1//! Parse the Linux vDSO.
2//!
3//! The following code is transliterated from
4//! tools/testing/selftests/vDSO/parse_vdso.c in Linux 5.11, which is licensed
5//! with Creative Commons Zero License, version 1.0,
6//! available at <https://creativecommons.org/publicdomain/zero/1.0/legalcode>
7//!
8//! # Safety
9//!
10//! Parsing the vDSO involves a lot of raw pointer manipulation. This
11//! implementation follows Linux's reference implementation, and adds several
12//! additional safety checks.
13#![allow(unsafe_code)]
14
15use super::c;
16use crate::ffi::CStr;
17use crate::utils::check_raw_pointer;
18use core::ffi::c_void;
19use core::mem::size_of;
20use core::ptr::{null, null_mut};
21use linux_raw_sys::elf::*;
22
23pub(super) struct Vdso {
24 // Load information
25 load_addr: *const Elf_Ehdr,
26 load_end: *const c_void, // the end of the `PT_LOAD` segment
27 pv_offset: usize, // recorded paddr - recorded vaddr
28
29 // Symbol table
30 symtab: *const Elf_Sym,
31 symstrings: *const u8,
32 bucket: *const u32,
33 chain: *const u32,
34 nbucket: u32,
35 //nchain: u32,
36
37 // Version table
38 versym: *const u16,
39 verdef: *const Elf_Verdef,
40}
41
42// Straight from the ELF specification.
43fn elf_hash(name: &CStr) -> u32 {
44 let mut h: u32 = 0;
45 for b: &u8 in name.to_bytes() {
46 h = (h << 4).wrapping_add(u32::from(*b));
47 let g: u32 = h & 0xf000_0000;
48 if g != 0 {
49 h ^= g >> 24;
50 }
51 h &= !g;
52 }
53 h
54}
55
56/// Create a `Vdso` value by parsing the vDSO at the `sysinfo_ehdr` address.
57fn init_from_sysinfo_ehdr() -> Option<Vdso> {
58 // SAFETY: The auxv initialization code does extensive checks to ensure
59 // that the value we get really is an `AT_SYSINFO_EHDR` value from the
60 // kernel.
61 unsafe {
62 let hdr = super::param::auxv::sysinfo_ehdr();
63
64 // If the platform doesn't provide a `AT_SYSINFO_EHDR`, we can't locate
65 // the vDSO.
66 if hdr.is_null() {
67 return None;
68 }
69
70 let mut vdso = Vdso {
71 load_addr: hdr,
72 load_end: hdr.cast(),
73 pv_offset: 0,
74 symtab: null(),
75 symstrings: null(),
76 bucket: null(),
77 chain: null(),
78 nbucket: 0,
79 //nchain: 0,
80 versym: null(),
81 verdef: null(),
82 };
83
84 let hdr = &*hdr;
85 let pt = check_raw_pointer::<Elf_Phdr>(vdso.base_plus(hdr.e_phoff)? as *mut _)?.as_ptr();
86 let mut dyn_: *const Elf_Dyn = null();
87 let mut num_dyn = 0;
88
89 // We need two things from the segment table: the load offset
90 // and the dynamic table.
91 let mut found_vaddr = false;
92 for i in 0..hdr.e_phnum {
93 let phdr = &*pt.add(i as usize);
94 if phdr.p_flags & PF_W != 0 {
95 // Don't trust any vDSO that claims to be loading writable
96 // segments into memory.
97 return None;
98 }
99 if phdr.p_type == PT_LOAD && !found_vaddr {
100 // The segment should be readable and executable, because it
101 // contains the symbol table and the function bodies.
102 if phdr.p_flags & (PF_R | PF_X) != (PF_R | PF_X) {
103 return None;
104 }
105 found_vaddr = true;
106 vdso.load_end = vdso.base_plus(phdr.p_offset.checked_add(phdr.p_memsz)?)?;
107 vdso.pv_offset = phdr.p_offset.wrapping_sub(phdr.p_vaddr);
108 } else if phdr.p_type == PT_DYNAMIC {
109 // If `p_offset` is zero, it's more likely that we're looking
110 // at memory that has been zeroed than that the kernel has
111 // somehow aliased the `Ehdr` and the `Elf_Dyn` array.
112 if phdr.p_offset < size_of::<Elf_Ehdr>() {
113 return None;
114 }
115
116 dyn_ = check_raw_pointer::<Elf_Dyn>(vdso.base_plus(phdr.p_offset)? as *mut _)?
117 .as_ptr();
118 num_dyn = phdr.p_memsz / size_of::<Elf_Dyn>();
119 } else if phdr.p_type == PT_INTERP || phdr.p_type == PT_GNU_RELRO {
120 // Don't trust any ELF image that has an “interpreter” or
121 // that uses RELRO, which is likely to be a user ELF image
122 // rather and not the kernel vDSO.
123 return None;
124 }
125 }
126
127 if !found_vaddr || dyn_.is_null() {
128 return None; // Failed
129 }
130
131 // Fish out the useful bits of the dynamic table.
132 let mut hash: *const u32 = null();
133 vdso.symstrings = null();
134 vdso.symtab = null();
135 vdso.versym = null();
136 vdso.verdef = null();
137 let mut i = 0;
138 loop {
139 if i == num_dyn {
140 return None;
141 }
142 let d = &*dyn_.add(i);
143 match d.d_tag {
144 DT_STRTAB => {
145 vdso.symstrings =
146 check_raw_pointer::<u8>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
147 .as_ptr();
148 }
149 DT_SYMTAB => {
150 vdso.symtab =
151 check_raw_pointer::<Elf_Sym>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
152 .as_ptr();
153 }
154 DT_HASH => {
155 hash = check_raw_pointer::<u32>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
156 .as_ptr();
157 }
158 DT_VERSYM => {
159 vdso.versym =
160 check_raw_pointer::<u16>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
161 .as_ptr();
162 }
163 DT_VERDEF => {
164 vdso.verdef = check_raw_pointer::<Elf_Verdef>(
165 vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _,
166 )?
167 .as_ptr();
168 }
169 DT_SYMENT => {
170 if d.d_un.d_ptr != size_of::<Elf_Sym>() {
171 return None; // Failed
172 }
173 }
174 DT_NULL => break,
175 _ => {}
176 }
177 i = i.checked_add(1)?;
178 }
179 // The upstream code checks `symstrings`, `symtab`, and `hash` for
180 // null; here, `check_raw_pointer` has already done that.
181
182 if vdso.verdef.is_null() {
183 vdso.versym = null();
184 }
185
186 // Parse the hash table header.
187 vdso.nbucket = *hash.add(0);
188 //vdso.nchain = *hash.add(1);
189 vdso.bucket = hash.add(2);
190 vdso.chain = hash.add(vdso.nbucket as usize + 2);
191
192 // That's all we need.
193 Some(vdso)
194 }
195}
196
197impl Vdso {
198 /// Parse the vDSO.
199 ///
200 /// Returns `None` if the vDSO can't be located or if it doesn't conform to
201 /// our expectations.
202 #[inline]
203 pub(super) fn new() -> Option<Self> {
204 init_from_sysinfo_ehdr()
205 }
206
207 /// Check the version for a symbol.
208 ///
209 /// # Safety
210 ///
211 /// The raw pointers inside `self` must be valid.
212 unsafe fn match_version(&self, mut ver: u16, name: &CStr, hash: u32) -> bool {
213 // This is a helper function to check if the version indexed by
214 // ver matches name (which hashes to hash).
215 //
216 // The version definition table is a mess, and I don't know how
217 // to do this in better than linear time without allocating memory
218 // to build an index. I also don't know why the table has
219 // variable size entries in the first place.
220 //
221 // For added fun, I can't find a comprehensible specification of how
222 // to parse all the weird flags in the table.
223 //
224 // So I just parse the whole table every time.
225
226 // First step: find the version definition
227 ver &= 0x7fff; // Apparently bit 15 means "hidden"
228 let mut def = self.verdef;
229 loop {
230 if (*def).vd_version != VER_DEF_CURRENT {
231 return false; // Failed
232 }
233
234 if ((*def).vd_flags & VER_FLG_BASE) == 0 && ((*def).vd_ndx & 0x7fff) == ver {
235 break;
236 }
237
238 if (*def).vd_next == 0 {
239 return false; // No definition.
240 }
241
242 def = def
243 .cast::<u8>()
244 .add((*def).vd_next as usize)
245 .cast::<Elf_Verdef>();
246 }
247
248 // Now figure out whether it matches.
249 let aux = &*(def.cast::<u8>())
250 .add((*def).vd_aux as usize)
251 .cast::<Elf_Verdaux>();
252 (*def).vd_hash == hash
253 && (name == CStr::from_ptr(self.symstrings.add(aux.vda_name as usize).cast()))
254 }
255
256 /// Look up a symbol in the vDSO.
257 pub(super) fn sym(&self, version: &CStr, name: &CStr) -> *mut c::c_void {
258 let ver_hash = elf_hash(version);
259 let name_hash = elf_hash(name);
260
261 // SAFETY: The pointers in `self` must be valid.
262 unsafe {
263 let mut chain = *self.bucket.add((name_hash % self.nbucket) as usize);
264
265 while chain != STN_UNDEF {
266 let sym = &*self.symtab.add(chain as usize);
267
268 // Check for a defined global or weak function w/ right name.
269 //
270 // The reference parser in Linux's parse_vdso.c requires
271 // symbols to have type `STT_FUNC`, but on powerpc64, the vDSO
272 // uses `STT_NOTYPE`, so allow that too.
273 if (ELF_ST_TYPE(sym.st_info) != STT_FUNC &&
274 ELF_ST_TYPE(sym.st_info) != STT_NOTYPE)
275 || (ELF_ST_BIND(sym.st_info) != STB_GLOBAL
276 && ELF_ST_BIND(sym.st_info) != STB_WEAK)
277 || sym.st_shndx == SHN_UNDEF
278 || sym.st_shndx == SHN_ABS
279 || ELF_ST_VISIBILITY(sym.st_other) != STV_DEFAULT
280 || (name != CStr::from_ptr(self.symstrings.add(sym.st_name as usize).cast()))
281 // Check symbol version.
282 || (!self.versym.is_null()
283 && !self.match_version(*self.versym.add(chain as usize), version, ver_hash))
284 {
285 chain = *self.chain.add(chain as usize);
286 continue;
287 }
288
289 let sum = self.addr_from_elf(sym.st_value).unwrap();
290 assert!(
291 sum as usize >= self.load_addr as usize
292 && sum as usize <= self.load_end as usize
293 );
294 return sum as *mut c::c_void;
295 }
296 }
297
298 null_mut()
299 }
300
301 /// Add the given address to the vDSO base address.
302 unsafe fn base_plus(&self, offset: usize) -> Option<*const c_void> {
303 // Check for overflow.
304 let _ = (self.load_addr as usize).checked_add(offset)?;
305 // Add the offset to the base.
306 Some(self.load_addr.cast::<u8>().add(offset).cast())
307 }
308
309 /// Translate an ELF-address-space address into a usable virtual address.
310 unsafe fn addr_from_elf(&self, elf_addr: usize) -> Option<*const c_void> {
311 self.base_plus(elf_addr.wrapping_add(self.pv_offset))
312 }
313}
314