| 1 | // Copyright 2015-2016 Brian Smith. |
| 2 | // |
| 3 | // Permission to use, copy, modify, and/or distribute this software for any |
| 4 | // purpose with or without fee is hereby granted, provided that the above |
| 5 | // copyright notice and this permission notice appear in all copies. |
| 6 | // |
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| 10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 14 | |
| 15 | //! ECDSA Signatures using the P-256 and P-384 curves. |
| 16 | |
| 17 | use crate::{digest, ec::suite_b::ops::*}; |
| 18 | |
| 19 | /// Calculate the digest of `msg` using the digest algorithm `digest_alg`. Then |
| 20 | /// convert the digest to a scalar in the range [0, n) as described in |
| 21 | /// NIST's FIPS 186-4 Section 4.2. Note that this is one of the few cases where |
| 22 | /// a `Scalar` is allowed to have the value zero. |
| 23 | /// |
| 24 | /// NIST's FIPS 186-4 4.2 says "When the length of the output of the hash |
| 25 | /// function is greater than N (i.e., the bit length of q), then the leftmost N |
| 26 | /// bits of the hash function output block shall be used in any calculation |
| 27 | /// using the hash function output during the generation or verification of a |
| 28 | /// digital signature." |
| 29 | /// |
| 30 | /// "Leftmost N bits" means "N most significant bits" because we interpret the |
| 31 | /// digest as a bit-endian encoded integer. |
| 32 | /// |
| 33 | /// The NSA guide instead vaguely suggests that we should convert the digest |
| 34 | /// value to an integer and then reduce it mod `n`. However, real-world |
| 35 | /// implementations (e.g. `digest_to_bn` in OpenSSL and `hashToInt` in Go) do |
| 36 | /// what FIPS 186-4 says to do, not what the NSA guide suggests. |
| 37 | /// |
| 38 | /// Why shifting the value right by at most one bit is sufficient: P-256's `n` |
| 39 | /// has its 256th bit set; i.e. 2**255 < n < 2**256. Once we've truncated the |
| 40 | /// digest to 256 bits and converted it to an integer, it will have a value |
| 41 | /// less than 2**256. If the value is larger than `n` then shifting it one bit |
| 42 | /// right will give a value less than 2**255, which is less than `n`. The |
| 43 | /// analogous argument applies for P-384. However, it does *not* apply in |
| 44 | /// general; for example, it doesn't apply to P-521. |
| 45 | pub(super) fn digest_scalar(n: &Modulus<N>, msg: digest::Digest) -> Scalar { |
| 46 | digest_scalar_(n, digest:msg.as_ref()) |
| 47 | } |
| 48 | |
| 49 | #[cfg (test)] |
| 50 | pub(super) fn digest_bytes_scalar(n: &Modulus<N>, digest: &[u8]) -> Scalar { |
| 51 | digest_scalar_(n, digest) |
| 52 | } |
| 53 | |
| 54 | // This is a separate function solely so that we can test specific digest |
| 55 | // values like all-zero values and values larger than `n`. |
| 56 | fn digest_scalar_(n: &Modulus<N>, digest: &[u8]) -> Scalar { |
| 57 | let len: usize = n.bytes_len(); |
| 58 | let digest: &[u8] = if digest.len() > len { |
| 59 | &digest[..len] |
| 60 | } else { |
| 61 | digest |
| 62 | }; |
| 63 | |
| 64 | scalar_parse_big_endian_partially_reduced_variable_consttimeResult, …>(n, bytes:untrusted::Input::from(bytes:digest)) |
| 65 | .unwrap() |
| 66 | } |
| 67 | |
| 68 | #[cfg (test)] |
| 69 | mod tests { |
| 70 | use super::digest_bytes_scalar; |
| 71 | use crate::{cpu, digest, ec::suite_b::ops::*, limb, test}; |
| 72 | |
| 73 | #[test ] |
| 74 | fn test() { |
| 75 | let cpu = cpu::features(); |
| 76 | test::run( |
| 77 | test_file!("ecdsa_digest_scalar_tests.txt" ), |
| 78 | |section, test_case| { |
| 79 | assert_eq!(section, "" ); |
| 80 | |
| 81 | let curve_name = test_case .consume_string("Curve" ); |
| 82 | let digest_name = test_case .consume_string("Digest" ); |
| 83 | let input = test_case .consume_bytes("Input" ); |
| 84 | let output = test_case .consume_bytes("Output" ); |
| 85 | |
| 86 | let (ops, digest_alg) = match (curve_name.as_str(), digest_name.as_str()) { |
| 87 | ("P-256" , "SHA256" ) => (&p256::PUBLIC_SCALAR_OPS, &digest::SHA256), |
| 88 | ("P-256" , "SHA384" ) => (&p256::PUBLIC_SCALAR_OPS, &digest::SHA384), |
| 89 | ("P-384" , "SHA256" ) => (&p384::PUBLIC_SCALAR_OPS, &digest::SHA256), |
| 90 | ("P-384" , "SHA384" ) => (&p384::PUBLIC_SCALAR_OPS, &digest::SHA384), |
| 91 | _ => { |
| 92 | panic!("Unsupported curve+digest: {}+{}" , curve_name, digest_name); |
| 93 | } |
| 94 | }; |
| 95 | let n = &ops.scalar_ops.scalar_modulus(cpu); |
| 96 | |
| 97 | assert_eq!(input.len(), digest_alg.output_len()); |
| 98 | assert_eq!(output.len(), ops.scalar_ops.scalar_bytes_len()); |
| 99 | assert_eq!(output.len(), n.bytes_len()); |
| 100 | |
| 101 | let expected = scalar_parse_big_endian_variable( |
| 102 | n, |
| 103 | limb::AllowZero::Yes, |
| 104 | untrusted::Input::from(&output), |
| 105 | ) |
| 106 | .unwrap(); |
| 107 | |
| 108 | let actual = digest_bytes_scalar(n, &input); |
| 109 | assert_eq!( |
| 110 | ops.scalar_ops.leak_limbs(&actual), |
| 111 | ops.scalar_ops.leak_limbs(&expected) |
| 112 | ); |
| 113 | |
| 114 | Ok(()) |
| 115 | }, |
| 116 | ); |
| 117 | } |
| 118 | } |
| 119 | |