1/*!
2Lower level primitive types that are useful in a variety of circumstances.
3
4# Overview
5
6This list represents the principle types in this module and briefly describes
7when you might want to use them.
8
9* [`PatternID`] - A type that represents the identifier of a regex pattern.
10This is probably the most widely used type in this module (which is why it's
11also re-exported in the crate root).
12* [`StateID`] - A type the represents the identifier of a finite automaton
13state. This is used for both NFAs and DFAs, with the notable exception of
14the hybrid NFA/DFA. (The hybrid NFA/DFA uses a special purpose "lazy" state
15identifier.)
16* [`SmallIndex`] - The internal representation of both a `PatternID` and a
17`StateID`. Its purpose is to serve as a type that can index memory without
18being as big as a `usize` on 64-bit targets. The main idea behind this type
19is that there are many things in regex engines that will, in practice, never
20overflow a 32-bit integer. (For example, like the number of patterns in a regex
21or the number of states in an NFA.) Thus, a `SmallIndex` can be used to index
22memory without peppering `as` casts everywhere. Moreover, it forces callers
23to handle errors in the case where, somehow, the value would otherwise overflow
24either a 32-bit integer or a `usize` (e.g., on 16-bit targets).
25* [`NonMaxUsize`] - Represents a `usize` that cannot be `usize::MAX`. As a
26result, `Option<NonMaxUsize>` has the same size in memory as a `usize`. This
27useful, for example, when representing the offsets of submatches since it
28reduces memory usage by a factor of 2. It is a legal optimization since Rust
29guarantees that slices never have a length that exceeds `isize::MAX`.
30*/
31
32use core::num::NonZeroUsize;
33
34#[cfg(feature = "alloc")]
35use alloc::vec::Vec;
36
37use crate::util::int::{Usize, U16, U32, U64};
38
39/// A `usize` that can never be `usize::MAX`.
40///
41/// This is similar to `core::num::NonZeroUsize`, but instead of not permitting
42/// a zero value, this does not permit a max value.
43///
44/// This is useful in certain contexts where one wants to optimize the memory
45/// usage of things that contain match offsets. Namely, since Rust slices
46/// are guaranteed to never have a length exceeding `isize::MAX`, we can use
47/// `usize::MAX` as a sentinel to indicate that no match was found. Indeed,
48/// types like `Option<NonMaxUsize>` have exactly the same size in memory as a
49/// `usize`.
50///
51/// This type is defined to be `repr(transparent)` for
52/// `core::num::NonZeroUsize`, which is in turn defined to be
53/// `repr(transparent)` for `usize`.
54#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
55#[repr(transparent)]
56pub struct NonMaxUsize(NonZeroUsize);
57
58impl NonMaxUsize {
59 /// Create a new `NonMaxUsize` from the given value.
60 ///
61 /// This returns `None` only when the given value is equal to `usize::MAX`.
62 #[inline]
63 pub fn new(value: usize) -> Option<NonMaxUsize> {
64 NonZeroUsize::new(value.wrapping_add(1)).map(NonMaxUsize)
65 }
66
67 /// Return the underlying `usize` value. The returned value is guaranteed
68 /// to not equal `usize::MAX`.
69 #[inline]
70 pub fn get(self) -> usize {
71 self.0.get().wrapping_sub(1)
72 }
73}
74
75// We provide our own Debug impl because seeing the internal repr can be quite
76// surprising if you aren't expecting it. e.g., 'NonMaxUsize(5)' vs just '5'.
77impl core::fmt::Debug for NonMaxUsize {
78 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
79 write!(f, "{:?}", self.get())
80 }
81}
82
83/// A type that represents a "small" index.
84///
85/// The main idea of this type is to provide something that can index memory,
86/// but uses less memory than `usize` on 64-bit systems. Specifically, its
87/// representation is always a `u32` and has `repr(transparent)` enabled. (So
88/// it is safe to transmute between a `u32` and a `SmallIndex`.)
89///
90/// A small index is typically useful in cases where there is no practical way
91/// that the index will overflow a 32-bit integer. A good example of this is
92/// an NFA state. If you could somehow build an NFA with `2^30` states, its
93/// memory usage would be exorbitant and its runtime execution would be so
94/// slow as to be completely worthless. Therefore, this crate generally deems
95/// it acceptable to return an error if it would otherwise build an NFA that
96/// requires a slice longer than what a 32-bit integer can index. In exchange,
97/// we can use 32-bit indices instead of 64-bit indices in various places.
98///
99/// This type ensures this by providing a constructor that will return an error
100/// if its argument cannot fit into the type. This makes it much easier to
101/// handle these sorts of boundary cases that are otherwise extremely subtle.
102///
103/// On all targets, this type guarantees that its value will fit in a `u32`,
104/// `i32`, `usize` and an `isize`. This means that on 16-bit targets, for
105/// example, this type's maximum value will never overflow an `isize`,
106/// which means it will never overflow a `i16` even though its internal
107/// representation is still a `u32`.
108///
109/// The purpose for making the type fit into even signed integer types like
110/// `isize` is to guarantee that the difference between any two small indices
111/// is itself also a small index. This is useful in certain contexts, e.g.,
112/// for delta encoding.
113///
114/// # Other types
115///
116/// The following types wrap `SmallIndex` to provide a more focused use case:
117///
118/// * [`PatternID`] is for representing the identifiers of patterns.
119/// * [`StateID`] is for representing the identifiers of states in finite
120/// automata. It is used for both NFAs and DFAs.
121///
122/// # Representation
123///
124/// This type is always represented internally by a `u32` and is marked as
125/// `repr(transparent)`. Thus, this type always has the same representation as
126/// a `u32`. It is thus safe to transmute between a `u32` and a `SmallIndex`.
127///
128/// # Indexing
129///
130/// For convenience, callers may use a `SmallIndex` to index slices.
131///
132/// # Safety
133///
134/// While a `SmallIndex` is meant to guarantee that its value fits into `usize`
135/// without using as much space as a `usize` on all targets, callers must
136/// not rely on this property for safety. Callers may choose to rely on this
137/// property for correctness however. For example, creating a `SmallIndex` with
138/// an invalid value can be done in entirely safe code. This may in turn result
139/// in panics or silent logical errors.
140#[derive(
141 Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord,
142)]
143#[repr(transparent)]
144pub struct SmallIndex(u32);
145
146impl SmallIndex {
147 /// The maximum index value.
148 #[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
149 pub const MAX: SmallIndex =
150 // FIXME: Use as_usize() once const functions in traits are stable.
151 SmallIndex::new_unchecked(core::i32::MAX as usize - 1);
152
153 /// The maximum index value.
154 #[cfg(target_pointer_width = "16")]
155 pub const MAX: SmallIndex =
156 SmallIndex::new_unchecked(core::isize::MAX - 1);
157
158 /// The total number of values that can be represented as a small index.
159 pub const LIMIT: usize = SmallIndex::MAX.as_usize() + 1;
160
161 /// The zero index value.
162 pub const ZERO: SmallIndex = SmallIndex::new_unchecked(0);
163
164 /// The number of bytes that a single small index uses in memory.
165 pub const SIZE: usize = core::mem::size_of::<SmallIndex>();
166
167 /// Create a new small index.
168 ///
169 /// If the given index exceeds [`SmallIndex::MAX`], then this returns
170 /// an error.
171 #[inline]
172 pub fn new(index: usize) -> Result<SmallIndex, SmallIndexError> {
173 SmallIndex::try_from(index)
174 }
175
176 /// Create a new small index without checking whether the given value
177 /// exceeds [`SmallIndex::MAX`].
178 ///
179 /// Using this routine with an invalid index value will result in
180 /// unspecified behavior, but *not* undefined behavior. In particular, an
181 /// invalid index value is likely to cause panics or possibly even silent
182 /// logical errors.
183 ///
184 /// Callers must never rely on a `SmallIndex` to be within a certain range
185 /// for memory safety.
186 #[inline]
187 pub const fn new_unchecked(index: usize) -> SmallIndex {
188 // FIXME: Use as_u32() once const functions in traits are stable.
189 SmallIndex(index as u32)
190 }
191
192 /// Like [`SmallIndex::new`], but panics if the given index is not valid.
193 #[inline]
194 pub fn must(index: usize) -> SmallIndex {
195 SmallIndex::new(index).expect("invalid small index")
196 }
197
198 /// Return this small index as a `usize`. This is guaranteed to never
199 /// overflow `usize`.
200 #[inline]
201 pub const fn as_usize(&self) -> usize {
202 // FIXME: Use as_usize() once const functions in traits are stable.
203 self.0 as usize
204 }
205
206 /// Return this small index as a `u64`. This is guaranteed to never
207 /// overflow.
208 #[inline]
209 pub const fn as_u64(&self) -> u64 {
210 // FIXME: Use u64::from() once const functions in traits are stable.
211 self.0 as u64
212 }
213
214 /// Return the internal `u32` of this small index. This is guaranteed to
215 /// never overflow `u32`.
216 #[inline]
217 pub const fn as_u32(&self) -> u32 {
218 self.0
219 }
220
221 /// Return the internal `u32` of this small index represented as an `i32`.
222 /// This is guaranteed to never overflow an `i32`.
223 #[inline]
224 pub const fn as_i32(&self) -> i32 {
225 // This is OK because we guarantee that our max value is <= i32::MAX.
226 self.0 as i32
227 }
228
229 /// Returns one more than this small index as a usize.
230 ///
231 /// Since a small index has constraints on its maximum value, adding `1` to
232 /// it will always fit in a `usize`, `u32` and a `i32`.
233 #[inline]
234 pub fn one_more(&self) -> usize {
235 self.as_usize() + 1
236 }
237
238 /// Decode this small index from the bytes given using the native endian
239 /// byte order for the current target.
240 ///
241 /// If the decoded integer is not representable as a small index for the
242 /// current target, then this returns an error.
243 #[inline]
244 pub fn from_ne_bytes(
245 bytes: [u8; 4],
246 ) -> Result<SmallIndex, SmallIndexError> {
247 let id = u32::from_ne_bytes(bytes);
248 if id > SmallIndex::MAX.as_u32() {
249 return Err(SmallIndexError { attempted: u64::from(id) });
250 }
251 Ok(SmallIndex::new_unchecked(id.as_usize()))
252 }
253
254 /// Decode this small index from the bytes given using the native endian
255 /// byte order for the current target.
256 ///
257 /// This is analogous to [`SmallIndex::new_unchecked`] in that is does not
258 /// check whether the decoded integer is representable as a small index.
259 #[inline]
260 pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> SmallIndex {
261 SmallIndex::new_unchecked(u32::from_ne_bytes(bytes).as_usize())
262 }
263
264 /// Return the underlying small index integer as raw bytes in native endian
265 /// format.
266 #[inline]
267 pub fn to_ne_bytes(&self) -> [u8; 4] {
268 self.0.to_ne_bytes()
269 }
270}
271
272impl<T> core::ops::Index<SmallIndex> for [T] {
273 type Output = T;
274
275 #[inline]
276 fn index(&self, index: SmallIndex) -> &T {
277 &self[index.as_usize()]
278 }
279}
280
281impl<T> core::ops::IndexMut<SmallIndex> for [T] {
282 #[inline]
283 fn index_mut(&mut self, index: SmallIndex) -> &mut T {
284 &mut self[index.as_usize()]
285 }
286}
287
288#[cfg(feature = "alloc")]
289impl<T> core::ops::Index<SmallIndex> for Vec<T> {
290 type Output = T;
291
292 #[inline]
293 fn index(&self, index: SmallIndex) -> &T {
294 &self[index.as_usize()]
295 }
296}
297
298#[cfg(feature = "alloc")]
299impl<T> core::ops::IndexMut<SmallIndex> for Vec<T> {
300 #[inline]
301 fn index_mut(&mut self, index: SmallIndex) -> &mut T {
302 &mut self[index.as_usize()]
303 }
304}
305
306impl From<u8> for SmallIndex {
307 fn from(index: u8) -> SmallIndex {
308 SmallIndex::new_unchecked(index:usize::from(index))
309 }
310}
311
312impl TryFrom<u16> for SmallIndex {
313 type Error = SmallIndexError;
314
315 fn try_from(index: u16) -> Result<SmallIndex, SmallIndexError> {
316 if u32::from(index) > SmallIndex::MAX.as_u32() {
317 return Err(SmallIndexError { attempted: u64::from(index) });
318 }
319 Ok(SmallIndex::new_unchecked(index:index.as_usize()))
320 }
321}
322
323impl TryFrom<u32> for SmallIndex {
324 type Error = SmallIndexError;
325
326 fn try_from(index: u32) -> Result<SmallIndex, SmallIndexError> {
327 if index > SmallIndex::MAX.as_u32() {
328 return Err(SmallIndexError { attempted: u64::from(index) });
329 }
330 Ok(SmallIndex::new_unchecked(index:index.as_usize()))
331 }
332}
333
334impl TryFrom<u64> for SmallIndex {
335 type Error = SmallIndexError;
336
337 fn try_from(index: u64) -> Result<SmallIndex, SmallIndexError> {
338 if index > SmallIndex::MAX.as_u64() {
339 return Err(SmallIndexError { attempted: index });
340 }
341 Ok(SmallIndex::new_unchecked(index:index.as_usize()))
342 }
343}
344
345impl TryFrom<usize> for SmallIndex {
346 type Error = SmallIndexError;
347
348 fn try_from(index: usize) -> Result<SmallIndex, SmallIndexError> {
349 if index > SmallIndex::MAX.as_usize() {
350 return Err(SmallIndexError { attempted: index.as_u64() });
351 }
352 Ok(SmallIndex::new_unchecked(index))
353 }
354}
355
356#[cfg(test)]
357impl quickcheck::Arbitrary for SmallIndex {
358 fn arbitrary(gen: &mut quickcheck::Gen) -> SmallIndex {
359 use core::cmp::max;
360
361 let id = max(i32::MIN + 1, i32::arbitrary(gen)).abs();
362 if id > SmallIndex::MAX.as_i32() {
363 SmallIndex::MAX
364 } else {
365 SmallIndex::new(usize::try_from(id).unwrap()).unwrap()
366 }
367 }
368}
369
370/// This error occurs when a small index could not be constructed.
371///
372/// This occurs when given an integer exceeding the maximum small index value.
373///
374/// When the `std` feature is enabled, this implements the `Error` trait.
375#[derive(Clone, Debug, Eq, PartialEq)]
376pub struct SmallIndexError {
377 attempted: u64,
378}
379
380impl SmallIndexError {
381 /// Returns the value that could not be converted to a small index.
382 pub fn attempted(&self) -> u64 {
383 self.attempted
384 }
385}
386
387#[cfg(feature = "std")]
388impl std::error::Error for SmallIndexError {}
389
390impl core::fmt::Display for SmallIndexError {
391 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
392 write!(
393 f,
394 "failed to create small index from {:?}, which exceeds {:?}",
395 self.attempted(),
396 SmallIndex::MAX,
397 )
398 }
399}
400
401#[derive(Clone, Debug)]
402pub(crate) struct SmallIndexIter {
403 rng: core::ops::Range<usize>,
404}
405
406impl Iterator for SmallIndexIter {
407 type Item = SmallIndex;
408
409 fn next(&mut self) -> Option<SmallIndex> {
410 if self.rng.start >= self.rng.end {
411 return None;
412 }
413 let next_id: usize = self.rng.start + 1;
414 let id: usize = core::mem::replace(&mut self.rng.start, src:next_id);
415 // new_unchecked is OK since we asserted that the number of
416 // elements in this iterator will fit in an ID at construction.
417 Some(SmallIndex::new_unchecked(index:id))
418 }
419}
420
421macro_rules! index_type_impls {
422 ($name:ident, $err:ident, $iter:ident, $withiter:ident) => {
423 impl $name {
424 /// The maximum value.
425 pub const MAX: $name = $name(SmallIndex::MAX);
426
427 /// The total number of values that can be represented.
428 pub const LIMIT: usize = SmallIndex::LIMIT;
429
430 /// The zero value.
431 pub const ZERO: $name = $name(SmallIndex::ZERO);
432
433 /// The number of bytes that a single value uses in memory.
434 pub const SIZE: usize = SmallIndex::SIZE;
435
436 /// Create a new value that is represented by a "small index."
437 ///
438 /// If the given index exceeds the maximum allowed value, then this
439 /// returns an error.
440 #[inline]
441 pub fn new(value: usize) -> Result<$name, $err> {
442 SmallIndex::new(value).map($name).map_err($err)
443 }
444
445 /// Create a new value without checking whether the given argument
446 /// exceeds the maximum.
447 ///
448 /// Using this routine with an invalid value will result in
449 /// unspecified behavior, but *not* undefined behavior. In
450 /// particular, an invalid ID value is likely to cause panics or
451 /// possibly even silent logical errors.
452 ///
453 /// Callers must never rely on this type to be within a certain
454 /// range for memory safety.
455 #[inline]
456 pub const fn new_unchecked(value: usize) -> $name {
457 $name(SmallIndex::new_unchecked(value))
458 }
459
460 /// Like `new`, but panics if the given value is not valid.
461 #[inline]
462 pub fn must(value: usize) -> $name {
463 $name::new(value).expect(concat!(
464 "invalid ",
465 stringify!($name),
466 " value"
467 ))
468 }
469
470 /// Return the internal value as a `usize`. This is guaranteed to
471 /// never overflow `usize`.
472 #[inline]
473 pub const fn as_usize(&self) -> usize {
474 self.0.as_usize()
475 }
476
477 /// Return the internal value as a `u64`. This is guaranteed to
478 /// never overflow.
479 #[inline]
480 pub const fn as_u64(&self) -> u64 {
481 self.0.as_u64()
482 }
483
484 /// Return the internal value as a `u32`. This is guaranteed to
485 /// never overflow `u32`.
486 #[inline]
487 pub const fn as_u32(&self) -> u32 {
488 self.0.as_u32()
489 }
490
491 /// Return the internal value as a i32`. This is guaranteed to
492 /// never overflow an `i32`.
493 #[inline]
494 pub const fn as_i32(&self) -> i32 {
495 self.0.as_i32()
496 }
497
498 /// Returns one more than this value as a usize.
499 ///
500 /// Since values represented by a "small index" have constraints
501 /// on their maximum value, adding `1` to it will always fit in a
502 /// `usize`, `u32` and a `i32`.
503 #[inline]
504 pub fn one_more(&self) -> usize {
505 self.0.one_more()
506 }
507
508 /// Decode this value from the bytes given using the native endian
509 /// byte order for the current target.
510 ///
511 /// If the decoded integer is not representable as a small index
512 /// for the current target, then this returns an error.
513 #[inline]
514 pub fn from_ne_bytes(bytes: [u8; 4]) -> Result<$name, $err> {
515 SmallIndex::from_ne_bytes(bytes).map($name).map_err($err)
516 }
517
518 /// Decode this value from the bytes given using the native endian
519 /// byte order for the current target.
520 ///
521 /// This is analogous to `new_unchecked` in that is does not check
522 /// whether the decoded integer is representable as a small index.
523 #[inline]
524 pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> $name {
525 $name(SmallIndex::from_ne_bytes_unchecked(bytes))
526 }
527
528 /// Return the underlying integer as raw bytes in native endian
529 /// format.
530 #[inline]
531 pub fn to_ne_bytes(&self) -> [u8; 4] {
532 self.0.to_ne_bytes()
533 }
534
535 /// Returns an iterator over all values from 0 up to and not
536 /// including the given length.
537 ///
538 /// If the given length exceeds this type's limit, then this
539 /// panics.
540 pub(crate) fn iter(len: usize) -> $iter {
541 $iter::new(len)
542 }
543 }
544
545 // We write our own Debug impl so that we get things like PatternID(5)
546 // instead of PatternID(SmallIndex(5)).
547 impl core::fmt::Debug for $name {
548 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
549 f.debug_tuple(stringify!($name)).field(&self.as_u32()).finish()
550 }
551 }
552
553 impl<T> core::ops::Index<$name> for [T] {
554 type Output = T;
555
556 #[inline]
557 fn index(&self, index: $name) -> &T {
558 &self[index.as_usize()]
559 }
560 }
561
562 impl<T> core::ops::IndexMut<$name> for [T] {
563 #[inline]
564 fn index_mut(&mut self, index: $name) -> &mut T {
565 &mut self[index.as_usize()]
566 }
567 }
568
569 #[cfg(feature = "alloc")]
570 impl<T> core::ops::Index<$name> for Vec<T> {
571 type Output = T;
572
573 #[inline]
574 fn index(&self, index: $name) -> &T {
575 &self[index.as_usize()]
576 }
577 }
578
579 #[cfg(feature = "alloc")]
580 impl<T> core::ops::IndexMut<$name> for Vec<T> {
581 #[inline]
582 fn index_mut(&mut self, index: $name) -> &mut T {
583 &mut self[index.as_usize()]
584 }
585 }
586
587 impl From<u8> for $name {
588 fn from(value: u8) -> $name {
589 $name(SmallIndex::from(value))
590 }
591 }
592
593 impl TryFrom<u16> for $name {
594 type Error = $err;
595
596 fn try_from(value: u16) -> Result<$name, $err> {
597 SmallIndex::try_from(value).map($name).map_err($err)
598 }
599 }
600
601 impl TryFrom<u32> for $name {
602 type Error = $err;
603
604 fn try_from(value: u32) -> Result<$name, $err> {
605 SmallIndex::try_from(value).map($name).map_err($err)
606 }
607 }
608
609 impl TryFrom<u64> for $name {
610 type Error = $err;
611
612 fn try_from(value: u64) -> Result<$name, $err> {
613 SmallIndex::try_from(value).map($name).map_err($err)
614 }
615 }
616
617 impl TryFrom<usize> for $name {
618 type Error = $err;
619
620 fn try_from(value: usize) -> Result<$name, $err> {
621 SmallIndex::try_from(value).map($name).map_err($err)
622 }
623 }
624
625 #[cfg(test)]
626 impl quickcheck::Arbitrary for $name {
627 fn arbitrary(gen: &mut quickcheck::Gen) -> $name {
628 $name(SmallIndex::arbitrary(gen))
629 }
630 }
631
632 /// This error occurs when a value could not be constructed.
633 ///
634 /// This occurs when given an integer exceeding the maximum allowed
635 /// value.
636 ///
637 /// When the `std` feature is enabled, this implements the `Error`
638 /// trait.
639 #[derive(Clone, Debug, Eq, PartialEq)]
640 pub struct $err(SmallIndexError);
641
642 impl $err {
643 /// Returns the value that could not be converted to an ID.
644 pub fn attempted(&self) -> u64 {
645 self.0.attempted()
646 }
647 }
648
649 #[cfg(feature = "std")]
650 impl std::error::Error for $err {}
651
652 impl core::fmt::Display for $err {
653 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
654 write!(
655 f,
656 "failed to create {} from {:?}, which exceeds {:?}",
657 stringify!($name),
658 self.attempted(),
659 $name::MAX,
660 )
661 }
662 }
663
664 #[derive(Clone, Debug)]
665 pub(crate) struct $iter(SmallIndexIter);
666
667 impl $iter {
668 fn new(len: usize) -> $iter {
669 assert!(
670 len <= $name::LIMIT,
671 "cannot create iterator for {} when number of \
672 elements exceed {:?}",
673 stringify!($name),
674 $name::LIMIT,
675 );
676 $iter(SmallIndexIter { rng: 0..len })
677 }
678 }
679
680 impl Iterator for $iter {
681 type Item = $name;
682
683 fn next(&mut self) -> Option<$name> {
684 self.0.next().map($name)
685 }
686 }
687
688 /// An iterator adapter that is like std::iter::Enumerate, but attaches
689 /// small index values instead. It requires `ExactSizeIterator`. At
690 /// construction, it ensures that the index of each element in the
691 /// iterator is representable in the corresponding small index type.
692 #[derive(Clone, Debug)]
693 pub(crate) struct $withiter<I> {
694 it: I,
695 ids: $iter,
696 }
697
698 impl<I: Iterator + ExactSizeIterator> $withiter<I> {
699 fn new(it: I) -> $withiter<I> {
700 let ids = $name::iter(it.len());
701 $withiter { it, ids }
702 }
703 }
704
705 impl<I: Iterator + ExactSizeIterator> Iterator for $withiter<I> {
706 type Item = ($name, I::Item);
707
708 fn next(&mut self) -> Option<($name, I::Item)> {
709 let item = self.it.next()?;
710 // Number of elements in this iterator must match, according
711 // to contract of ExactSizeIterator.
712 let id = self.ids.next().unwrap();
713 Some((id, item))
714 }
715 }
716 };
717}
718
719/// The identifier of a regex pattern, represented by a [`SmallIndex`].
720///
721/// The identifier for a pattern corresponds to its relative position among
722/// other patterns in a single finite state machine. Namely, when building
723/// a multi-pattern regex engine, one must supply a sequence of patterns to
724/// match. The position (starting at 0) of each pattern in that sequence
725/// represents its identifier. This identifier is in turn used to identify and
726/// report matches of that pattern in various APIs.
727///
728/// See the [`SmallIndex`] type for more information about what it means for
729/// a pattern ID to be a "small index."
730///
731/// Note that this type is defined in the
732/// [`util::primitives`](crate::util::primitives) module, but it is also
733/// re-exported at the crate root due to how common it is.
734#[derive(Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)]
735#[repr(transparent)]
736pub struct PatternID(SmallIndex);
737
738/// The identifier of a finite automaton state, represented by a
739/// [`SmallIndex`].
740///
741/// Most regex engines in this crate are built on top of finite automata. Each
742/// state in a finite automaton defines transitions from its state to another.
743/// Those transitions point to other states via their identifiers, i.e., a
744/// `StateID`. Since finite automata tend to contain many transitions, it is
745/// much more memory efficient to define state IDs as small indices.
746///
747/// See the [`SmallIndex`] type for more information about what it means for
748/// a state ID to be a "small index."
749#[derive(Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)]
750#[repr(transparent)]
751pub struct StateID(SmallIndex);
752
753index_type_impls!(PatternID, PatternIDError, PatternIDIter, WithPatternIDIter);
754index_type_impls!(StateID, StateIDError, StateIDIter, WithStateIDIter);
755
756/// A utility trait that defines a couple of adapters for making it convenient
757/// to access indices as "small index" types. We require ExactSizeIterator so
758/// that iterator construction can do a single check to make sure the index of
759/// each element is representable by its small index type.
760pub(crate) trait IteratorIndexExt: Iterator {
761 fn with_pattern_ids(self) -> WithPatternIDIter<Self>
762 where
763 Self: Sized + ExactSizeIterator,
764 {
765 WithPatternIDIter::new(self)
766 }
767
768 fn with_state_ids(self) -> WithStateIDIter<Self>
769 where
770 Self: Sized + ExactSizeIterator,
771 {
772 WithStateIDIter::new(self)
773 }
774}
775
776impl<I: Iterator> IteratorIndexExt for I {}
777