1 | // Copyright 2020 the Resvg Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | // An IIR blur. |
5 | // |
6 | // Based on http://www.getreuer.info/home/gaussianiir |
7 | // |
8 | // Licensed under 'Simplified BSD License'. |
9 | // |
10 | // |
11 | // Implements the fast Gaussian convolution algorithm of Alvarez and Mazorra, |
12 | // where the Gaussian is approximated by a cascade of first-order infinite |
13 | // impulsive response (IIR) filters. Boundaries are handled with half-sample |
14 | // symmetric extension. |
15 | // |
16 | // Gaussian convolution is approached as approximating the heat equation and |
17 | // each timestep is performed with an efficient recursive computation. Using |
18 | // more steps yields a more accurate approximation of the Gaussian. A |
19 | // reasonable default value for `numsteps` is 4. |
20 | // |
21 | // Reference: |
22 | // Alvarez, Mazorra, "Signal and Image Restoration using Shock Filters and |
23 | // Anisotropic Diffusion," SIAM J. on Numerical Analysis, vol. 31, no. 2, |
24 | // pp. 590-605, 1994. |
25 | |
26 | // TODO: Blurs right and bottom sides twice for some reason. |
27 | |
28 | use super::ImageRefMut; |
29 | use rgb::ComponentSlice; |
30 | |
31 | struct BlurData { |
32 | width: usize, |
33 | height: usize, |
34 | sigma_x: f64, |
35 | sigma_y: f64, |
36 | steps: usize, |
37 | } |
38 | |
39 | /// Applies an IIR blur. |
40 | /// |
41 | /// Input image pixels should have a **premultiplied alpha**. |
42 | /// |
43 | /// A negative or zero `sigma_x`/`sigma_y` will disable the blur along that axis. |
44 | /// |
45 | /// # Allocations |
46 | /// |
47 | /// This method will allocate a 2x `src` buffer. |
48 | pub fn apply(sigma_x: f64, sigma_y: f64, src: ImageRefMut) { |
49 | let buf_size: usize = (src.width * src.height) as usize; |
50 | let mut buf: Vec = vec![0.0; buf_size]; |
51 | let buf: &mut Vec = &mut buf; |
52 | |
53 | let d: BlurData = BlurData { |
54 | width: src.width as usize, |
55 | height: src.height as usize, |
56 | sigma_x, |
57 | sigma_y, |
58 | steps: 4, |
59 | }; |
60 | |
61 | let data: &mut [u8] = src.data.as_mut_slice(); |
62 | gaussian_channel(data, &d, channel:0, buf); |
63 | gaussian_channel(data, &d, channel:1, buf); |
64 | gaussian_channel(data, &d, channel:2, buf); |
65 | gaussian_channel(data, &d, channel:3, buf); |
66 | } |
67 | |
68 | fn gaussian_channel(data: &mut [u8], d: &BlurData, channel: usize, buf: &mut [f64]) { |
69 | for i: usize in 0..data.len() / 4 { |
70 | buf[i] = data[i * 4 + channel] as f64 / 255.0; |
71 | } |
72 | |
73 | gaussianiir2d(d, buf); |
74 | |
75 | for i: usize in 0..data.len() / 4 { |
76 | data[i * 4 + channel] = (buf[i] * 255.0) as u8; |
77 | } |
78 | } |
79 | |
80 | fn gaussianiir2d(d: &BlurData, buf: &mut [f64]) { |
81 | // Filter horizontally along each row. |
82 | let (lambda_x, dnu_x) = if d.sigma_x > 0.0 { |
83 | let (lambda, dnu) = gen_coefficients(d.sigma_x, d.steps); |
84 | |
85 | for y in 0..d.height { |
86 | for _ in 0..d.steps { |
87 | let idx = d.width * y; |
88 | |
89 | // Filter rightwards. |
90 | for x in 1..d.width { |
91 | buf[idx + x] += dnu * buf[idx + x - 1]; |
92 | } |
93 | |
94 | let mut x = d.width - 1; |
95 | |
96 | // Filter leftwards. |
97 | while x > 0 { |
98 | buf[idx + x - 1] += dnu * buf[idx + x]; |
99 | x -= 1; |
100 | } |
101 | } |
102 | } |
103 | |
104 | (lambda, dnu) |
105 | } else { |
106 | (1.0, 1.0) |
107 | }; |
108 | |
109 | // Filter vertically along each column. |
110 | let (lambda_y, dnu_y) = if d.sigma_y > 0.0 { |
111 | let (lambda, dnu) = gen_coefficients(d.sigma_y, d.steps); |
112 | for x in 0..d.width { |
113 | for _ in 0..d.steps { |
114 | let idx = x; |
115 | |
116 | // Filter downwards. |
117 | let mut y = d.width; |
118 | while y < buf.len() { |
119 | buf[idx + y] += dnu * buf[idx + y - d.width]; |
120 | y += d.width; |
121 | } |
122 | |
123 | y = buf.len() - d.width; |
124 | |
125 | // Filter upwards. |
126 | while y > 0 { |
127 | buf[idx + y - d.width] += dnu * buf[idx + y]; |
128 | y -= d.width; |
129 | } |
130 | } |
131 | } |
132 | |
133 | (lambda, dnu) |
134 | } else { |
135 | (1.0, 1.0) |
136 | }; |
137 | |
138 | let post_scale = |
139 | ((dnu_x * dnu_y).sqrt() / (lambda_x * lambda_y).sqrt()).powi(2 * d.steps as i32); |
140 | buf.iter_mut().for_each(|v| *v *= post_scale); |
141 | } |
142 | |
143 | fn gen_coefficients(sigma: f64, steps: usize) -> (f64, f64) { |
144 | let lambda: f64 = (sigma * sigma) / (2.0 * steps as f64); |
145 | let dnu: f64 = (1.0 + 2.0 * lambda - (1.0 + 4.0 * lambda).sqrt()) / (2.0 * lambda); |
146 | (lambda, dnu) |
147 | } |
148 | |