1 | // Copyright 2016 David Judd. |
2 | // Copyright 2016 Brian Smith. |
3 | // |
4 | // Permission to use, copy, modify, and/or distribute this software for any |
5 | // purpose with or without fee is hereby granted, provided that the above |
6 | // copyright notice and this permission notice appear in all copies. |
7 | // |
8 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
9 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
10 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
11 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
12 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
13 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
14 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
15 | |
16 | //! Unsigned multi-precision integer arithmetic. |
17 | //! |
18 | //! Limbs ordered least-significant-limb to most-significant-limb. The bits |
19 | //! limbs use the native endianness. |
20 | |
21 | use crate::{ |
22 | arithmetic::inout::{AliasingSlices2, AliasingSlices3}, |
23 | c, constant_time, |
24 | error::{self, LenMismatchError}, |
25 | polyfill::{sliceutil, usize_from_u32, ArrayFlatMap}, |
26 | }; |
27 | use core::{iter, num::NonZeroUsize}; |
28 | |
29 | #[cfg (any(test, feature = "alloc" ))] |
30 | use crate::bits; |
31 | |
32 | #[cfg (feature = "alloc" )] |
33 | use core::num::Wrapping; |
34 | |
35 | // XXX: Not correct for x32 ABIs. |
36 | pub type Limb = constant_time::Word; |
37 | pub type LeakyLimb = constant_time::LeakyWord; |
38 | pub const LIMB_BITS: usize = usize_from_u32(Limb::BITS); |
39 | pub const LIMB_BYTES: usize = (LIMB_BITS + 7) / 8; |
40 | |
41 | pub type LimbMask = constant_time::BoolMask; |
42 | |
43 | #[inline ] |
44 | pub fn limbs_equal_limbs_consttime(a: &[Limb], b: &[Limb]) -> Result<LimbMask, LenMismatchError> { |
45 | if a.len() != b.len() { |
46 | return Err(LenMismatchError::new(a.len())); |
47 | } |
48 | let all: u64 = a.iter().zip(b).fold(init:0, |running: u64, (a: &u64, b: &u64)| running | (a ^ b)); |
49 | Ok(limb_is_zero_constant_time(limb:all)) |
50 | } |
51 | |
52 | #[inline ] |
53 | fn limbs_less_than_limbs_constant_time( |
54 | a: &[Limb], |
55 | b: &[Limb], |
56 | ) -> Result<LimbMask, LenMismatchError> { |
57 | prefixed_extern! { |
58 | fn LIMBS_less_than(a: *const Limb, b: *const Limb, num_limbs: c::NonZero_size_t) |
59 | -> LimbMask; |
60 | } |
61 | // Use `b.len` because usually `b` will be the modulus which is likely to |
62 | // have had its length checked already so this can be elided by the |
63 | // optimizer. |
64 | // XXX: Questionable whether `LenMismatchError` is appropriate. |
65 | let len: NonZero = NonZeroUsize::new(b.len()).ok_or_else(|| LenMismatchError::new(a.len()))?; |
66 | if a.len() != len.into() { |
67 | return Err(LenMismatchError::new(a.len())); |
68 | } |
69 | Ok(unsafe { LIMBS_less_than(a.as_ptr(), b.as_ptr(), num_limbs:len) }) |
70 | } |
71 | |
72 | #[inline ] |
73 | pub(crate) fn verify_limbs_less_than_limbs_leak_bit( |
74 | a: &[Limb], |
75 | b: &[Limb], |
76 | ) -> Result<(), error::Unspecified> { |
77 | let r: BoolMask = limbs_less_than_limbs_constant_time(a, b).map_err(op:error::erase::<LenMismatchError>)?; |
78 | if r.leak() { |
79 | Ok(()) |
80 | } else { |
81 | Err(error::Unspecified) |
82 | } |
83 | } |
84 | |
85 | #[inline ] |
86 | pub fn limbs_less_than_limbs_vartime(a: &[Limb], b: &[Limb]) -> Result<bool, LenMismatchError> { |
87 | let r: BoolMask = limbs_less_than_limbs_constant_time(a, b)?; |
88 | Ok(r.leak()) |
89 | } |
90 | |
91 | #[inline ] |
92 | fn limb_is_zero_constant_time(limb: Limb) -> LimbMask { |
93 | prefixed_extern! { |
94 | fn LIMB_is_zero(limb: Limb) -> LimbMask; |
95 | } |
96 | unsafe { LIMB_is_zero(limb) } |
97 | } |
98 | |
99 | #[inline ] |
100 | pub fn limbs_are_zero_constant_time(limbs: &[Limb]) -> LimbMask { |
101 | limb_is_zero_constant_time(limb:limbs.iter().fold(init:0, |a: u64, b: &u64| a | b)) |
102 | } |
103 | |
104 | /// Leaks one bit of information (other than the lengths of the inputs): |
105 | /// Whether the given limbs are even. |
106 | #[cfg (any(test, feature = "alloc" ))] |
107 | #[inline ] |
108 | pub fn limbs_reject_even_leak_bit(limbs: &[Limb]) -> Result<(), error::Unspecified> { |
109 | let bottom: u64 = *limbs.first().ok_or(err:error::Unspecified)?; |
110 | if limb_is_zero_constant_time(limb:bottom & 1).leak() { |
111 | return Err(error::Unspecified); |
112 | } |
113 | Ok(()) |
114 | } |
115 | |
116 | #[cfg (any(test, feature = "alloc" ))] |
117 | #[inline ] |
118 | pub fn verify_limbs_equal_1_leak_bit(a: &[Limb]) -> Result<(), error::Unspecified> { |
119 | if let [bottom: u64, ref rest: &[u64] @ ..] = *a { |
120 | let equal: BoolMask = limb_is_zero_constant_time(limb:bottom ^ 1) & limbs_are_zero_constant_time(limbs:rest); |
121 | if equal.leak() { |
122 | return Ok(()); |
123 | } |
124 | } |
125 | Err(error::Unspecified) |
126 | } |
127 | |
128 | /// Returns the number of bits in `a`. |
129 | // |
130 | // This strives to be constant-time with respect to the values of all bits |
131 | // except the most significant bit. This does not attempt to be constant-time |
132 | // with respect to `a.len()` or the value of the result or the value of the |
133 | // most significant bit (It's 1, unless the input is zero, in which case it's |
134 | // zero.) |
135 | #[cfg (any(test, feature = "alloc" ))] |
136 | pub fn limbs_minimal_bits(a: &[Limb]) -> bits::BitLength { |
137 | for num_limbs: usize in (1..=a.len()).rev() { |
138 | let high_limb: u64 = a[num_limbs - 1]; |
139 | |
140 | // Find the number of set bits in |high_limb| by a linear scan from the |
141 | // most significant bit to the least significant bit. This works great |
142 | // for the most common inputs because usually the most significant bit |
143 | // it set. |
144 | for high_limb_num_bits: usize in (1..=LIMB_BITS).rev() { |
145 | let shifted: u64 = unsafe { LIMB_shr(a:high_limb, shift:high_limb_num_bits - 1) }; |
146 | if shifted != 0 { |
147 | return bits::BitLength::from_bits( |
148 | ((num_limbs - 1) * LIMB_BITS) + high_limb_num_bits, |
149 | ); |
150 | } |
151 | } |
152 | } |
153 | |
154 | // No bits were set. |
155 | bits::BitLength::from_bits(0) |
156 | } |
157 | |
158 | /// Equivalent to `if (r >= m) { r -= m; }` |
159 | #[inline ] |
160 | pub fn limbs_reduce_once_constant_time(r: &mut [Limb], m: &[Limb]) -> Result<(), LenMismatchError> { |
161 | prefixed_extern! { |
162 | fn LIMBS_reduce_once(r: *mut Limb, m: *const Limb, num_limbs: c::NonZero_size_t); |
163 | } |
164 | let num_limbs: NonZero = NonZeroUsize::new(r.len()).ok_or_else(|| LenMismatchError::new(m.len()))?; |
165 | let r: *mut u64 = r.as_mut_ptr(); // Non-dangling because num_limbs is non-zero. |
166 | let m: *const u64 = m.as_ptr(); // Non-dangling because num_limbs is non-zero. |
167 | unsafe { LIMBS_reduce_once(r, m, num_limbs) }; |
168 | Ok(()) |
169 | } |
170 | |
171 | #[derive (Clone, Copy, PartialEq)] |
172 | pub enum AllowZero { |
173 | No, |
174 | Yes, |
175 | } |
176 | |
177 | /// Parses `input` into `result`, verifies that the value is less than |
178 | /// `max_exclusive`, and pads `result` with zeros to its length. If `allow_zero` |
179 | /// is not `AllowZero::Yes`, zero values are rejected. |
180 | /// |
181 | /// This attempts to be constant-time with respect to the actual value *only if* |
182 | /// the value is actually in range. In other words, this won't leak anything |
183 | /// about a valid value, but it might leak small amounts of information about an |
184 | /// invalid value (which constraint it failed). |
185 | pub fn parse_big_endian_in_range_and_pad_consttime( |
186 | input: untrusted::Input, |
187 | allow_zero: AllowZero, |
188 | max_exclusive: &[Limb], |
189 | result: &mut [Limb], |
190 | ) -> Result<(), error::Unspecified> { |
191 | parse_big_endian_and_pad_consttime(input, result)?; |
192 | verify_limbs_less_than_limbs_leak_bit(a:result, b:max_exclusive)?; |
193 | if allow_zero != AllowZero::Yes { |
194 | if limbs_are_zero_constant_time(limbs:result).leak() { |
195 | return Err(error::Unspecified); |
196 | } |
197 | } |
198 | Ok(()) |
199 | } |
200 | |
201 | /// Parses `input` into `result`, padding `result` with zeros to its length. |
202 | /// This attempts to be constant-time with respect to the value but not with |
203 | /// respect to the length; it is assumed that the length is public knowledge. |
204 | pub fn parse_big_endian_and_pad_consttime( |
205 | input: untrusted::Input, |
206 | result: &mut [Limb], |
207 | ) -> Result<(), error::Unspecified> { |
208 | if input.is_empty() { |
209 | return Err(error::Unspecified); |
210 | } |
211 | let input_limbs: impl Iterator = input.as_slice_less_safe().rchunks(LIMB_BYTES).map(|chunk: &[u8]| { |
212 | let mut padded: [u8; 8] = [0; LIMB_BYTES]; |
213 | sliceutil::overwrite_at_start(&mut padded[(LIMB_BYTES - chunk.len())..], b:chunk); |
214 | Limb::from_be_bytes(padded) |
215 | }); |
216 | if input_limbs.len() > result.len() { |
217 | return Err(error::Unspecified); |
218 | } |
219 | |
220 | resultimpl Iterator |
221 | .iter_mut() |
222 | .zip(input_limbs.chain(iter::repeat(elt:0))) |
223 | .for_each(|(r: &mut u64, i: u64)| *r = i); |
224 | |
225 | Ok(()) |
226 | } |
227 | |
228 | pub fn big_endian_from_limbs(limbs: &[Limb], out: &mut [u8]) { |
229 | let be_bytes: impl ExactSizeIterator- + Clone
= unstripped_be_bytes(limbs); |
230 | assert_eq!(out.len(), be_bytes.len()); |
231 | out.iter_mut().zip(be_bytes).for_each(|(o: &mut u8, i: u8)| { |
232 | *o = i; |
233 | }); |
234 | } |
235 | |
236 | /// Returns an iterator of the big-endian encoding of `limbs`. |
237 | /// |
238 | /// The number of bytes returned will be a multiple of `LIMB_BYTES` |
239 | /// and thus may be padded with leading zeros. |
240 | pub fn unstripped_be_bytes(limbs: &[Limb]) -> impl ExactSizeIterator<Item = u8> + Clone + '_ { |
241 | // The unwrap is safe because a slice can never be larger than `usize` bytes. |
242 | ArrayFlatMap::new(inner:limbs.iter().rev().copied(), f:Limb::to_be_bytes).unwrap() |
243 | } |
244 | |
245 | // Used in FFI |
246 | pub type Window = constant_time::Word; |
247 | |
248 | // Used in FFI |
249 | pub type LeakyWindow = constant_time::LeakyWord; |
250 | |
251 | /// Processes `limbs` as a sequence of 5-bit windows, folding the windows from |
252 | /// most significant to least significant and returning the accumulated result. |
253 | /// The first window will be mapped by `init` to produce the initial value for |
254 | /// the accumulator. Then `f` will be called to fold the accumulator and the |
255 | /// next window until all windows are processed. When the input's bit length |
256 | /// isn't divisible by 5, the window passed to `init` will be partial; all |
257 | /// windows passed to `fold` will be full. |
258 | /// |
259 | /// This is designed to avoid leaking the contents of `limbs` through side |
260 | /// channels as long as `init` and `fold` are side-channel free. |
261 | /// |
262 | /// Panics if `limbs` is empty. |
263 | #[cfg (feature = "alloc" )] |
264 | pub fn fold_5_bit_windows<R, I: FnOnce(Window) -> R, F: Fn(R, Window) -> R>( |
265 | limbs: &[Limb], |
266 | init: I, |
267 | fold: F, |
268 | ) -> R { |
269 | #[derive (Clone, Copy)] |
270 | #[repr (transparent)] |
271 | struct BitIndex(Wrapping<c::size_t>); |
272 | |
273 | const WINDOW_BITS: Wrapping<c::size_t> = Wrapping(5); |
274 | |
275 | prefixed_extern! { |
276 | fn LIMBS_window5_split_window( |
277 | lower_limb: Limb, |
278 | higher_limb: Limb, |
279 | index_within_word: BitIndex, |
280 | ) -> Window; |
281 | fn LIMBS_window5_unsplit_window(limb: Limb, index_within_word: BitIndex) -> Window; |
282 | } |
283 | |
284 | let num_limbs = limbs.len(); |
285 | let mut window_low_bit = { |
286 | let num_whole_windows = (num_limbs * LIMB_BITS) / 5; |
287 | let mut leading_bits = (num_limbs * LIMB_BITS) - (num_whole_windows * 5); |
288 | if leading_bits == 0 { |
289 | leading_bits = WINDOW_BITS.0; |
290 | } |
291 | BitIndex(Wrapping(LIMB_BITS - leading_bits)) |
292 | }; |
293 | |
294 | let initial_value = { |
295 | let leading_partial_window = |
296 | unsafe { LIMBS_window5_split_window(*limbs.first().unwrap(), 0, window_low_bit) }; |
297 | window_low_bit.0 -= WINDOW_BITS; |
298 | init(leading_partial_window) |
299 | }; |
300 | |
301 | let mut low_limb = Limb::from(0 as LeakyWindow); |
302 | limbs.iter().fold(initial_value, |mut acc, current_limb| { |
303 | let higher_limb = low_limb; |
304 | low_limb = *current_limb; |
305 | |
306 | if window_low_bit.0 > Wrapping(LIMB_BITS) - WINDOW_BITS { |
307 | let window = |
308 | unsafe { LIMBS_window5_split_window(low_limb, higher_limb, window_low_bit) }; |
309 | window_low_bit.0 -= WINDOW_BITS; |
310 | acc = fold(acc, window); |
311 | }; |
312 | while window_low_bit.0 < Wrapping(LIMB_BITS) { |
313 | let window = unsafe { LIMBS_window5_unsplit_window(low_limb, window_low_bit) }; |
314 | // The loop exits when this subtraction underflows, causing `window_low_bit` to |
315 | // wrap around to a very large value. |
316 | window_low_bit.0 -= WINDOW_BITS; |
317 | acc = fold(acc, window); |
318 | } |
319 | window_low_bit.0 += Wrapping(LIMB_BITS); // "Fix" the underflow. |
320 | |
321 | acc |
322 | }) |
323 | } |
324 | |
325 | #[inline ] |
326 | pub(crate) fn limbs_add_assign_mod( |
327 | a: &mut [Limb], |
328 | b: &[Limb], |
329 | m: &[Limb], |
330 | ) -> Result<(), LenMismatchError> { |
331 | prefixed_extern! { |
332 | // `r` and `a` may alias. |
333 | fn LIMBS_add_mod( |
334 | r: *mut Limb, |
335 | a: *const Limb, |
336 | b: *const Limb, |
337 | m: *const Limb, |
338 | num_limbs: c::NonZero_size_t, |
339 | ); |
340 | } |
341 | let num_limbs: NonZero = NonZeroUsize::new(m.len()).ok_or_else(|| LenMismatchError::new(m.len()))?; |
342 | (a, b).with_non_dangling_non_null_pointers_rab(expected_len:num_limbs, |r: *mut u64, a: *const u64, b: *const u64| { |
343 | let m: *const u64 = m.as_ptr(); // Also non-dangling because `num_limbs` is non-zero. |
344 | unsafe { LIMBS_add_mod(r, a, b, m, num_limbs) } |
345 | }) |
346 | } |
347 | |
348 | // r *= 2 (mod m). |
349 | pub(crate) fn limbs_double_mod(r: &mut [Limb], m: &[Limb]) -> Result<(), LenMismatchError> { |
350 | prefixed_extern! { |
351 | // `r` and `a` may alias. |
352 | fn LIMBS_shl_mod( |
353 | r: *mut Limb, |
354 | a: *const Limb, |
355 | m: *const Limb, |
356 | num_limbs: c::NonZero_size_t); |
357 | } |
358 | let num_limbs: NonZero = NonZeroUsize::new(m.len()).ok_or_else(|| LenMismatchError::new(m.len()))?; |
359 | r.with_non_dangling_non_null_pointers_ra(expected_len:num_limbs, |r: *mut u64, a: *const u64| { |
360 | let m: *const u64 = m.as_ptr(); // Also non-dangling because num_limbs > 0. |
361 | unsafe { |
362 | LIMBS_shl_mod(r, a, m, num_limbs); |
363 | } |
364 | }) |
365 | } |
366 | |
367 | // *r = -a, assuming a is odd. |
368 | pub(crate) fn limbs_negative_odd(r: &mut [Limb], a: &[Limb]) { |
369 | debug_assert_eq!(r.len(), a.len()); |
370 | // Two's complement step 1: flip all the bits. |
371 | // The compiler should optimize this to vectorized (a ^ !0). |
372 | r.iter_mut().zip(a.iter()).for_each(|(r: &mut u64, &a: u64)| { |
373 | *r = !a; |
374 | }); |
375 | // Two's complement step 2: Add one. Since `a` is odd, `r` is even. Thus we |
376 | // can use a bitwise or for addition. |
377 | r[0] |= 1; |
378 | } |
379 | |
380 | #[cfg (any(test, feature = "alloc" ))] |
381 | prefixed_extern! { |
382 | fn LIMB_shr(a: Limb, shift: c::size_t) -> Limb; |
383 | } |
384 | |
385 | #[cfg (test)] |
386 | mod tests { |
387 | use super::*; |
388 | use alloc::vec::Vec; |
389 | use cfg_if::cfg_if; |
390 | |
391 | const MAX: LeakyLimb = LeakyLimb::MAX; |
392 | |
393 | fn leak_in_test(a: LimbMask) -> bool { |
394 | a.leak() |
395 | } |
396 | |
397 | #[test ] |
398 | fn test_limbs_are_even() { |
399 | static EVENS: &[&[LeakyLimb]] = &[ |
400 | &[], |
401 | &[0], |
402 | &[2], |
403 | &[0, 0], |
404 | &[2, 0], |
405 | &[0, 1], |
406 | &[0, 2], |
407 | &[0, 3], |
408 | &[0, 0, 0, 0, MAX], |
409 | ]; |
410 | for even in EVENS { |
411 | let even = &Vec::from_iter(even.iter().copied().map(Limb::from)); |
412 | assert!(matches!( |
413 | limbs_reject_even_leak_bit(even), |
414 | Err(error::Unspecified) |
415 | )); |
416 | } |
417 | static ODDS: &[&[LeakyLimb]] = &[ |
418 | &[1], |
419 | &[3], |
420 | &[1, 0], |
421 | &[3, 0], |
422 | &[1, 1], |
423 | &[1, 2], |
424 | &[1, 3], |
425 | &[1, 0, 0, 0, MAX], |
426 | ]; |
427 | for odd in ODDS { |
428 | let odd = &Vec::from_iter(odd.iter().copied().map(Limb::from)); |
429 | assert!(matches!(limbs_reject_even_leak_bit(odd), Ok(()))); |
430 | } |
431 | } |
432 | |
433 | static ZEROES: &[&[LeakyLimb]] = &[ |
434 | &[], |
435 | &[0], |
436 | &[0, 0], |
437 | &[0, 0, 0], |
438 | &[0, 0, 0, 0], |
439 | &[0, 0, 0, 0, 0], |
440 | &[0, 0, 0, 0, 0, 0, 0], |
441 | &[0, 0, 0, 0, 0, 0, 0, 0], |
442 | &[0, 0, 0, 0, 0, 0, 0, 0, 0], |
443 | ]; |
444 | |
445 | static NONZEROES: &[&[LeakyLimb]] = &[ |
446 | &[1], |
447 | &[0, 1], |
448 | &[1, 1], |
449 | &[1, 0, 0, 0], |
450 | &[0, 1, 0, 0], |
451 | &[0, 0, 1, 0], |
452 | &[0, 0, 0, 1], |
453 | ]; |
454 | |
455 | #[test ] |
456 | fn test_limbs_are_zero() { |
457 | for zero in ZEROES { |
458 | let zero = &Vec::from_iter(zero.iter().copied().map(Limb::from)); |
459 | assert!(leak_in_test(limbs_are_zero_constant_time(zero))); |
460 | } |
461 | for nonzero in NONZEROES { |
462 | let nonzero = &Vec::from_iter(nonzero.iter().copied().map(Limb::from)); |
463 | assert!(!leak_in_test(limbs_are_zero_constant_time(nonzero))); |
464 | } |
465 | } |
466 | |
467 | #[test ] |
468 | fn test_limbs_equal_limb() { |
469 | // Equal |
470 | static EQUAL: &[&[LeakyLimb]] = &[&[1], &[1, 0], &[1, 0, 0], &[1, 0, 0, 0, 0, 0, 0]]; |
471 | for a in EQUAL { |
472 | let a = &Vec::from_iter(a.iter().copied().map(Limb::from)); |
473 | assert!(matches!(verify_limbs_equal_1_leak_bit(a), Ok(()))); |
474 | } |
475 | |
476 | // Unequal |
477 | static UNEQUAL: &[&[LeakyLimb]] = &[ |
478 | &[0], |
479 | &[2], |
480 | &[3], |
481 | &[MAX], |
482 | &[0, 1], |
483 | &[1, 1], |
484 | &[0, 0, 0, 0, 0, 0, 0, 1], |
485 | &[0, 0, 0, 0, 1, 0, 0, 0], |
486 | &[0, 0, 0, 0, 1, 0, 0, 1], |
487 | &[MAX, 1], |
488 | ]; |
489 | for a in UNEQUAL { |
490 | let a = &Vec::from_iter(a.iter().copied().map(Limb::from)); |
491 | assert!(matches!( |
492 | verify_limbs_equal_1_leak_bit(a), |
493 | Err(error::Unspecified) |
494 | )); |
495 | } |
496 | } |
497 | |
498 | #[test ] |
499 | fn test_parse_big_endian_and_pad_consttime() { |
500 | const LIMBS: usize = 4; |
501 | |
502 | { |
503 | // Empty input. |
504 | let inp = untrusted::Input::from(&[]); |
505 | let mut result = [0; LIMBS].map(From::<LeakyLimb>::from); |
506 | assert!(parse_big_endian_and_pad_consttime(inp, &mut result).is_err()); |
507 | } |
508 | |
509 | // The input is longer than will fit in the given number of limbs. |
510 | { |
511 | let inp = [1, 2, 3, 4, 5, 6, 7, 8, 9]; |
512 | let inp = untrusted::Input::from(&inp); |
513 | let mut result = [0; 8 / LIMB_BYTES].map(From::<LeakyLimb>::from); |
514 | assert!(parse_big_endian_and_pad_consttime(inp, &mut result[..]).is_err()); |
515 | } |
516 | |
517 | // Less than a full limb. |
518 | { |
519 | let inp = [0xfe]; |
520 | let inp = untrusted::Input::from(&inp); |
521 | let mut result = [0; LIMBS].map(From::<LeakyLimb>::from); |
522 | assert_eq!( |
523 | Ok(()), |
524 | parse_big_endian_and_pad_consttime(inp, &mut result[..]) |
525 | ); |
526 | assert_eq!(&[0xfe, 0, 0, 0], &result); |
527 | } |
528 | |
529 | // A whole limb for 32-bit, half a limb for 64-bit. |
530 | { |
531 | let inp = [0xbe, 0xef, 0xf0, 0x0d]; |
532 | let inp = untrusted::Input::from(&inp); |
533 | let mut result = [0; LIMBS].map(From::<LeakyLimb>::from); |
534 | assert_eq!(Ok(()), parse_big_endian_and_pad_consttime(inp, &mut result)); |
535 | assert_eq!(&[0xbeeff00d, 0, 0, 0], &result); |
536 | } |
537 | |
538 | cfg_if! { |
539 | if #[cfg(target_pointer_width = "64" )] { |
540 | static TEST_CASES: &[(&[u8], &[Limb])] = &[ |
541 | (&[1], &[1, 0]), |
542 | (&[1, 2], &[0x102, 0]), |
543 | (&[1, 2, 3], &[0x10203, 0]), |
544 | (&[1, 2, 3, 4], &[0x102_0304, 0]), |
545 | (&[1, 2, 3, 4, 5], &[0x1_0203_0405, 0]), |
546 | (&[1, 2, 3, 4, 5, 6], &[0x102_0304_0506, 0]), |
547 | (&[1, 2, 3, 4, 5, 6, 7], &[0x1_0203_0405_0607, 0]), |
548 | (&[1, 2, 3, 4, 5, 6, 7, 8], &[0x102_0304_0506_0708, 0]), |
549 | (&[1, 2, 3, 4, 5, 6, 7, 8, 9], &[0x0203_0405_0607_0809, 0x1]), |
550 | (&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa], &[0x0304_0506_0708_090a, 0x102]), |
551 | (&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb], &[0x0405_0607_0809_0a0b, 0x1_0203]), |
552 | ]; |
553 | for (be_bytes, limbs) in TEST_CASES { |
554 | let mut buf = [0; 2]; |
555 | parse_big_endian_and_pad_consttime(untrusted::Input::from(be_bytes), &mut buf) |
556 | .unwrap(); |
557 | assert_eq!(limbs, &buf, "({be_bytes:x?}, {limbs:x?}" ); |
558 | } |
559 | } else if #[cfg(target_pointer_width = "32" )] { |
560 | static TEST_CASES: &[(&[u8], &[Limb])] = &[ |
561 | (&[1], &[1, 0, 0]), |
562 | (&[1, 2], &[0x102, 0, 0]), |
563 | (&[1, 2, 3], &[0x10203, 0, 0]), |
564 | (&[1, 2, 3, 4], &[0x102_0304, 0, 0]), |
565 | (&[1, 2, 3, 4, 5], &[0x0203_0405, 0x1, 0]), |
566 | (&[1, 2, 3, 4, 5, 6], &[0x0304_0506, 0x102, 0]), |
567 | (&[1, 2, 3, 4, 5, 6, 7], &[0x0405_0607, 0x1_0203, 0]), |
568 | (&[1, 2, 3, 4, 5, 6, 7, 8], &[0x0506_0708, 0x102_0304, 0]), |
569 | (&[1, 2, 3, 4, 5, 6, 7, 8, 9], &[0x0607_0809, 0x0203_0405, 0x1]), |
570 | (&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa], &[0x0708_090a, 0x0304_0506, 0x102]), |
571 | (&[1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb], &[0x0809_0a0b, 0x0405_0607, 0x1_0203]), |
572 | ]; |
573 | for (be_bytes, limbs) in TEST_CASES { |
574 | let mut buf = [0; 3]; |
575 | parse_big_endian_and_pad_consttime(untrusted::Input::from(be_bytes), &mut buf) |
576 | .unwrap(); |
577 | assert_eq!(limbs, &buf, "({be_bytes:x?}, {limbs:x?}" ); |
578 | } |
579 | } else { |
580 | panic!("Unsupported target_pointer_width" ); |
581 | } |
582 | |
583 | // XXX: This is a weak set of tests. TODO: expand it. |
584 | } |
585 | } |
586 | |
587 | #[test ] |
588 | fn test_big_endian_from_limbs_same_length() { |
589 | #[cfg (target_pointer_width = "32" )] |
590 | let limbs = [ |
591 | 0xbccddeef, 0x89900aab, 0x45566778, 0x01122334, 0xddeeff00, 0x99aabbcc, 0x55667788, |
592 | 0x11223344, |
593 | ]; |
594 | |
595 | #[cfg (target_pointer_width = "64" )] |
596 | let limbs = [ |
597 | 0x8990_0aab_bccd_deef, |
598 | 0x0112_2334_4556_6778, |
599 | 0x99aa_bbcc_ddee_ff00, |
600 | 0x1122_3344_5566_7788, |
601 | ]; |
602 | |
603 | let limbs = limbs.map(From::<LeakyLimb>::from); |
604 | |
605 | let expected = [ |
606 | 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, |
607 | 0xff, 0x00, 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x89, 0x90, 0x0a, 0xab, |
608 | 0xbc, 0xcd, 0xde, 0xef, |
609 | ]; |
610 | |
611 | let mut out = [0xabu8; 32]; |
612 | big_endian_from_limbs(&limbs[..], &mut out); |
613 | assert_eq!(&out[..], &expected[..]); |
614 | } |
615 | |
616 | #[should_panic ] |
617 | #[test ] |
618 | fn test_big_endian_from_limbs_fewer_limbs() { |
619 | #[cfg (target_pointer_width = "32" )] |
620 | // Two fewer limbs. |
621 | let limbs = [ |
622 | 0xbccddeef, 0x89900aab, 0x45566778, 0x01122334, 0xddeeff00, 0x99aabbcc, |
623 | ]; |
624 | |
625 | // One fewer limb. |
626 | #[cfg (target_pointer_width = "64" )] |
627 | let limbs = [ |
628 | 0x8990_0aab_bccd_deef, |
629 | 0x0112_2334_4556_6778, |
630 | 0x99aa_bbcc_ddee_ff00, |
631 | ]; |
632 | |
633 | let limbs = limbs.map(From::<LeakyLimb>::from); |
634 | |
635 | let mut out = [0xabu8; 32]; |
636 | |
637 | big_endian_from_limbs(&limbs[..], &mut out); |
638 | } |
639 | |
640 | #[test ] |
641 | fn test_limbs_minimal_bits() { |
642 | const ALL_ONES: LeakyLimb = LeakyLimb::MAX; |
643 | static CASES: &[(&[LeakyLimb], usize)] = &[ |
644 | (&[], 0), |
645 | (&[0], 0), |
646 | (&[ALL_ONES], LIMB_BITS), |
647 | (&[ALL_ONES, 0], LIMB_BITS), |
648 | (&[ALL_ONES, 1], LIMB_BITS + 1), |
649 | (&[0, 0], 0), |
650 | (&[1, 0], 1), |
651 | (&[0, 1], LIMB_BITS + 1), |
652 | (&[0, ALL_ONES], 2 * LIMB_BITS), |
653 | (&[ALL_ONES, ALL_ONES], 2 * LIMB_BITS), |
654 | (&[ALL_ONES, ALL_ONES >> 1], 2 * LIMB_BITS - 1), |
655 | (&[ALL_ONES, 0b100_0000], LIMB_BITS + 7), |
656 | (&[ALL_ONES, 0b101_0000], LIMB_BITS + 7), |
657 | (&[ALL_ONES, ALL_ONES >> 1], LIMB_BITS + (LIMB_BITS) - 1), |
658 | ]; |
659 | for (limbs, bits) in CASES { |
660 | let limbs = &Vec::from_iter(limbs.iter().copied().map(Limb::from)); |
661 | assert_eq!(limbs_minimal_bits(limbs).as_bits(), *bits); |
662 | } |
663 | } |
664 | } |
665 | |