1 | //! Parse the Linux vDSO. |
2 | //! |
3 | //! The following code is transliterated from |
4 | //! tools/testing/selftests/vDSO/parse_vdso.c in Linux 6.12, which is licensed |
5 | //! with Creative Commons Zero License, version 1.0, |
6 | //! available at <https://creativecommons.org/publicdomain/zero/1.0/legalcode> |
7 | //! |
8 | //! # Safety |
9 | //! |
10 | //! Parsing the vDSO involves a lot of raw pointer manipulation. This |
11 | //! implementation follows Linux's reference implementation, and adds several |
12 | //! additional safety checks. |
13 | #![allow (unsafe_code)] |
14 | |
15 | use super::c; |
16 | use crate::ffi::CStr; |
17 | use crate::utils::check_raw_pointer; |
18 | use core::ffi::c_void; |
19 | use core::mem::size_of; |
20 | use core::ptr::{null, null_mut}; |
21 | use linux_raw_sys::elf::*; |
22 | |
23 | #[cfg (target_arch = "s390x" )] |
24 | type ElfHashEntry = u64; |
25 | #[cfg (not(target_arch = "s390x" ))] |
26 | type ElfHashEntry = u32; |
27 | |
28 | pub(super) struct Vdso { |
29 | // Load information |
30 | load_addr: *const Elf_Ehdr, |
31 | load_end: *const c_void, // the end of the `PT_LOAD` segment |
32 | pv_offset: usize, // recorded paddr - recorded vaddr |
33 | |
34 | // Symbol table |
35 | symtab: *const Elf_Sym, |
36 | symstrings: *const u8, |
37 | bucket: *const ElfHashEntry, |
38 | chain: *const ElfHashEntry, |
39 | nbucket: ElfHashEntry, |
40 | //nchain: ElfHashEntry, |
41 | |
42 | // Version table |
43 | versym: *const u16, |
44 | verdef: *const Elf_Verdef, |
45 | } |
46 | |
47 | /// Straight from the ELF specification...and then tweaked slightly, in order to |
48 | /// avoid a few clang warnings. |
49 | /// (And then translated to Rust). |
50 | fn elf_hash(name: &CStr) -> u32 { |
51 | let mut h: u32 = 0; |
52 | for b: &u8 in name.to_bytes() { |
53 | h = (h << 4).wrapping_add(u32::from(*b)); |
54 | let g: u32 = h & 0xf000_0000; |
55 | if g != 0 { |
56 | h ^= g >> 24; |
57 | } |
58 | h &= !g; |
59 | } |
60 | h |
61 | } |
62 | |
63 | /// Create a `Vdso` value by parsing the vDSO at the `sysinfo_ehdr` address. |
64 | fn init_from_sysinfo_ehdr() -> Option<Vdso> { |
65 | // SAFETY: The auxv initialization code does extensive checks to ensure |
66 | // that the value we get really is an `AT_SYSINFO_EHDR` value from the |
67 | // kernel. |
68 | unsafe { |
69 | let hdr = super::param::auxv::sysinfo_ehdr(); |
70 | |
71 | // If the platform doesn't provide a `AT_SYSINFO_EHDR`, we can't locate |
72 | // the vDSO. |
73 | if hdr.is_null() { |
74 | return None; |
75 | } |
76 | |
77 | let mut vdso = Vdso { |
78 | load_addr: hdr, |
79 | load_end: hdr.cast(), |
80 | pv_offset: 0, |
81 | symtab: null(), |
82 | symstrings: null(), |
83 | bucket: null(), |
84 | chain: null(), |
85 | nbucket: 0, |
86 | //nchain: 0, |
87 | versym: null(), |
88 | verdef: null(), |
89 | }; |
90 | |
91 | let hdr = &*hdr; |
92 | let pt = check_raw_pointer::<Elf_Phdr>(vdso.base_plus(hdr.e_phoff)? as *mut _)?.as_ptr(); |
93 | let mut dyn_: *const Elf_Dyn = null(); |
94 | let mut num_dyn = 0; |
95 | |
96 | // We need two things from the segment table: the load offset |
97 | // and the dynamic table. |
98 | let mut found_vaddr = false; |
99 | for i in 0..hdr.e_phnum { |
100 | let phdr = &*pt.add(i as usize); |
101 | if phdr.p_type == PT_LOAD && !found_vaddr { |
102 | // The segment should be readable and executable, because it |
103 | // contains the symbol table and the function bodies. |
104 | if phdr.p_flags & (PF_R | PF_X) != (PF_R | PF_X) { |
105 | return None; |
106 | } |
107 | found_vaddr = true; |
108 | vdso.load_end = vdso.base_plus(phdr.p_offset.checked_add(phdr.p_memsz)?)?; |
109 | vdso.pv_offset = phdr.p_offset.wrapping_sub(phdr.p_vaddr); |
110 | } else if phdr.p_type == PT_DYNAMIC { |
111 | // If `p_offset` is zero, it's more likely that we're looking |
112 | // at memory that has been zeroed than that the kernel has |
113 | // somehow aliased the `Ehdr` and the `Elf_Dyn` array. |
114 | if phdr.p_offset < size_of::<Elf_Ehdr>() { |
115 | return None; |
116 | } |
117 | |
118 | dyn_ = check_raw_pointer::<Elf_Dyn>(vdso.base_plus(phdr.p_offset)? as *mut _)? |
119 | .as_ptr(); |
120 | num_dyn = phdr.p_memsz / size_of::<Elf_Dyn>(); |
121 | } else if phdr.p_type == PT_INTERP || phdr.p_type == PT_GNU_RELRO { |
122 | // Don't trust any ELF image that has an “interpreter” or |
123 | // that uses RELRO, which is likely to be a user ELF image |
124 | // rather and not the kernel vDSO. |
125 | return None; |
126 | } |
127 | } |
128 | |
129 | if !found_vaddr || dyn_.is_null() { |
130 | return None; // Failed |
131 | } |
132 | |
133 | // Fish out the useful bits of the dynamic table. |
134 | let mut hash: *const ElfHashEntry = null(); |
135 | vdso.symstrings = null(); |
136 | vdso.symtab = null(); |
137 | vdso.versym = null(); |
138 | vdso.verdef = null(); |
139 | let mut i = 0; |
140 | loop { |
141 | if i == num_dyn { |
142 | return None; |
143 | } |
144 | let d = &*dyn_.add(i); |
145 | match d.d_tag { |
146 | DT_STRTAB => { |
147 | vdso.symstrings = |
148 | check_raw_pointer::<u8>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)? |
149 | .as_ptr(); |
150 | } |
151 | DT_SYMTAB => { |
152 | vdso.symtab = |
153 | check_raw_pointer::<Elf_Sym>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)? |
154 | .as_ptr(); |
155 | } |
156 | DT_HASH => { |
157 | hash = check_raw_pointer::<ElfHashEntry>( |
158 | vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _ |
159 | )? |
160 | .as_ptr(); |
161 | } |
162 | DT_VERSYM => { |
163 | vdso.versym = |
164 | check_raw_pointer::<u16>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)? |
165 | .as_ptr(); |
166 | } |
167 | DT_VERDEF => { |
168 | vdso.verdef = check_raw_pointer::<Elf_Verdef>( |
169 | vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _, |
170 | )? |
171 | .as_ptr(); |
172 | } |
173 | DT_SYMENT => { |
174 | if d.d_un.d_ptr != size_of::<Elf_Sym>() { |
175 | return None; // Failed |
176 | } |
177 | } |
178 | DT_NULL => break, |
179 | _ => {} |
180 | } |
181 | i = i.checked_add(1)?; |
182 | } |
183 | // `check_raw_pointer` will have checked these pointers for null, |
184 | // however they could still be null if the expected dynamic table |
185 | // entries are absent. |
186 | if vdso.symstrings.is_null() || vdso.symtab.is_null() || hash.is_null() { |
187 | return None; // Failed |
188 | } |
189 | |
190 | if vdso.verdef.is_null() { |
191 | vdso.versym = null(); |
192 | } |
193 | |
194 | // Parse the hash table header. |
195 | vdso.nbucket = *hash.add(0); |
196 | //vdso.nchain = *hash.add(1); |
197 | vdso.bucket = hash.add(2); |
198 | vdso.chain = hash.add(vdso.nbucket as usize + 2); |
199 | |
200 | // That's all we need. |
201 | Some(vdso) |
202 | } |
203 | } |
204 | |
205 | impl Vdso { |
206 | /// Parse the vDSO. |
207 | /// |
208 | /// Returns `None` if the vDSO can't be located or if it doesn't conform to |
209 | /// our expectations. |
210 | #[inline ] |
211 | pub(super) fn new() -> Option<Self> { |
212 | init_from_sysinfo_ehdr() |
213 | } |
214 | |
215 | /// Check the version for a symbol. |
216 | /// |
217 | /// # Safety |
218 | /// |
219 | /// The raw pointers inside `self` must be valid. |
220 | unsafe fn match_version(&self, mut ver: u16, name: &CStr, hash: u32) -> bool { |
221 | // This is a helper function to check if the version indexed by |
222 | // ver matches name (which hashes to hash). |
223 | // |
224 | // The version definition table is a mess, and I don't know how |
225 | // to do this in better than linear time without allocating memory |
226 | // to build an index. I also don't know why the table has |
227 | // variable size entries in the first place. |
228 | // |
229 | // For added fun, I can't find a comprehensible specification of how |
230 | // to parse all the weird flags in the table. |
231 | // |
232 | // So I just parse the whole table every time. |
233 | |
234 | // First step: find the version definition |
235 | ver &= 0x7fff; // Apparently bit 15 means "hidden" |
236 | let mut def = self.verdef; |
237 | loop { |
238 | if (*def).vd_version != VER_DEF_CURRENT { |
239 | return false; // Failed |
240 | } |
241 | |
242 | if ((*def).vd_flags & VER_FLG_BASE) == 0 && ((*def).vd_ndx & 0x7fff) == ver { |
243 | break; |
244 | } |
245 | |
246 | if (*def).vd_next == 0 { |
247 | return false; // No definition. |
248 | } |
249 | |
250 | def = def |
251 | .cast::<u8>() |
252 | .add((*def).vd_next as usize) |
253 | .cast::<Elf_Verdef>(); |
254 | } |
255 | |
256 | // Now figure out whether it matches. |
257 | let aux = &*(def.cast::<u8>()) |
258 | .add((*def).vd_aux as usize) |
259 | .cast::<Elf_Verdaux>(); |
260 | (*def).vd_hash == hash |
261 | && (name == CStr::from_ptr(self.symstrings.add(aux.vda_name as usize).cast())) |
262 | } |
263 | |
264 | /// Look up a symbol in the vDSO. |
265 | pub(super) fn sym(&self, version: &CStr, name: &CStr) -> *mut c::c_void { |
266 | let ver_hash = elf_hash(version); |
267 | let name_hash = elf_hash(name); |
268 | |
269 | // SAFETY: The pointers in `self` must be valid. |
270 | unsafe { |
271 | let mut chain = *self |
272 | .bucket |
273 | .add((ElfHashEntry::from(name_hash) % self.nbucket) as usize); |
274 | |
275 | while chain != ElfHashEntry::from(STN_UNDEF) { |
276 | let sym = &*self.symtab.add(chain as usize); |
277 | |
278 | // Check for a defined global or weak function w/ right name. |
279 | // |
280 | // Accept `STT_NOTYPE` in addition to `STT_FUNC` for the symbol |
281 | // type, for compatibility with some versions of Linux on |
282 | // PowerPC64. See [this commit] in Linux for more background. |
283 | // |
284 | // [this commit]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/tools/testing/selftests/vDSO/parse_vdso.c?id=0161bd38c24312853ed5ae9a425a1c41c4ac674a |
285 | if (ELF_ST_TYPE(sym.st_info) != STT_FUNC && |
286 | ELF_ST_TYPE(sym.st_info) != STT_NOTYPE) |
287 | || (ELF_ST_BIND(sym.st_info) != STB_GLOBAL |
288 | && ELF_ST_BIND(sym.st_info) != STB_WEAK) |
289 | || sym.st_shndx == SHN_UNDEF |
290 | || sym.st_shndx == SHN_ABS |
291 | || ELF_ST_VISIBILITY(sym.st_other) != STV_DEFAULT |
292 | || (name != CStr::from_ptr(self.symstrings.add(sym.st_name as usize).cast())) |
293 | // Check symbol version. |
294 | || (!self.versym.is_null() |
295 | && !self.match_version(*self.versym.add(chain as usize), version, ver_hash)) |
296 | { |
297 | chain = *self.chain.add(chain as usize); |
298 | continue; |
299 | } |
300 | |
301 | let sum = self.addr_from_elf(sym.st_value).unwrap(); |
302 | assert!( |
303 | sum as usize >= self.load_addr as usize |
304 | && sum as usize <= self.load_end as usize |
305 | ); |
306 | return sum as *mut c::c_void; |
307 | } |
308 | } |
309 | |
310 | null_mut() |
311 | } |
312 | |
313 | /// Add the given address to the vDSO base address. |
314 | unsafe fn base_plus(&self, offset: usize) -> Option<*const c_void> { |
315 | // Check for overflow. |
316 | let _ = (self.load_addr as usize).checked_add(offset)?; |
317 | // Add the offset to the base. |
318 | Some(self.load_addr.cast::<u8>().add(offset).cast()) |
319 | } |
320 | |
321 | /// Translate an ELF-address-space address into a usable virtual address. |
322 | unsafe fn addr_from_elf(&self, elf_addr: usize) -> Option<*const c_void> { |
323 | self.base_plus(elf_addr.wrapping_add(self.pv_offset)) |
324 | } |
325 | } |
326 | |
327 | #[cfg (linux_raw)] |
328 | #[test ] |
329 | #[ignore ] // Until rustix is updated to the new vDSO format. |
330 | fn test_vdso() { |
331 | let vdso = Vdso::new().unwrap(); |
332 | assert!(!vdso.symtab.is_null()); |
333 | assert!(!vdso.symstrings.is_null()); |
334 | |
335 | #[cfg (target_arch = "x86_64" )] |
336 | let ptr = vdso.sym(cstr!("LINUX_2.6" ), cstr!("__vdso_clock_gettime" )); |
337 | #[cfg (target_arch = "arm" )] |
338 | let ptr = vdso.sym(cstr!("LINUX_2.6" ), cstr!("__vdso_clock_gettime64" )); |
339 | #[cfg (target_arch = "aarch64" )] |
340 | let ptr = vdso.sym(cstr!("LINUX_2.6.39" ), cstr!("__kernel_clock_gettime" )); |
341 | #[cfg (target_arch = "x86" )] |
342 | let ptr = vdso.sym(cstr!("LINUX_2.6" ), cstr!("__vdso_clock_gettime64" )); |
343 | #[cfg (target_arch = "riscv64" )] |
344 | let ptr = vdso.sym(cstr!("LINUX_4.15" ), cstr!("__vdso_clock_gettime" )); |
345 | #[cfg (target_arch = "powerpc64" )] |
346 | let ptr = vdso.sym(cstr!("LINUX_2.6.15" ), cstr!("__kernel_clock_gettime" )); |
347 | #[cfg (target_arch = "s390x" )] |
348 | let ptr = vdso.sym(cstr!("LINUX_2.6.29" ), cstr!("__kernel_clock_gettime" )); |
349 | #[cfg (any(target_arch = "mips" , target_arch = "mips32r6" ))] |
350 | let ptr = vdso.sym(cstr!("LINUX_2.6" ), cstr!("__vdso_clock_gettime64" )); |
351 | #[cfg (any(target_arch = "mips64" , target_arch = "mips64r6" ))] |
352 | let ptr = vdso.sym(cstr!("LINUX_2.6" ), cstr!("__vdso_clock_gettime" )); |
353 | |
354 | assert!(!ptr.is_null()); |
355 | } |
356 | |