| 1 | // Copyright (c) 2019, Google Inc. |
| 2 | // Portions Copyright 2020-2024 Brian Smith. |
| 3 | // |
| 4 | // Permission to use, copy, modify, and/or distribute this software for any |
| 5 | // purpose with or without fee is hereby granted, provided that the above |
| 6 | // copyright notice and this permission notice appear in all copies. |
| 7 | // |
| 8 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 9 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 10 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| 11 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 12 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 13 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 14 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 15 | |
| 16 | // This file is based on BoringSSL's gcm_nohw.c. |
| 17 | |
| 18 | // This file contains a constant-time implementation of GHASH based on the notes |
| 19 | // in https://bearssl.org/constanttime.html#ghash-for-gcm and the reduction |
| 20 | // algorithm described in |
| 21 | // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf. |
| 22 | // |
| 23 | // Unlike the BearSSL notes, we use u128 in the 64-bit implementation. |
| 24 | |
| 25 | use super::{ffi::U128, KeyValue, UpdateBlock, UpdateBlocks, Xi, BLOCK_LEN}; |
| 26 | use crate::polyfill::{slice::AsChunks, ArraySplitMap as _}; |
| 27 | |
| 28 | #[derive (Clone)] |
| 29 | pub struct Key { |
| 30 | h: U128, |
| 31 | } |
| 32 | |
| 33 | impl Key { |
| 34 | pub(in super::super) fn new(value: KeyValue) -> Self { |
| 35 | Self { h: init(value) } |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | impl UpdateBlock for Key { |
| 40 | fn update_block(&self, xi: &mut Xi, a: [u8; BLOCK_LEN]) { |
| 41 | xi.bitxor_assign(a); |
| 42 | gmult(xi, self.h); |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | impl UpdateBlocks for Key { |
| 47 | fn update_blocks(&self, xi: &mut Xi, input: AsChunks<u8, BLOCK_LEN>) { |
| 48 | ghash(xi, self.h, input); |
| 49 | } |
| 50 | } |
| 51 | |
| 52 | #[cfg (target_pointer_width = "64" )] |
| 53 | fn gcm_mul64_nohw(a: u64, b: u64) -> (u64, u64) { |
| 54 | #[allow (clippy::cast_possible_truncation)] |
| 55 | #[inline (always)] |
| 56 | fn lo(a: u128) -> u64 { |
| 57 | a as u64 |
| 58 | } |
| 59 | |
| 60 | #[inline (always)] |
| 61 | fn hi(a: u128) -> u64 { |
| 62 | lo(a >> 64) |
| 63 | } |
| 64 | |
| 65 | #[inline (always)] |
| 66 | fn mul(a: u64, b: u64) -> u128 { |
| 67 | u128::from(a) * u128::from(b) |
| 68 | } |
| 69 | |
| 70 | // One term every four bits means the largest term is 64/4 = 16, which barely |
| 71 | // overflows into the next term. Using one term every five bits would cost 25 |
| 72 | // multiplications instead of 16. It is faster to mask off the bottom four |
| 73 | // bits of |a|, giving a largest term of 60/4 = 15, and apply the bottom bits |
| 74 | // separately. |
| 75 | let a0 = a & 0x1111111111111110; |
| 76 | let a1 = a & 0x2222222222222220; |
| 77 | let a2 = a & 0x4444444444444440; |
| 78 | let a3 = a & 0x8888888888888880; |
| 79 | |
| 80 | let b0 = b & 0x1111111111111111; |
| 81 | let b1 = b & 0x2222222222222222; |
| 82 | let b2 = b & 0x4444444444444444; |
| 83 | let b3 = b & 0x8888888888888888; |
| 84 | |
| 85 | let c0 = mul(a0, b0) ^ mul(a1, b3) ^ mul(a2, b2) ^ mul(a3, b1); |
| 86 | let c1 = mul(a0, b1) ^ mul(a1, b0) ^ mul(a2, b3) ^ mul(a3, b2); |
| 87 | let c2 = mul(a0, b2) ^ mul(a1, b1) ^ mul(a2, b0) ^ mul(a3, b3); |
| 88 | let c3 = mul(a0, b3) ^ mul(a1, b2) ^ mul(a2, b1) ^ mul(a3, b0); |
| 89 | |
| 90 | // Multiply the bottom four bits of |a| with |b|. |
| 91 | let a0_mask = 0u64.wrapping_sub(a & 1); |
| 92 | let a1_mask = 0u64.wrapping_sub((a >> 1) & 1); |
| 93 | let a2_mask = 0u64.wrapping_sub((a >> 2) & 1); |
| 94 | let a3_mask = 0u64.wrapping_sub((a >> 3) & 1); |
| 95 | let extra = u128::from(a0_mask & b) |
| 96 | ^ (u128::from(a1_mask & b) << 1) |
| 97 | ^ (u128::from(a2_mask & b) << 2) |
| 98 | ^ (u128::from(a3_mask & b) << 3); |
| 99 | |
| 100 | let lo = (lo(c0) & 0x1111111111111111) |
| 101 | ^ (lo(c1) & 0x2222222222222222) |
| 102 | ^ (lo(c2) & 0x4444444444444444) |
| 103 | ^ (lo(c3) & 0x8888888888888888) |
| 104 | ^ lo(extra); |
| 105 | let hi = (hi(c0) & 0x1111111111111111) |
| 106 | ^ (hi(c1) & 0x2222222222222222) |
| 107 | ^ (hi(c2) & 0x4444444444444444) |
| 108 | ^ (hi(c3) & 0x8888888888888888) |
| 109 | ^ hi(extra); |
| 110 | (lo, hi) |
| 111 | } |
| 112 | |
| 113 | #[cfg (not(target_pointer_width = "64" ))] |
| 114 | fn gcm_mul32_nohw(a: u32, b: u32) -> u64 { |
| 115 | #[inline (always)] |
| 116 | fn mul(a: u32, b: u32) -> u64 { |
| 117 | u64::from(a) * u64::from(b) |
| 118 | } |
| 119 | |
| 120 | // One term every four bits means the largest term is 32/4 = 8, which does not |
| 121 | // overflow into the next term. |
| 122 | let a0 = a & 0x11111111; |
| 123 | let a1 = a & 0x22222222; |
| 124 | let a2 = a & 0x44444444; |
| 125 | let a3 = a & 0x88888888; |
| 126 | |
| 127 | let b0 = b & 0x11111111; |
| 128 | let b1 = b & 0x22222222; |
| 129 | let b2 = b & 0x44444444; |
| 130 | let b3 = b & 0x88888888; |
| 131 | |
| 132 | let c0 = mul(a0, b0) ^ mul(a1, b3) ^ mul(a2, b2) ^ mul(a3, b1); |
| 133 | let c1 = mul(a0, b1) ^ mul(a1, b0) ^ mul(a2, b3) ^ mul(a3, b2); |
| 134 | let c2 = mul(a0, b2) ^ mul(a1, b1) ^ mul(a2, b0) ^ mul(a3, b3); |
| 135 | let c3 = mul(a0, b3) ^ mul(a1, b2) ^ mul(a2, b1) ^ mul(a3, b0); |
| 136 | |
| 137 | (c0 & 0x1111111111111111) |
| 138 | | (c1 & 0x2222222222222222) |
| 139 | | (c2 & 0x4444444444444444) |
| 140 | | (c3 & 0x8888888888888888) |
| 141 | } |
| 142 | |
| 143 | #[cfg (not(target_pointer_width = "64" ))] |
| 144 | fn gcm_mul64_nohw(a: u64, b: u64) -> (u64, u64) { |
| 145 | #[inline (always)] |
| 146 | fn lo(a: u64) -> u32 { |
| 147 | a as u32 |
| 148 | } |
| 149 | #[inline (always)] |
| 150 | fn hi(a: u64) -> u32 { |
| 151 | lo(a >> 32) |
| 152 | } |
| 153 | |
| 154 | let a0 = lo(a); |
| 155 | let a1 = hi(a); |
| 156 | let b0 = lo(b); |
| 157 | let b1 = hi(b); |
| 158 | // Karatsuba multiplication. |
| 159 | let lo = gcm_mul32_nohw(a0, b0); |
| 160 | let hi = gcm_mul32_nohw(a1, b1); |
| 161 | let mid = gcm_mul32_nohw(a0 ^ a1, b0 ^ b1) ^ lo ^ hi; |
| 162 | (lo ^ (mid << 32), hi ^ (mid >> 32)) |
| 163 | } |
| 164 | |
| 165 | fn init(value: KeyValue) -> U128 { |
| 166 | let xi = value.into_inner(); |
| 167 | |
| 168 | // We implement GHASH in terms of POLYVAL, as described in RFC 8452. This |
| 169 | // avoids a shift by 1 in the multiplication, needed to account for bit |
| 170 | // reversal losing a bit after multiplication, that is, |
| 171 | // rev128(X) * rev128(Y) = rev255(X*Y). |
| 172 | // |
| 173 | // Per Appendix A, we run mulX_POLYVAL. Note this is the same transformation |
| 174 | // applied by |gcm_init_clmul|, etc. Note |Xi| has already been byteswapped. |
| 175 | // |
| 176 | // See also slide 16 of |
| 177 | // https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf |
| 178 | let mut lo = xi[1]; |
| 179 | let mut hi = xi[0]; |
| 180 | |
| 181 | let mut carry = hi >> 63; |
| 182 | carry = 0u64.wrapping_sub(carry); |
| 183 | |
| 184 | hi <<= 1; |
| 185 | hi |= lo >> 63; |
| 186 | lo <<= 1; |
| 187 | |
| 188 | // The irreducible polynomial is 1 + x^121 + x^126 + x^127 + x^128, so we |
| 189 | // conditionally add 0xc200...0001. |
| 190 | lo ^= carry & 1; |
| 191 | hi ^= carry & 0xc200000000000000; |
| 192 | |
| 193 | // This implementation does not use the rest of |Htable|. |
| 194 | U128 { hi, lo } |
| 195 | } |
| 196 | |
| 197 | fn gcm_polyval_nohw(xi: &mut [u64; 2], h: U128) { |
| 198 | // Karatsuba multiplication. The product of |Xi| and |H| is stored in |r0| |
| 199 | // through |r3|. Note there is no byte or bit reversal because we are |
| 200 | // evaluating POLYVAL. |
| 201 | let (r0, mut r1) = gcm_mul64_nohw(xi[0], h.lo); |
| 202 | let (mut r2, mut r3) = gcm_mul64_nohw(xi[1], h.hi); |
| 203 | let (mut mid0, mut mid1) = gcm_mul64_nohw(xi[0] ^ xi[1], h.hi ^ h.lo); |
| 204 | mid0 ^= r0 ^ r2; |
| 205 | mid1 ^= r1 ^ r3; |
| 206 | r2 ^= mid1; |
| 207 | r1 ^= mid0; |
| 208 | |
| 209 | // Now we multiply our 256-bit result by x^-128 and reduce. |r2| and |
| 210 | // |r3| shifts into position and we must multiply |r0| and |r1| by x^-128. We |
| 211 | // have: |
| 212 | // |
| 213 | // 1 = x^121 + x^126 + x^127 + x^128 |
| 214 | // x^-128 = x^-7 + x^-2 + x^-1 + 1 |
| 215 | // |
| 216 | // This is the GHASH reduction step, but with bits flowing in reverse. |
| 217 | |
| 218 | // The x^-7, x^-2, and x^-1 terms shift bits past x^0, which would require |
| 219 | // another reduction steps. Instead, we gather the excess bits, incorporate |
| 220 | // them into |r0| and |r1| and reduce once. See slides 17-19 |
| 221 | // of https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf. |
| 222 | r1 ^= (r0 << 63) ^ (r0 << 62) ^ (r0 << 57); |
| 223 | |
| 224 | // 1 |
| 225 | r2 ^= r0; |
| 226 | r3 ^= r1; |
| 227 | |
| 228 | // x^-1 |
| 229 | r2 ^= r0 >> 1; |
| 230 | r2 ^= r1 << 63; |
| 231 | r3 ^= r1 >> 1; |
| 232 | |
| 233 | // x^-2 |
| 234 | r2 ^= r0 >> 2; |
| 235 | r2 ^= r1 << 62; |
| 236 | r3 ^= r1 >> 2; |
| 237 | |
| 238 | // x^-7 |
| 239 | r2 ^= r0 >> 7; |
| 240 | r2 ^= r1 << 57; |
| 241 | r3 ^= r1 >> 7; |
| 242 | |
| 243 | *xi = [r2, r3]; |
| 244 | } |
| 245 | |
| 246 | fn gmult(xi: &mut Xi, h: U128) { |
| 247 | with_swapped_xi(xi, |swapped: &mut [u64; 2]| { |
| 248 | gcm_polyval_nohw(xi:swapped, h); |
| 249 | }) |
| 250 | } |
| 251 | |
| 252 | fn ghash(xi: &mut Xi, h: U128, input: AsChunks<u8, BLOCK_LEN>) { |
| 253 | with_swapped_xi(xi, |swapped: &mut [u64; 2]| { |
| 254 | input.into_iter().for_each(|&input: [u8; 16]| { |
| 255 | let input: [u64; _] = input.array_split_map(u64::from_be_bytes); |
| 256 | swapped[0] ^= input[1]; |
| 257 | swapped[1] ^= input[0]; |
| 258 | gcm_polyval_nohw(xi:swapped, h); |
| 259 | }); |
| 260 | }); |
| 261 | } |
| 262 | |
| 263 | #[inline ] |
| 264 | fn with_swapped_xi(Xi(xi: &mut [u8; 16]): &mut Xi, f: impl FnOnce(&mut [u64; 2])) { |
| 265 | let unswapped: [u64; 2] = xi.array_split_map(u64::from_be_bytes); |
| 266 | let mut swapped: [u64; 2] = [unswapped[1], unswapped[0]]; |
| 267 | f(&mut swapped); |
| 268 | let (xi_0: &mut [u8], xi_1: &mut [u8]) = xi.split_at_mut(BLOCK_LEN / 2); |
| 269 | xi_0.copy_from_slice(&u64::to_be_bytes(self:swapped[1])); |
| 270 | xi_1.copy_from_slice(&u64::to_be_bytes(self:swapped[0])); |
| 271 | } |
| 272 | |