1 | /*! |
2 | Lower level primitive types that are useful in a variety of circumstances. |
3 | |
4 | # Overview |
5 | |
6 | This list represents the principle types in this module and briefly describes |
7 | when you might want to use them. |
8 | |
9 | * [`PatternID`] - A type that represents the identifier of a regex pattern. |
10 | This is probably the most widely used type in this module (which is why it's |
11 | also re-exported in the crate root). |
12 | * [`StateID`] - A type the represents the identifier of a finite automaton |
13 | state. This is used for both NFAs and DFAs, with the notable exception of |
14 | the hybrid NFA/DFA. (The hybrid NFA/DFA uses a special purpose "lazy" state |
15 | identifier.) |
16 | * [`SmallIndex`] - The internal representation of both a `PatternID` and a |
17 | `StateID`. Its purpose is to serve as a type that can index memory without |
18 | being as big as a `usize` on 64-bit targets. The main idea behind this type |
19 | is that there are many things in regex engines that will, in practice, never |
20 | overflow a 32-bit integer. (For example, like the number of patterns in a regex |
21 | or the number of states in an NFA.) Thus, a `SmallIndex` can be used to index |
22 | memory without peppering `as` casts everywhere. Moreover, it forces callers |
23 | to handle errors in the case where, somehow, the value would otherwise overflow |
24 | either a 32-bit integer or a `usize` (e.g., on 16-bit targets). |
25 | * [`NonMaxUsize`] - Represents a `usize` that cannot be `usize::MAX`. As a |
26 | result, `Option<NonMaxUsize>` has the same size in memory as a `usize`. This |
27 | useful, for example, when representing the offsets of submatches since it |
28 | reduces memory usage by a factor of 2. It is a legal optimization since Rust |
29 | guarantees that slices never have a length that exceeds `isize::MAX`. |
30 | */ |
31 | |
32 | use core::num::NonZeroUsize; |
33 | |
34 | #[cfg (feature = "alloc" )] |
35 | use alloc::vec::Vec; |
36 | |
37 | use crate::util::int::{Usize, U16, U32, U64}; |
38 | |
39 | /// A `usize` that can never be `usize::MAX`. |
40 | /// |
41 | /// This is similar to `core::num::NonZeroUsize`, but instead of not permitting |
42 | /// a zero value, this does not permit a max value. |
43 | /// |
44 | /// This is useful in certain contexts where one wants to optimize the memory |
45 | /// usage of things that contain match offsets. Namely, since Rust slices |
46 | /// are guaranteed to never have a length exceeding `isize::MAX`, we can use |
47 | /// `usize::MAX` as a sentinel to indicate that no match was found. Indeed, |
48 | /// types like `Option<NonMaxUsize>` have exactly the same size in memory as a |
49 | /// `usize`. |
50 | /// |
51 | /// This type is defined to be `repr(transparent)` for |
52 | /// `core::num::NonZeroUsize`, which is in turn defined to be |
53 | /// `repr(transparent)` for `usize`. |
54 | #[derive (Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)] |
55 | #[repr (transparent)] |
56 | pub struct NonMaxUsize(NonZeroUsize); |
57 | |
58 | impl NonMaxUsize { |
59 | /// Create a new `NonMaxUsize` from the given value. |
60 | /// |
61 | /// This returns `None` only when the given value is equal to `usize::MAX`. |
62 | #[inline ] |
63 | pub fn new(value: usize) -> Option<NonMaxUsize> { |
64 | NonZeroUsize::new(value.wrapping_add(1)).map(NonMaxUsize) |
65 | } |
66 | |
67 | /// Return the underlying `usize` value. The returned value is guaranteed |
68 | /// to not equal `usize::MAX`. |
69 | #[inline ] |
70 | pub fn get(self) -> usize { |
71 | self.0.get().wrapping_sub(1) |
72 | } |
73 | } |
74 | |
75 | // We provide our own Debug impl because seeing the internal repr can be quite |
76 | // surprising if you aren't expecting it. e.g., 'NonMaxUsize(5)' vs just '5'. |
77 | impl core::fmt::Debug for NonMaxUsize { |
78 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
79 | write!(f, " {:?}" , self.get()) |
80 | } |
81 | } |
82 | |
83 | /// A type that represents a "small" index. |
84 | /// |
85 | /// The main idea of this type is to provide something that can index memory, |
86 | /// but uses less memory than `usize` on 64-bit systems. Specifically, its |
87 | /// representation is always a `u32` and has `repr(transparent)` enabled. (So |
88 | /// it is safe to transmute between a `u32` and a `SmallIndex`.) |
89 | /// |
90 | /// A small index is typically useful in cases where there is no practical way |
91 | /// that the index will overflow a 32-bit integer. A good example of this is |
92 | /// an NFA state. If you could somehow build an NFA with `2^30` states, its |
93 | /// memory usage would be exorbitant and its runtime execution would be so |
94 | /// slow as to be completely worthless. Therefore, this crate generally deems |
95 | /// it acceptable to return an error if it would otherwise build an NFA that |
96 | /// requires a slice longer than what a 32-bit integer can index. In exchange, |
97 | /// we can use 32-bit indices instead of 64-bit indices in various places. |
98 | /// |
99 | /// This type ensures this by providing a constructor that will return an error |
100 | /// if its argument cannot fit into the type. This makes it much easier to |
101 | /// handle these sorts of boundary cases that are otherwise extremely subtle. |
102 | /// |
103 | /// On all targets, this type guarantees that its value will fit in a `u32`, |
104 | /// `i32`, `usize` and an `isize`. This means that on 16-bit targets, for |
105 | /// example, this type's maximum value will never overflow an `isize`, |
106 | /// which means it will never overflow a `i16` even though its internal |
107 | /// representation is still a `u32`. |
108 | /// |
109 | /// The purpose for making the type fit into even signed integer types like |
110 | /// `isize` is to guarantee that the difference between any two small indices |
111 | /// is itself also a small index. This is useful in certain contexts, e.g., |
112 | /// for delta encoding. |
113 | /// |
114 | /// # Other types |
115 | /// |
116 | /// The following types wrap `SmallIndex` to provide a more focused use case: |
117 | /// |
118 | /// * [`PatternID`] is for representing the identifiers of patterns. |
119 | /// * [`StateID`] is for representing the identifiers of states in finite |
120 | /// automata. It is used for both NFAs and DFAs. |
121 | /// |
122 | /// # Representation |
123 | /// |
124 | /// This type is always represented internally by a `u32` and is marked as |
125 | /// `repr(transparent)`. Thus, this type always has the same representation as |
126 | /// a `u32`. It is thus safe to transmute between a `u32` and a `SmallIndex`. |
127 | /// |
128 | /// # Indexing |
129 | /// |
130 | /// For convenience, callers may use a `SmallIndex` to index slices. |
131 | /// |
132 | /// # Safety |
133 | /// |
134 | /// While a `SmallIndex` is meant to guarantee that its value fits into `usize` |
135 | /// without using as much space as a `usize` on all targets, callers must |
136 | /// not rely on this property for safety. Callers may choose to rely on this |
137 | /// property for correctness however. For example, creating a `SmallIndex` with |
138 | /// an invalid value can be done in entirely safe code. This may in turn result |
139 | /// in panics or silent logical errors. |
140 | #[derive ( |
141 | Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord, |
142 | )] |
143 | #[repr (transparent)] |
144 | pub struct SmallIndex(u32); |
145 | |
146 | impl SmallIndex { |
147 | /// The maximum index value. |
148 | #[cfg (any(target_pointer_width = "32" , target_pointer_width = "64" ))] |
149 | pub const MAX: SmallIndex = |
150 | // FIXME: Use as_usize() once const functions in traits are stable. |
151 | SmallIndex::new_unchecked(core::i32::MAX as usize - 1); |
152 | |
153 | /// The maximum index value. |
154 | #[cfg (target_pointer_width = "16" )] |
155 | pub const MAX: SmallIndex = |
156 | SmallIndex::new_unchecked(core::isize::MAX - 1); |
157 | |
158 | /// The total number of values that can be represented as a small index. |
159 | pub const LIMIT: usize = SmallIndex::MAX.as_usize() + 1; |
160 | |
161 | /// The zero index value. |
162 | pub const ZERO: SmallIndex = SmallIndex::new_unchecked(0); |
163 | |
164 | /// The number of bytes that a single small index uses in memory. |
165 | pub const SIZE: usize = core::mem::size_of::<SmallIndex>(); |
166 | |
167 | /// Create a new small index. |
168 | /// |
169 | /// If the given index exceeds [`SmallIndex::MAX`], then this returns |
170 | /// an error. |
171 | #[inline ] |
172 | pub fn new(index: usize) -> Result<SmallIndex, SmallIndexError> { |
173 | SmallIndex::try_from(index) |
174 | } |
175 | |
176 | /// Create a new small index without checking whether the given value |
177 | /// exceeds [`SmallIndex::MAX`]. |
178 | /// |
179 | /// Using this routine with an invalid index value will result in |
180 | /// unspecified behavior, but *not* undefined behavior. In particular, an |
181 | /// invalid index value is likely to cause panics or possibly even silent |
182 | /// logical errors. |
183 | /// |
184 | /// Callers must never rely on a `SmallIndex` to be within a certain range |
185 | /// for memory safety. |
186 | #[inline ] |
187 | pub const fn new_unchecked(index: usize) -> SmallIndex { |
188 | // FIXME: Use as_u32() once const functions in traits are stable. |
189 | SmallIndex(index as u32) |
190 | } |
191 | |
192 | /// Like [`SmallIndex::new`], but panics if the given index is not valid. |
193 | #[inline ] |
194 | pub fn must(index: usize) -> SmallIndex { |
195 | SmallIndex::new(index).expect("invalid small index" ) |
196 | } |
197 | |
198 | /// Return this small index as a `usize`. This is guaranteed to never |
199 | /// overflow `usize`. |
200 | #[inline ] |
201 | pub const fn as_usize(&self) -> usize { |
202 | // FIXME: Use as_usize() once const functions in traits are stable. |
203 | self.0 as usize |
204 | } |
205 | |
206 | /// Return this small index as a `u64`. This is guaranteed to never |
207 | /// overflow. |
208 | #[inline ] |
209 | pub const fn as_u64(&self) -> u64 { |
210 | // FIXME: Use u64::from() once const functions in traits are stable. |
211 | self.0 as u64 |
212 | } |
213 | |
214 | /// Return the internal `u32` of this small index. This is guaranteed to |
215 | /// never overflow `u32`. |
216 | #[inline ] |
217 | pub const fn as_u32(&self) -> u32 { |
218 | self.0 |
219 | } |
220 | |
221 | /// Return the internal `u32` of this small index represented as an `i32`. |
222 | /// This is guaranteed to never overflow an `i32`. |
223 | #[inline ] |
224 | pub const fn as_i32(&self) -> i32 { |
225 | // This is OK because we guarantee that our max value is <= i32::MAX. |
226 | self.0 as i32 |
227 | } |
228 | |
229 | /// Returns one more than this small index as a usize. |
230 | /// |
231 | /// Since a small index has constraints on its maximum value, adding `1` to |
232 | /// it will always fit in a `usize`, `u32` and a `i32`. |
233 | #[inline ] |
234 | pub fn one_more(&self) -> usize { |
235 | self.as_usize() + 1 |
236 | } |
237 | |
238 | /// Decode this small index from the bytes given using the native endian |
239 | /// byte order for the current target. |
240 | /// |
241 | /// If the decoded integer is not representable as a small index for the |
242 | /// current target, then this returns an error. |
243 | #[inline ] |
244 | pub fn from_ne_bytes( |
245 | bytes: [u8; 4], |
246 | ) -> Result<SmallIndex, SmallIndexError> { |
247 | let id = u32::from_ne_bytes(bytes); |
248 | if id > SmallIndex::MAX.as_u32() { |
249 | return Err(SmallIndexError { attempted: u64::from(id) }); |
250 | } |
251 | Ok(SmallIndex::new_unchecked(id.as_usize())) |
252 | } |
253 | |
254 | /// Decode this small index from the bytes given using the native endian |
255 | /// byte order for the current target. |
256 | /// |
257 | /// This is analogous to [`SmallIndex::new_unchecked`] in that is does not |
258 | /// check whether the decoded integer is representable as a small index. |
259 | #[inline ] |
260 | pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> SmallIndex { |
261 | SmallIndex::new_unchecked(u32::from_ne_bytes(bytes).as_usize()) |
262 | } |
263 | |
264 | /// Return the underlying small index integer as raw bytes in native endian |
265 | /// format. |
266 | #[inline ] |
267 | pub fn to_ne_bytes(&self) -> [u8; 4] { |
268 | self.0.to_ne_bytes() |
269 | } |
270 | } |
271 | |
272 | impl<T> core::ops::Index<SmallIndex> for [T] { |
273 | type Output = T; |
274 | |
275 | #[inline ] |
276 | fn index(&self, index: SmallIndex) -> &T { |
277 | &self[index.as_usize()] |
278 | } |
279 | } |
280 | |
281 | impl<T> core::ops::IndexMut<SmallIndex> for [T] { |
282 | #[inline ] |
283 | fn index_mut(&mut self, index: SmallIndex) -> &mut T { |
284 | &mut self[index.as_usize()] |
285 | } |
286 | } |
287 | |
288 | #[cfg (feature = "alloc" )] |
289 | impl<T> core::ops::Index<SmallIndex> for Vec<T> { |
290 | type Output = T; |
291 | |
292 | #[inline ] |
293 | fn index(&self, index: SmallIndex) -> &T { |
294 | &self[index.as_usize()] |
295 | } |
296 | } |
297 | |
298 | #[cfg (feature = "alloc" )] |
299 | impl<T> core::ops::IndexMut<SmallIndex> for Vec<T> { |
300 | #[inline ] |
301 | fn index_mut(&mut self, index: SmallIndex) -> &mut T { |
302 | &mut self[index.as_usize()] |
303 | } |
304 | } |
305 | |
306 | impl From<u8> for SmallIndex { |
307 | fn from(index: u8) -> SmallIndex { |
308 | SmallIndex::new_unchecked(index:usize::from(index)) |
309 | } |
310 | } |
311 | |
312 | impl TryFrom<u16> for SmallIndex { |
313 | type Error = SmallIndexError; |
314 | |
315 | fn try_from(index: u16) -> Result<SmallIndex, SmallIndexError> { |
316 | if u32::from(index) > SmallIndex::MAX.as_u32() { |
317 | return Err(SmallIndexError { attempted: u64::from(index) }); |
318 | } |
319 | Ok(SmallIndex::new_unchecked(index:index.as_usize())) |
320 | } |
321 | } |
322 | |
323 | impl TryFrom<u32> for SmallIndex { |
324 | type Error = SmallIndexError; |
325 | |
326 | fn try_from(index: u32) -> Result<SmallIndex, SmallIndexError> { |
327 | if index > SmallIndex::MAX.as_u32() { |
328 | return Err(SmallIndexError { attempted: u64::from(index) }); |
329 | } |
330 | Ok(SmallIndex::new_unchecked(index:index.as_usize())) |
331 | } |
332 | } |
333 | |
334 | impl TryFrom<u64> for SmallIndex { |
335 | type Error = SmallIndexError; |
336 | |
337 | fn try_from(index: u64) -> Result<SmallIndex, SmallIndexError> { |
338 | if index > SmallIndex::MAX.as_u64() { |
339 | return Err(SmallIndexError { attempted: index }); |
340 | } |
341 | Ok(SmallIndex::new_unchecked(index:index.as_usize())) |
342 | } |
343 | } |
344 | |
345 | impl TryFrom<usize> for SmallIndex { |
346 | type Error = SmallIndexError; |
347 | |
348 | fn try_from(index: usize) -> Result<SmallIndex, SmallIndexError> { |
349 | if index > SmallIndex::MAX.as_usize() { |
350 | return Err(SmallIndexError { attempted: index.as_u64() }); |
351 | } |
352 | Ok(SmallIndex::new_unchecked(index)) |
353 | } |
354 | } |
355 | |
356 | #[cfg (test)] |
357 | impl quickcheck::Arbitrary for SmallIndex { |
358 | fn arbitrary(gen: &mut quickcheck::Gen) -> SmallIndex { |
359 | use core::cmp::max; |
360 | |
361 | let id = max(i32::MIN + 1, i32::arbitrary(gen)).abs(); |
362 | if id > SmallIndex::MAX.as_i32() { |
363 | SmallIndex::MAX |
364 | } else { |
365 | SmallIndex::new(usize::try_from(id).unwrap()).unwrap() |
366 | } |
367 | } |
368 | } |
369 | |
370 | /// This error occurs when a small index could not be constructed. |
371 | /// |
372 | /// This occurs when given an integer exceeding the maximum small index value. |
373 | /// |
374 | /// When the `std` feature is enabled, this implements the `Error` trait. |
375 | #[derive (Clone, Debug, Eq, PartialEq)] |
376 | pub struct SmallIndexError { |
377 | attempted: u64, |
378 | } |
379 | |
380 | impl SmallIndexError { |
381 | /// Returns the value that could not be converted to a small index. |
382 | pub fn attempted(&self) -> u64 { |
383 | self.attempted |
384 | } |
385 | } |
386 | |
387 | #[cfg (feature = "std" )] |
388 | impl std::error::Error for SmallIndexError {} |
389 | |
390 | impl core::fmt::Display for SmallIndexError { |
391 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
392 | write!( |
393 | f, |
394 | "failed to create small index from {:?}, which exceeds {:?}" , |
395 | self.attempted(), |
396 | SmallIndex::MAX, |
397 | ) |
398 | } |
399 | } |
400 | |
401 | #[derive (Clone, Debug)] |
402 | pub(crate) struct SmallIndexIter { |
403 | rng: core::ops::Range<usize>, |
404 | } |
405 | |
406 | impl Iterator for SmallIndexIter { |
407 | type Item = SmallIndex; |
408 | |
409 | fn next(&mut self) -> Option<SmallIndex> { |
410 | if self.rng.start >= self.rng.end { |
411 | return None; |
412 | } |
413 | let next_id: usize = self.rng.start + 1; |
414 | let id: usize = core::mem::replace(&mut self.rng.start, src:next_id); |
415 | // new_unchecked is OK since we asserted that the number of |
416 | // elements in this iterator will fit in an ID at construction. |
417 | Some(SmallIndex::new_unchecked(index:id)) |
418 | } |
419 | } |
420 | |
421 | macro_rules! index_type_impls { |
422 | ($name:ident, $err:ident, $iter:ident, $withiter:ident) => { |
423 | impl $name { |
424 | /// The maximum value. |
425 | pub const MAX: $name = $name(SmallIndex::MAX); |
426 | |
427 | /// The total number of values that can be represented. |
428 | pub const LIMIT: usize = SmallIndex::LIMIT; |
429 | |
430 | /// The zero value. |
431 | pub const ZERO: $name = $name(SmallIndex::ZERO); |
432 | |
433 | /// The number of bytes that a single value uses in memory. |
434 | pub const SIZE: usize = SmallIndex::SIZE; |
435 | |
436 | /// Create a new value that is represented by a "small index." |
437 | /// |
438 | /// If the given index exceeds the maximum allowed value, then this |
439 | /// returns an error. |
440 | #[inline] |
441 | pub fn new(value: usize) -> Result<$name, $err> { |
442 | SmallIndex::new(value).map($name).map_err($err) |
443 | } |
444 | |
445 | /// Create a new value without checking whether the given argument |
446 | /// exceeds the maximum. |
447 | /// |
448 | /// Using this routine with an invalid value will result in |
449 | /// unspecified behavior, but *not* undefined behavior. In |
450 | /// particular, an invalid ID value is likely to cause panics or |
451 | /// possibly even silent logical errors. |
452 | /// |
453 | /// Callers must never rely on this type to be within a certain |
454 | /// range for memory safety. |
455 | #[inline] |
456 | pub const fn new_unchecked(value: usize) -> $name { |
457 | $name(SmallIndex::new_unchecked(value)) |
458 | } |
459 | |
460 | /// Like `new`, but panics if the given value is not valid. |
461 | #[inline] |
462 | pub fn must(value: usize) -> $name { |
463 | $name::new(value).expect(concat!( |
464 | "invalid " , |
465 | stringify!($name), |
466 | " value" |
467 | )) |
468 | } |
469 | |
470 | /// Return the internal value as a `usize`. This is guaranteed to |
471 | /// never overflow `usize`. |
472 | #[inline] |
473 | pub const fn as_usize(&self) -> usize { |
474 | self.0.as_usize() |
475 | } |
476 | |
477 | /// Return the internal value as a `u64`. This is guaranteed to |
478 | /// never overflow. |
479 | #[inline] |
480 | pub const fn as_u64(&self) -> u64 { |
481 | self.0.as_u64() |
482 | } |
483 | |
484 | /// Return the internal value as a `u32`. This is guaranteed to |
485 | /// never overflow `u32`. |
486 | #[inline] |
487 | pub const fn as_u32(&self) -> u32 { |
488 | self.0.as_u32() |
489 | } |
490 | |
491 | /// Return the internal value as a i32`. This is guaranteed to |
492 | /// never overflow an `i32`. |
493 | #[inline] |
494 | pub const fn as_i32(&self) -> i32 { |
495 | self.0.as_i32() |
496 | } |
497 | |
498 | /// Returns one more than this value as a usize. |
499 | /// |
500 | /// Since values represented by a "small index" have constraints |
501 | /// on their maximum value, adding `1` to it will always fit in a |
502 | /// `usize`, `u32` and a `i32`. |
503 | #[inline] |
504 | pub fn one_more(&self) -> usize { |
505 | self.0.one_more() |
506 | } |
507 | |
508 | /// Decode this value from the bytes given using the native endian |
509 | /// byte order for the current target. |
510 | /// |
511 | /// If the decoded integer is not representable as a small index |
512 | /// for the current target, then this returns an error. |
513 | #[inline] |
514 | pub fn from_ne_bytes(bytes: [u8; 4]) -> Result<$name, $err> { |
515 | SmallIndex::from_ne_bytes(bytes).map($name).map_err($err) |
516 | } |
517 | |
518 | /// Decode this value from the bytes given using the native endian |
519 | /// byte order for the current target. |
520 | /// |
521 | /// This is analogous to `new_unchecked` in that is does not check |
522 | /// whether the decoded integer is representable as a small index. |
523 | #[inline] |
524 | pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> $name { |
525 | $name(SmallIndex::from_ne_bytes_unchecked(bytes)) |
526 | } |
527 | |
528 | /// Return the underlying integer as raw bytes in native endian |
529 | /// format. |
530 | #[inline] |
531 | pub fn to_ne_bytes(&self) -> [u8; 4] { |
532 | self.0.to_ne_bytes() |
533 | } |
534 | |
535 | /// Returns an iterator over all values from 0 up to and not |
536 | /// including the given length. |
537 | /// |
538 | /// If the given length exceeds this type's limit, then this |
539 | /// panics. |
540 | pub(crate) fn iter(len: usize) -> $iter { |
541 | $iter::new(len) |
542 | } |
543 | } |
544 | |
545 | // We write our own Debug impl so that we get things like PatternID(5) |
546 | // instead of PatternID(SmallIndex(5)). |
547 | impl core::fmt::Debug for $name { |
548 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
549 | f.debug_tuple(stringify!($name)).field(&self.as_u32()).finish() |
550 | } |
551 | } |
552 | |
553 | impl<T> core::ops::Index<$name> for [T] { |
554 | type Output = T; |
555 | |
556 | #[inline] |
557 | fn index(&self, index: $name) -> &T { |
558 | &self[index.as_usize()] |
559 | } |
560 | } |
561 | |
562 | impl<T> core::ops::IndexMut<$name> for [T] { |
563 | #[inline] |
564 | fn index_mut(&mut self, index: $name) -> &mut T { |
565 | &mut self[index.as_usize()] |
566 | } |
567 | } |
568 | |
569 | #[cfg(feature = "alloc" )] |
570 | impl<T> core::ops::Index<$name> for Vec<T> { |
571 | type Output = T; |
572 | |
573 | #[inline] |
574 | fn index(&self, index: $name) -> &T { |
575 | &self[index.as_usize()] |
576 | } |
577 | } |
578 | |
579 | #[cfg(feature = "alloc" )] |
580 | impl<T> core::ops::IndexMut<$name> for Vec<T> { |
581 | #[inline] |
582 | fn index_mut(&mut self, index: $name) -> &mut T { |
583 | &mut self[index.as_usize()] |
584 | } |
585 | } |
586 | |
587 | impl From<u8> for $name { |
588 | fn from(value: u8) -> $name { |
589 | $name(SmallIndex::from(value)) |
590 | } |
591 | } |
592 | |
593 | impl TryFrom<u16> for $name { |
594 | type Error = $err; |
595 | |
596 | fn try_from(value: u16) -> Result<$name, $err> { |
597 | SmallIndex::try_from(value).map($name).map_err($err) |
598 | } |
599 | } |
600 | |
601 | impl TryFrom<u32> for $name { |
602 | type Error = $err; |
603 | |
604 | fn try_from(value: u32) -> Result<$name, $err> { |
605 | SmallIndex::try_from(value).map($name).map_err($err) |
606 | } |
607 | } |
608 | |
609 | impl TryFrom<u64> for $name { |
610 | type Error = $err; |
611 | |
612 | fn try_from(value: u64) -> Result<$name, $err> { |
613 | SmallIndex::try_from(value).map($name).map_err($err) |
614 | } |
615 | } |
616 | |
617 | impl TryFrom<usize> for $name { |
618 | type Error = $err; |
619 | |
620 | fn try_from(value: usize) -> Result<$name, $err> { |
621 | SmallIndex::try_from(value).map($name).map_err($err) |
622 | } |
623 | } |
624 | |
625 | #[cfg(test)] |
626 | impl quickcheck::Arbitrary for $name { |
627 | fn arbitrary(gen: &mut quickcheck::Gen) -> $name { |
628 | $name(SmallIndex::arbitrary(gen)) |
629 | } |
630 | } |
631 | |
632 | /// This error occurs when a value could not be constructed. |
633 | /// |
634 | /// This occurs when given an integer exceeding the maximum allowed |
635 | /// value. |
636 | /// |
637 | /// When the `std` feature is enabled, this implements the `Error` |
638 | /// trait. |
639 | #[derive(Clone, Debug, Eq, PartialEq)] |
640 | pub struct $err(SmallIndexError); |
641 | |
642 | impl $err { |
643 | /// Returns the value that could not be converted to an ID. |
644 | pub fn attempted(&self) -> u64 { |
645 | self.0.attempted() |
646 | } |
647 | } |
648 | |
649 | #[cfg(feature = "std" )] |
650 | impl std::error::Error for $err {} |
651 | |
652 | impl core::fmt::Display for $err { |
653 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
654 | write!( |
655 | f, |
656 | "failed to create {} from {:?}, which exceeds {:?}" , |
657 | stringify!($name), |
658 | self.attempted(), |
659 | $name::MAX, |
660 | ) |
661 | } |
662 | } |
663 | |
664 | #[derive(Clone, Debug)] |
665 | pub(crate) struct $iter(SmallIndexIter); |
666 | |
667 | impl $iter { |
668 | fn new(len: usize) -> $iter { |
669 | assert!( |
670 | len <= $name::LIMIT, |
671 | "cannot create iterator for {} when number of \ |
672 | elements exceed {:?}" , |
673 | stringify!($name), |
674 | $name::LIMIT, |
675 | ); |
676 | $iter(SmallIndexIter { rng: 0..len }) |
677 | } |
678 | } |
679 | |
680 | impl Iterator for $iter { |
681 | type Item = $name; |
682 | |
683 | fn next(&mut self) -> Option<$name> { |
684 | self.0.next().map($name) |
685 | } |
686 | } |
687 | |
688 | /// An iterator adapter that is like std::iter::Enumerate, but attaches |
689 | /// small index values instead. It requires `ExactSizeIterator`. At |
690 | /// construction, it ensures that the index of each element in the |
691 | /// iterator is representable in the corresponding small index type. |
692 | #[derive(Clone, Debug)] |
693 | pub(crate) struct $withiter<I> { |
694 | it: I, |
695 | ids: $iter, |
696 | } |
697 | |
698 | impl<I: Iterator + ExactSizeIterator> $withiter<I> { |
699 | fn new(it: I) -> $withiter<I> { |
700 | let ids = $name::iter(it.len()); |
701 | $withiter { it, ids } |
702 | } |
703 | } |
704 | |
705 | impl<I: Iterator + ExactSizeIterator> Iterator for $withiter<I> { |
706 | type Item = ($name, I::Item); |
707 | |
708 | fn next(&mut self) -> Option<($name, I::Item)> { |
709 | let item = self.it.next()?; |
710 | // Number of elements in this iterator must match, according |
711 | // to contract of ExactSizeIterator. |
712 | let id = self.ids.next().unwrap(); |
713 | Some((id, item)) |
714 | } |
715 | } |
716 | }; |
717 | } |
718 | |
719 | /// The identifier of a regex pattern, represented by a [`SmallIndex`]. |
720 | /// |
721 | /// The identifier for a pattern corresponds to its relative position among |
722 | /// other patterns in a single finite state machine. Namely, when building |
723 | /// a multi-pattern regex engine, one must supply a sequence of patterns to |
724 | /// match. The position (starting at 0) of each pattern in that sequence |
725 | /// represents its identifier. This identifier is in turn used to identify and |
726 | /// report matches of that pattern in various APIs. |
727 | /// |
728 | /// See the [`SmallIndex`] type for more information about what it means for |
729 | /// a pattern ID to be a "small index." |
730 | /// |
731 | /// Note that this type is defined in the |
732 | /// [`util::primitives`](crate::util::primitives) module, but it is also |
733 | /// re-exported at the crate root due to how common it is. |
734 | #[derive (Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)] |
735 | #[repr (transparent)] |
736 | pub struct PatternID(SmallIndex); |
737 | |
738 | /// The identifier of a finite automaton state, represented by a |
739 | /// [`SmallIndex`]. |
740 | /// |
741 | /// Most regex engines in this crate are built on top of finite automata. Each |
742 | /// state in a finite automaton defines transitions from its state to another. |
743 | /// Those transitions point to other states via their identifiers, i.e., a |
744 | /// `StateID`. Since finite automata tend to contain many transitions, it is |
745 | /// much more memory efficient to define state IDs as small indices. |
746 | /// |
747 | /// See the [`SmallIndex`] type for more information about what it means for |
748 | /// a state ID to be a "small index." |
749 | #[derive (Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)] |
750 | #[repr (transparent)] |
751 | pub struct StateID(SmallIndex); |
752 | |
753 | index_type_impls!(PatternID, PatternIDError, PatternIDIter, WithPatternIDIter); |
754 | index_type_impls!(StateID, StateIDError, StateIDIter, WithStateIDIter); |
755 | |
756 | /// A utility trait that defines a couple of adapters for making it convenient |
757 | /// to access indices as "small index" types. We require ExactSizeIterator so |
758 | /// that iterator construction can do a single check to make sure the index of |
759 | /// each element is representable by its small index type. |
760 | pub(crate) trait IteratorIndexExt: Iterator { |
761 | fn with_pattern_ids(self) -> WithPatternIDIter<Self> |
762 | where |
763 | Self: Sized + ExactSizeIterator, |
764 | { |
765 | WithPatternIDIter::new(self) |
766 | } |
767 | |
768 | fn with_state_ids(self) -> WithStateIDIter<Self> |
769 | where |
770 | Self: Sized + ExactSizeIterator, |
771 | { |
772 | WithStateIDIter::new(self) |
773 | } |
774 | } |
775 | |
776 | impl<I: Iterator> IteratorIndexExt for I {} |
777 | |