| 1 | // Copyright 2016-2023 Brian Smith. |
| 2 | // |
| 3 | // Permission to use, copy, modify, and/or distribute this software for any |
| 4 | // purpose with or without fee is hereby granted, provided that the above |
| 5 | // copyright notice and this permission notice appear in all copies. |
| 6 | // |
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| 10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 14 | |
| 15 | use super::{ |
| 16 | elem::{binary_op, binary_op_assign}, |
| 17 | elem_sqr_mul, elem_sqr_mul_acc, PublicModulus, *, |
| 18 | }; |
| 19 | |
| 20 | pub(super) const NUM_LIMBS: usize = 384 / LIMB_BITS; |
| 21 | |
| 22 | pub static COMMON_OPS: CommonOps = CommonOps { |
| 23 | num_limbs: elem::NumLimbs::P384, |
| 24 | |
| 25 | q: PublicModulus { |
| 26 | p: limbs_from_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff" ), |
| 27 | rr: PublicElem::from_hex("10000000200000000fffffffe000000000000000200000000fffffffe00000001" ), |
| 28 | }, |
| 29 | n: PublicElem::from_hex("ffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973" ), |
| 30 | |
| 31 | a: PublicElem::from_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbfffffffc0000000000000003fffffffc" ), |
| 32 | b: PublicElem::from_hex("cd08114b604fbff9b62b21f41f022094e3374bee94938ae277f2209b1920022ef729add87a4c32ec081188719d412dcc" ), |
| 33 | |
| 34 | elem_mul_mont: p384_elem_mul_mont, |
| 35 | elem_sqr_mont: p384_elem_sqr_mont, |
| 36 | }; |
| 37 | |
| 38 | pub(super) static GENERATOR: (PublicElem<R>, PublicElem<R>) = ( |
| 39 | PublicElem::from_hex("4d3aadc2299e1513812ff723614ede2b6454868459a30eff879c3afc541b4d6e20e378e2a0d6ce383dd0756649c0b528" ), |
| 40 | PublicElem::from_hex("2b78abc25a15c5e9dd8002263969a840c6c3521968f4ffd98bade7562e83b050a1bfa8bf7bb4a9ac23043dad4b03a4fe" ), |
| 41 | ); |
| 42 | |
| 43 | pub static PRIVATE_KEY_OPS: PrivateKeyOps = PrivateKeyOps { |
| 44 | common: &COMMON_OPS, |
| 45 | elem_inv_squared: p384_elem_inv_squared, |
| 46 | point_mul_base_impl: p384_point_mul_base_impl, |
| 47 | point_mul_impl: p384_point_mul, |
| 48 | point_add_jacobian_impl: p384_point_add, |
| 49 | }; |
| 50 | |
| 51 | fn p384_elem_inv_squared(q: &Modulus<Q>, a: &Elem<R>) -> Elem<R> { |
| 52 | // Calculate a**-2 (mod q) == a**(q - 3) (mod q) |
| 53 | // |
| 54 | // The exponent (q - 3) is: |
| 55 | // |
| 56 | // 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe\ |
| 57 | // ffffffff0000000000000000fffffffc |
| 58 | |
| 59 | #[inline ] |
| 60 | fn sqr_mul(q: &Modulus<Q>, a: &Elem<R>, squarings: LeakyWord, b: &Elem<R>) -> Elem<R> { |
| 61 | elem_sqr_mul(&COMMON_OPS, a, squarings, b, q.cpu()) |
| 62 | } |
| 63 | |
| 64 | #[inline ] |
| 65 | fn sqr_mul_acc(q: &Modulus<Q>, a: &mut Elem<R>, squarings: LeakyWord, b: &Elem<R>) { |
| 66 | elem_sqr_mul_acc(&COMMON_OPS, a, squarings, b, q.cpu()) |
| 67 | } |
| 68 | |
| 69 | let b_1 = &a; |
| 70 | let b_11 = sqr_mul(q, b_1, 1, b_1); |
| 71 | let b_111 = sqr_mul(q, &b_11, 1, b_1); |
| 72 | let f_11 = sqr_mul(q, &b_111, 3, &b_111); |
| 73 | let fff = sqr_mul(q, &f_11, 6, &f_11); |
| 74 | let fff_111 = sqr_mul(q, &fff, 3, &b_111); |
| 75 | let fffffff_11 = sqr_mul(q, &fff_111, 15, &fff_111); |
| 76 | |
| 77 | let fffffffffffffff = sqr_mul(q, &fffffff_11, 30, &fffffff_11); |
| 78 | |
| 79 | let ffffffffffffffffffffffffffffff = sqr_mul(q, &fffffffffffffff, 60, &fffffffffffffff); |
| 80 | |
| 81 | // ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff |
| 82 | let mut acc = sqr_mul( |
| 83 | q, |
| 84 | &ffffffffffffffffffffffffffffff, |
| 85 | 120, |
| 86 | &ffffffffffffffffffffffffffffff, |
| 87 | ); |
| 88 | |
| 89 | // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff_111 |
| 90 | sqr_mul_acc(q, &mut acc, 15, &fff_111); |
| 91 | |
| 92 | // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff |
| 93 | sqr_mul_acc(q, &mut acc, 1 + 30, &fffffff_11); |
| 94 | sqr_mul_acc(q, &mut acc, 2, &b_11); |
| 95 | |
| 96 | // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff |
| 97 | // 0000000000000000fffffff_11 |
| 98 | sqr_mul_acc(q, &mut acc, 64 + 30, &fffffff_11); |
| 99 | |
| 100 | // fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff |
| 101 | // 0000000000000000fffffffc |
| 102 | q.elem_square(&mut acc); |
| 103 | q.elem_square(&mut acc); |
| 104 | |
| 105 | acc |
| 106 | } |
| 107 | |
| 108 | fn p384_point_mul_base_impl(a: &Scalar, cpu: cpu::Features) -> Point { |
| 109 | // XXX: Not efficient. TODO: Precompute multiples of the generator. |
| 110 | let generator: (Elem, Elem) = (Elem::from(&GENERATOR.0), Elem::from(&GENERATOR.1)); |
| 111 | PRIVATE_KEY_OPS.point_mul(p_scalar:a, &generator, cpu) |
| 112 | } |
| 113 | |
| 114 | pub static PUBLIC_KEY_OPS: PublicKeyOps = PublicKeyOps { |
| 115 | common: &COMMON_OPS, |
| 116 | }; |
| 117 | |
| 118 | pub static SCALAR_OPS: ScalarOps = ScalarOps { |
| 119 | common: &COMMON_OPS, |
| 120 | scalar_mul_mont: p384_scalar_mul_mont, |
| 121 | }; |
| 122 | |
| 123 | pub static PUBLIC_SCALAR_OPS: PublicScalarOps = PublicScalarOps { |
| 124 | scalar_ops: &SCALAR_OPS, |
| 125 | public_key_ops: &PUBLIC_KEY_OPS, |
| 126 | twin_mul: |g_scalar: &Elem, p_scalar: &Elem, p_xy: &(Elem, Elem) , cpu: Features| { |
| 127 | twin_mul_inefficient(&PRIVATE_KEY_OPS, g_scalar, p_scalar, p_xy, cpu) |
| 128 | }, |
| 129 | |
| 130 | q_minus_n: PublicElem::from_hex("389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c" ), |
| 131 | |
| 132 | // TODO: Use an optimized variable-time implementation. |
| 133 | scalar_inv_to_mont_vartime: |s: &Elem, cpu: Features| PRIVATE_SCALAR_OPS.scalar_inv_to_mont(a:s, cpu), |
| 134 | }; |
| 135 | |
| 136 | pub static PRIVATE_SCALAR_OPS: PrivateScalarOps = PrivateScalarOps { |
| 137 | scalar_ops: &SCALAR_OPS, |
| 138 | |
| 139 | oneRR_mod_n: PublicScalar::from_hex("c84ee012b39bf213fb05b7a28266895d40d49174aab1cc5bc3e483afcb82947ff3d81e5df1aa4192d319b2419b409a9" ), |
| 140 | scalar_inv_to_mont: p384_scalar_inv_to_mont, |
| 141 | }; |
| 142 | |
| 143 | fn p384_scalar_inv_to_mont(a: Scalar<R>, _cpu: cpu::Features) -> Scalar<R> { |
| 144 | // Calculate the modular inverse of scalar |a| using Fermat's Little |
| 145 | // Theorem: |
| 146 | // |
| 147 | // a**-1 (mod n) == a**(n - 2) (mod n) |
| 148 | // |
| 149 | // The exponent (n - 2) is: |
| 150 | // |
| 151 | // 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf\ |
| 152 | // 581a0db248b0a77aecec196accc52971 |
| 153 | |
| 154 | fn mul(a: &Scalar<R>, b: &Scalar<R>) -> Scalar<R> { |
| 155 | binary_op(p384_scalar_mul_mont, a, b) |
| 156 | } |
| 157 | |
| 158 | fn sqr(a: &Scalar<R>) -> Scalar<R> { |
| 159 | binary_op(p384_scalar_mul_mont, a, a) |
| 160 | } |
| 161 | |
| 162 | fn sqr_mut(a: &mut Scalar<R>) { |
| 163 | unary_op_from_binary_op_assign(p384_scalar_mul_mont, a); |
| 164 | } |
| 165 | |
| 166 | // Returns (`a` squared `squarings` times) * `b`. |
| 167 | fn sqr_mul(a: &Scalar<R>, squarings: LeakyWord, b: &Scalar<R>) -> Scalar<R> { |
| 168 | debug_assert!(squarings >= 1); |
| 169 | let mut tmp = sqr(a); |
| 170 | for _ in 1..squarings { |
| 171 | sqr_mut(&mut tmp); |
| 172 | } |
| 173 | mul(&tmp, b) |
| 174 | } |
| 175 | |
| 176 | // Sets `acc` = (`acc` squared `squarings` times) * `b`. |
| 177 | fn sqr_mul_acc(acc: &mut Scalar<R>, squarings: LeakyWord, b: &Scalar<R>) { |
| 178 | debug_assert!(squarings >= 1); |
| 179 | for _ in 0..squarings { |
| 180 | sqr_mut(acc); |
| 181 | } |
| 182 | binary_op_assign(p384_scalar_mul_mont, acc, b) |
| 183 | } |
| 184 | |
| 185 | // Indexes into `d`. |
| 186 | const B_1: usize = 0; |
| 187 | const B_11: usize = 1; |
| 188 | const B_101: usize = 2; |
| 189 | const B_111: usize = 3; |
| 190 | const B_1001: usize = 4; |
| 191 | const B_1011: usize = 5; |
| 192 | const B_1101: usize = 6; |
| 193 | const B_1111: usize = 7; |
| 194 | const DIGIT_COUNT: usize = 8; |
| 195 | |
| 196 | let mut d = [Scalar::zero(); DIGIT_COUNT]; |
| 197 | d[B_1] = a; |
| 198 | let b_10 = sqr(&d[B_1]); |
| 199 | for i in B_11..DIGIT_COUNT { |
| 200 | d[i] = mul(&d[i - 1], &b_10); |
| 201 | } |
| 202 | |
| 203 | let ff = sqr_mul(&d[B_1111], 0 + 4, &d[B_1111]); |
| 204 | let ffff = sqr_mul(&ff, 0 + 8, &ff); |
| 205 | let ffffffff = sqr_mul(&ffff, 0 + 16, &ffff); |
| 206 | |
| 207 | let ffffffffffffffff = sqr_mul(&ffffffff, 0 + 32, &ffffffff); |
| 208 | |
| 209 | let ffffffffffffffffffffffff = sqr_mul(&ffffffffffffffff, 0 + 32, &ffffffff); |
| 210 | |
| 211 | // ffffffffffffffffffffffffffffffffffffffffffffffff |
| 212 | let mut acc = sqr_mul(&ffffffffffffffffffffffff, 0 + 96, &ffffffffffffffffffffffff); |
| 213 | |
| 214 | // The rest of the exponent, in binary, is: |
| 215 | // |
| 216 | // 1100011101100011010011011000000111110100001101110010110111011111 |
| 217 | // 0101100000011010000011011011001001001000101100001010011101111010 |
| 218 | // 1110110011101100000110010110101011001100110001010010100101110001 |
| 219 | |
| 220 | #[allow (clippy::cast_possible_truncation)] |
| 221 | static REMAINING_WINDOWS: [(u8, u8); 39] = [ |
| 222 | (2, B_11 as u8), |
| 223 | (3 + 3, B_111 as u8), |
| 224 | (1 + 2, B_11 as u8), |
| 225 | (3 + 2, B_11 as u8), |
| 226 | (1 + 4, B_1001 as u8), |
| 227 | (4, B_1011 as u8), |
| 228 | (6 + 4, B_1111 as u8), |
| 229 | (3, B_101 as u8), |
| 230 | (4 + 1, B_1 as u8), |
| 231 | (4, B_1011 as u8), |
| 232 | (4, B_1001 as u8), |
| 233 | (1 + 4, B_1101 as u8), |
| 234 | (4, B_1101 as u8), |
| 235 | (4, B_1111 as u8), |
| 236 | (1 + 4, B_1011 as u8), |
| 237 | (6 + 4, B_1101 as u8), |
| 238 | (5 + 4, B_1101 as u8), |
| 239 | (4, B_1011 as u8), |
| 240 | (2 + 4, B_1001 as u8), |
| 241 | (2 + 1, B_1 as u8), |
| 242 | (3 + 4, B_1011 as u8), |
| 243 | (4 + 3, B_101 as u8), |
| 244 | (2 + 3, B_111 as u8), |
| 245 | (1 + 4, B_1111 as u8), |
| 246 | (1 + 4, B_1011 as u8), |
| 247 | (4, B_1011 as u8), |
| 248 | (2 + 3, B_111 as u8), |
| 249 | (1 + 2, B_11 as u8), |
| 250 | (5 + 2, B_11 as u8), |
| 251 | (2 + 4, B_1011 as u8), |
| 252 | (1 + 3, B_101 as u8), |
| 253 | (1 + 2, B_11 as u8), |
| 254 | (2 + 2, B_11 as u8), |
| 255 | (2 + 2, B_11 as u8), |
| 256 | (3 + 3, B_101 as u8), |
| 257 | (2 + 3, B_101 as u8), |
| 258 | (2 + 3, B_101 as u8), |
| 259 | (2, B_11 as u8), |
| 260 | (3 + 1, B_1 as u8), |
| 261 | ]; |
| 262 | |
| 263 | for &(squarings, digit) in &REMAINING_WINDOWS[..] { |
| 264 | sqr_mul_acc(&mut acc, LeakyWord::from(squarings), &d[usize::from(digit)]); |
| 265 | } |
| 266 | |
| 267 | acc |
| 268 | } |
| 269 | |
| 270 | unsafe extern "C" fn p384_elem_sqr_mont( |
| 271 | r: *mut Limb, // [COMMON_OPS.num_limbs] |
| 272 | a: *const Limb, // [COMMON_OPS.num_limbs] |
| 273 | ) { |
| 274 | // XXX: Inefficient. TODO: Make a dedicated squaring routine. |
| 275 | unsafe { |
| 276 | p384_elem_mul_mont(r, a, b:a); |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | prefixed_extern! { |
| 281 | fn p384_elem_mul_mont( |
| 282 | r: *mut Limb, // [COMMON_OPS.num_limbs] |
| 283 | a: *const Limb, // [COMMON_OPS.num_limbs] |
| 284 | b: *const Limb, // [COMMON_OPS.num_limbs] |
| 285 | ); |
| 286 | |
| 287 | fn p384_point_add( |
| 288 | r: *mut Limb, // [3][COMMON_OPS.num_limbs] |
| 289 | a: *const Limb, // [3][COMMON_OPS.num_limbs] |
| 290 | b: *const Limb, // [3][COMMON_OPS.num_limbs] |
| 291 | ); |
| 292 | fn p384_point_mul( |
| 293 | r: *mut Limb, // [3][COMMON_OPS.num_limbs] |
| 294 | p_scalar: *const Limb, // [COMMON_OPS.num_limbs] |
| 295 | p_x: *const Limb, // [COMMON_OPS.num_limbs] |
| 296 | p_y: *const Limb, // [COMMON_OPS.num_limbs] |
| 297 | ); |
| 298 | |
| 299 | fn p384_scalar_mul_mont( |
| 300 | r: *mut Limb, // [COMMON_OPS.num_limbs] |
| 301 | a: *const Limb, // [COMMON_OPS.num_limbs] |
| 302 | b: *const Limb, // [COMMON_OPS.num_limbs] |
| 303 | ); |
| 304 | } |
| 305 | |