retaining the original capacity.
3430///
3431/// Types which are not indexable may implement [`ParallelDrainFull`] instead.
3432///
3433/// [`ParallelDrainFull`]: trait.ParallelDrainFull.html
3434pub trait ParallelDrainRange<Idx = usize> {
3435 /// The draining parallel iterator type that will be created.
3436 type Iter: ParallelIterator<Item = Self::Item>;
3437
3438 /// The type of item that the parallel iterator will produce.
3439 /// This is usually the same as `IntoParallelIterator::Item`.
3440 type Item: Send;
3441
3442 /// Returns a draining parallel iterator over a range of the collection.
3443 ///
3444 /// When the iterator is dropped, all items in the range are removed, even
3445 /// if the iterator was not fully consumed. If the iterator is leaked, for
3446 /// example using `std::mem::forget`, it is unspecified how many items are
3447 /// removed.
3448 ///
3449 /// # Examples
3450 ///
3451 /// ```
3452 /// use rayon::prelude::*;
3453 ///
3454 /// let squares: Vec<i32> = (0..10).map(|x| x * x).collect();
3455 ///
3456 /// println!("RangeFull");
3457 /// let mut vec = squares.clone();
3458 /// assert!(vec.par_drain(..)
3459 /// .eq(squares.par_iter().copied()));
3460 /// assert!(vec.is_empty());
3461 /// assert!(vec.capacity() >= squares.len());
3462 ///
3463 /// println!("RangeFrom");
3464 /// let mut vec = squares.clone();
3465 /// assert!(vec.par_drain(5..)
3466 /// .eq(squares[5..].par_iter().copied()));
3467 /// assert_eq!(&vec[..], &squares[..5]);
3468 /// assert!(vec.capacity() >= squares.len());
3469 ///
3470 /// println!("RangeTo");
3471 /// let mut vec = squares.clone();
3472 /// assert!(vec.par_drain(..5)
3473 /// .eq(squares[..5].par_iter().copied()));
3474 /// assert_eq!(&vec[..], &squares[5..]);
3475 /// assert!(vec.capacity() >= squares.len());
3476 ///
3477 /// println!("RangeToInclusive");
3478 /// let mut vec = squares.clone();
3479 /// assert!(vec.par_drain(..=5)
3480 /// .eq(squares[..=5].par_iter().copied()));
3481 /// assert_eq!(&vec[..], &squares[6..]);
3482 /// assert!(vec.capacity() >= squares.len());
3483 ///
3484 /// println!("Range");
3485 /// let mut vec = squares.clone();
3486 /// assert!(vec.par_drain(3..7)
3487 /// .eq(squares[3..7].par_iter().copied()));
3488 /// assert_eq!(&vec[..3], &squares[..3]);
3489 /// assert_eq!(&vec[3..], &squares[7..]);
3490 /// assert!(vec.capacity() >= squares.len());
3491 ///
3492 /// println!("RangeInclusive");
3493 /// let mut vec = squares.clone();
3494 /// assert!(vec.par_drain(3..=7)
3495 /// .eq(squares[3..=7].par_iter().copied()));
3496 /// assert_eq!(&vec[..3], &squares[..3]);
3497 /// assert_eq!(&vec[3..], &squares[8..]);
3498 /// assert!(vec.capacity() >= squares.len());
3499 /// ```
3500 fn par_drain<R: RangeBounds<Idx>>(self, range: R) -> Self::Iter;
3501}
3502
3503/// We hide the `Try` trait in a private module, as it's only meant to be a
3504/// stable clone of the standard library's `Try` trait, as yet unstable.
3505mod private {
3506 use std::convert::Infallible;
3507 use std::ops::ControlFlow::{self, Break, Continue};
3508 use std::task::Poll;
3509
3510 /// Clone of `std::ops::Try`.
3511 ///
3512 /// Implementing this trait is not permitted outside of `rayon`.
3513 pub trait Try {
3514 private_decl! {}
3515
3516 type Output;
3517 type Residual;
3518
3519 fn from_output(output: Self::Output) -> Self;
3520
3521 fn from_residual(residual: Self::Residual) -> Self;
3522
3523 fn branch(self) -> ControlFlow<Self::Residual, Self::Output>;
3524 }
3525
3526 impl<B, C> Try for ControlFlow<B, C> {
3527 private_impl! {}
3528
3529 type Output = C;
3530 type Residual = ControlFlow<B, Infallible>;
3531
3532 fn from_output(output: Self::Output) -> Self {
3533 Continue(output)
3534 }
3535
3536 fn from_residual(residual: Self::Residual) -> Self {
3537 match residual {
3538 Break(b) => Break(b),
3539 Continue(_) => unreachable!(),
3540 }
3541 }
3542
3543 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3544 match self {
3545 Continue(c) => Continue(c),
3546 Break(b) => Break(Break(b)),
3547 }
3548 }
3549 }
3550
3551 impl<T> Try for Option<T> {
3552 private_impl! {}
3553
3554 type Output = T;
3555 type Residual = Option<Infallible>;
3556
3557 fn from_output(output: Self::Output) -> Self {
3558 Some(output)
3559 }
3560
3561 fn from_residual(residual: Self::Residual) -> Self {
3562 match residual {
3563 None => None,
3564 Some(_) => unreachable!(),
3565 }
3566 }
3567
3568 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3569 match self {
3570 Some(c) => Continue(c),
3571 None => Break(None),
3572 }
3573 }
3574 }
3575
3576 impl<T, E> Try for Result<T, E> {
3577 private_impl! {}
3578
3579 type Output = T;
3580 type Residual = Result<Infallible, E>;
3581
3582 fn from_output(output: Self::Output) -> Self {
3583 Ok(output)
3584 }
3585
3586 fn from_residual(residual: Self::Residual) -> Self {
3587 match residual {
3588 Err(e) => Err(e),
3589 Ok(_) => unreachable!(),
3590 }
3591 }
3592
3593 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3594 match self {
3595 Ok(c) => Continue(c),
3596 Err(e) => Break(Err(e)),
3597 }
3598 }
3599 }
3600
3601 impl<T, E> Try for Poll<Result<T, E>> {
3602 private_impl! {}
3603
3604 type Output = Poll<T>;
3605 type Residual = Result<Infallible, E>;
3606
3607 fn from_output(output: Self::Output) -> Self {
3608 output.map(Ok)
3609 }
3610
3611 fn from_residual(residual: Self::Residual) -> Self {
3612 match residual {
3613 Err(e) => Poll::Ready(Err(e)),
3614 Ok(_) => unreachable!(),
3615 }
3616 }
3617
3618 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3619 match self {
3620 Poll::Pending => Continue(Poll::Pending),
3621 Poll::Ready(Ok(c)) => Continue(Poll::Ready(c)),
3622 Poll::Ready(Err(e)) => Break(Err(e)),
3623 }
3624 }
3625 }
3626
3627 impl<T, E> Try for Poll<Option<Result<T, E>>> {
3628 private_impl! {}
3629
3630 type Output = Poll<Option<T>>;
3631 type Residual = Result<Infallible, E>;
3632
3633 fn from_output(output: Self::Output) -> Self {
3634 match output {
3635 Poll::Ready(o) => Poll::Ready(o.map(Ok)),
3636 Poll::Pending => Poll::Pending,
3637 }
3638 }
3639
3640 fn from_residual(residual: Self::Residual) -> Self {
3641 match residual {
3642 Err(e) => Poll::Ready(Some(Err(e))),
3643 Ok(_) => unreachable!(),
3644 }
3645 }
3646
3647 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
3648 match self {
3649 Poll::Pending => Continue(Poll::Pending),
3650 Poll::Ready(None) => Continue(Poll::Ready(None)),
3651 Poll::Ready(Some(Ok(c))) => Continue(Poll::Ready(Some(c))),
3652 Poll::Ready(Some(Err(e))) => Break(Err(e)),
3653 }
3654 }
3655 }
3656}
3657