| 1 | // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution and at |
| 3 | // http://rust-lang.org/COPYRIGHT. |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 6 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 7 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 8 | // option. This file may not be copied, modified, or distributed |
| 9 | // except according to those terms. |
| 10 | |
| 11 | //! An implementation of SipHash. |
| 12 | |
| 13 | use core::cmp; |
| 14 | use core::hash; |
| 15 | use core::hash::Hasher as _; |
| 16 | use core::marker::PhantomData; |
| 17 | use core::mem; |
| 18 | use core::ptr; |
| 19 | use core::u64; |
| 20 | |
| 21 | /// An implementation of SipHash 1-3. |
| 22 | /// |
| 23 | /// See: <https://www.aumasson.jp/siphash/siphash.pdf> |
| 24 | #[derive (Debug, Clone, Copy, Default)] |
| 25 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 26 | pub struct SipHasher13 { |
| 27 | hasher: Hasher<Sip13Rounds>, |
| 28 | } |
| 29 | |
| 30 | /// An implementation of SipHash 2-4. |
| 31 | /// |
| 32 | /// See: <https://www.aumasson.jp/siphash/siphash.pdf> |
| 33 | #[derive (Debug, Clone, Copy, Default)] |
| 34 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 35 | pub struct SipHasher24 { |
| 36 | hasher: Hasher<Sip24Rounds>, |
| 37 | } |
| 38 | |
| 39 | /// An implementation of SipHash 2-4. |
| 40 | /// |
| 41 | /// See: <https://www.aumasson.jp/siphash/siphash.pdf> |
| 42 | /// |
| 43 | /// SipHash is a general-purpose hashing function: it runs at a good |
| 44 | /// speed (competitive with Spooky and City) and permits strong _keyed_ |
| 45 | /// hashing. This lets you key your hashtables from a strong RNG, such as |
| 46 | /// [`rand::os::OsRng`](https://doc.rust-lang.org/rand/rand/os/struct.OsRng.html). |
| 47 | /// |
| 48 | /// Although the SipHash algorithm is considered to be generally strong, |
| 49 | /// it is not intended for cryptographic purposes. As such, all |
| 50 | /// cryptographic uses of this implementation are _strongly discouraged_. |
| 51 | #[derive (Debug, Clone, Copy, Default)] |
| 52 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 53 | pub struct SipHasher(SipHasher24); |
| 54 | |
| 55 | #[derive (Debug, Clone, Copy)] |
| 56 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 57 | struct Hasher<S: Sip> { |
| 58 | k0: u64, |
| 59 | k1: u64, |
| 60 | length: usize, // how many bytes we've processed |
| 61 | state: State, // hash State |
| 62 | tail: u64, // unprocessed bytes le |
| 63 | ntail: usize, // how many bytes in tail are valid |
| 64 | _marker: PhantomData<S>, |
| 65 | } |
| 66 | |
| 67 | #[derive (Debug, Clone, Copy)] |
| 68 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 69 | struct State { |
| 70 | // v0, v2 and v1, v3 show up in pairs in the algorithm, |
| 71 | // and simd implementations of SipHash will use vectors |
| 72 | // of v02 and v13. By placing them in this order in the struct, |
| 73 | // the compiler can pick up on just a few simd optimizations by itself. |
| 74 | v0: u64, |
| 75 | v2: u64, |
| 76 | v1: u64, |
| 77 | v3: u64, |
| 78 | } |
| 79 | |
| 80 | macro_rules! compress { |
| 81 | ($state:expr) => {{ |
| 82 | compress!($state.v0, $state.v1, $state.v2, $state.v3) |
| 83 | }}; |
| 84 | ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {{ |
| 85 | $v0 = $v0.wrapping_add($v1); |
| 86 | $v1 = $v1.rotate_left(13); |
| 87 | $v1 ^= $v0; |
| 88 | $v0 = $v0.rotate_left(32); |
| 89 | $v2 = $v2.wrapping_add($v3); |
| 90 | $v3 = $v3.rotate_left(16); |
| 91 | $v3 ^= $v2; |
| 92 | $v0 = $v0.wrapping_add($v3); |
| 93 | $v3 = $v3.rotate_left(21); |
| 94 | $v3 ^= $v0; |
| 95 | $v2 = $v2.wrapping_add($v1); |
| 96 | $v1 = $v1.rotate_left(17); |
| 97 | $v1 ^= $v2; |
| 98 | $v2 = $v2.rotate_left(32); |
| 99 | }}; |
| 100 | } |
| 101 | |
| 102 | /// Loads an integer of the desired type from a byte stream, in LE order. Uses |
| 103 | /// `copy_nonoverlapping` to let the compiler generate the most efficient way |
| 104 | /// to load it from a possibly unaligned address. |
| 105 | /// |
| 106 | /// Unsafe because: unchecked indexing at `i..i+size_of(int_ty)` |
| 107 | macro_rules! load_int_le { |
| 108 | ($buf:expr, $i:expr, $int_ty:ident) => {{ |
| 109 | debug_assert!($i + mem::size_of::<$int_ty>() <= $buf.len()); |
| 110 | let mut data = 0 as $int_ty; |
| 111 | ptr::copy_nonoverlapping( |
| 112 | $buf.as_ptr().add($i), |
| 113 | &mut data as *mut _ as *mut u8, |
| 114 | mem::size_of::<$int_ty>(), |
| 115 | ); |
| 116 | data.to_le() |
| 117 | }}; |
| 118 | } |
| 119 | |
| 120 | /// Loads a u64 using up to 7 bytes of a byte slice. It looks clumsy but the |
| 121 | /// `copy_nonoverlapping` calls that occur (via `load_int_le!`) all have fixed |
| 122 | /// sizes and avoid calling `memcpy`, which is good for speed. |
| 123 | /// |
| 124 | /// Unsafe because: unchecked indexing at start..start+len |
| 125 | #[inline ] |
| 126 | unsafe fn u8to64_le(buf: &[u8], start: usize, len: usize) -> u64 { |
| 127 | debug_assert!(len < 8); |
| 128 | let mut i: usize = 0; // current byte index (from LSB) in the output u64 |
| 129 | let mut out: u64 = 0; |
| 130 | if i + 3 < len { |
| 131 | out = load_int_le!(buf, start + i, u32) as u64; |
| 132 | i += 4; |
| 133 | } |
| 134 | if i + 1 < len { |
| 135 | out |= (load_int_le!(buf, start + i, u16) as u64) << (i * 8); |
| 136 | i += 2 |
| 137 | } |
| 138 | if i < len { |
| 139 | out |= (*buf.get_unchecked(index:start + i) as u64) << (i * 8); |
| 140 | i += 1; |
| 141 | } |
| 142 | debug_assert_eq!(i, len); |
| 143 | out |
| 144 | } |
| 145 | |
| 146 | impl SipHasher { |
| 147 | /// Creates a new `SipHasher` with the two initial keys set to 0. |
| 148 | #[inline ] |
| 149 | pub fn new() -> SipHasher { |
| 150 | SipHasher::new_with_keys(0, 0) |
| 151 | } |
| 152 | |
| 153 | /// Creates a `SipHasher` that is keyed off the provided keys. |
| 154 | #[inline ] |
| 155 | pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher { |
| 156 | SipHasher(SipHasher24::new_with_keys(key0, key1)) |
| 157 | } |
| 158 | |
| 159 | /// Creates a `SipHasher` from a 16 byte key. |
| 160 | pub fn new_with_key(key: &[u8; 16]) -> SipHasher { |
| 161 | let mut b0 = [0u8; 8]; |
| 162 | let mut b1 = [0u8; 8]; |
| 163 | b0.copy_from_slice(&key[0..8]); |
| 164 | b1.copy_from_slice(&key[8..16]); |
| 165 | let key0 = u64::from_le_bytes(b0); |
| 166 | let key1 = u64::from_le_bytes(b1); |
| 167 | Self::new_with_keys(key0, key1) |
| 168 | } |
| 169 | |
| 170 | /// Get the keys used by this hasher |
| 171 | pub fn keys(&self) -> (u64, u64) { |
| 172 | (self.0.hasher.k0, self.0.hasher.k1) |
| 173 | } |
| 174 | |
| 175 | /// Get the key used by this hasher as a 16 byte vector |
| 176 | pub fn key(&self) -> [u8; 16] { |
| 177 | let mut bytes = [0u8; 16]; |
| 178 | bytes[0..8].copy_from_slice(&self.0.hasher.k0.to_le_bytes()); |
| 179 | bytes[8..16].copy_from_slice(&self.0.hasher.k1.to_le_bytes()); |
| 180 | bytes |
| 181 | } |
| 182 | |
| 183 | /// Hash a byte array - This is the easiest and safest way to use SipHash. |
| 184 | #[inline ] |
| 185 | pub fn hash(&self, bytes: &[u8]) -> u64 { |
| 186 | let mut hasher = self.0.hasher; |
| 187 | hasher.write(bytes); |
| 188 | hasher.finish() |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | impl SipHasher13 { |
| 193 | /// Creates a new `SipHasher13` with the two initial keys set to 0. |
| 194 | #[inline ] |
| 195 | pub fn new() -> SipHasher13 { |
| 196 | SipHasher13::new_with_keys(0, 0) |
| 197 | } |
| 198 | |
| 199 | /// Creates a `SipHasher13` that is keyed off the provided keys. |
| 200 | #[inline ] |
| 201 | pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher13 { |
| 202 | SipHasher13 { |
| 203 | hasher: Hasher::new_with_keys(key0, key1), |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | /// Creates a `SipHasher13` from a 16 byte key. |
| 208 | pub fn new_with_key(key: &[u8; 16]) -> SipHasher13 { |
| 209 | let mut b0 = [0u8; 8]; |
| 210 | let mut b1 = [0u8; 8]; |
| 211 | b0.copy_from_slice(&key[0..8]); |
| 212 | b1.copy_from_slice(&key[8..16]); |
| 213 | let key0 = u64::from_le_bytes(b0); |
| 214 | let key1 = u64::from_le_bytes(b1); |
| 215 | Self::new_with_keys(key0, key1) |
| 216 | } |
| 217 | |
| 218 | /// Get the keys used by this hasher |
| 219 | pub fn keys(&self) -> (u64, u64) { |
| 220 | (self.hasher.k0, self.hasher.k1) |
| 221 | } |
| 222 | |
| 223 | /// Get the key used by this hasher as a 16 byte vector |
| 224 | pub fn key(&self) -> [u8; 16] { |
| 225 | let mut bytes = [0u8; 16]; |
| 226 | bytes[0..8].copy_from_slice(&self.hasher.k0.to_le_bytes()); |
| 227 | bytes[8..16].copy_from_slice(&self.hasher.k1.to_le_bytes()); |
| 228 | bytes |
| 229 | } |
| 230 | |
| 231 | /// Hash a byte array - This is the easiest and safest way to use SipHash. |
| 232 | #[inline ] |
| 233 | pub fn hash(&self, bytes: &[u8]) -> u64 { |
| 234 | let mut hasher = self.hasher; |
| 235 | hasher.write(bytes); |
| 236 | hasher.finish() |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | impl SipHasher24 { |
| 241 | /// Creates a new `SipHasher24` with the two initial keys set to 0. |
| 242 | #[inline ] |
| 243 | pub fn new() -> SipHasher24 { |
| 244 | SipHasher24::new_with_keys(0, 0) |
| 245 | } |
| 246 | |
| 247 | /// Creates a `SipHasher24` that is keyed off the provided keys. |
| 248 | #[inline ] |
| 249 | pub fn new_with_keys(key0: u64, key1: u64) -> SipHasher24 { |
| 250 | SipHasher24 { |
| 251 | hasher: Hasher::new_with_keys(key0, key1), |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | /// Creates a `SipHasher24` from a 16 byte key. |
| 256 | pub fn new_with_key(key: &[u8; 16]) -> SipHasher24 { |
| 257 | let mut b0 = [0u8; 8]; |
| 258 | let mut b1 = [0u8; 8]; |
| 259 | b0.copy_from_slice(&key[0..8]); |
| 260 | b1.copy_from_slice(&key[8..16]); |
| 261 | let key0 = u64::from_le_bytes(b0); |
| 262 | let key1 = u64::from_le_bytes(b1); |
| 263 | Self::new_with_keys(key0, key1) |
| 264 | } |
| 265 | |
| 266 | /// Get the keys used by this hasher |
| 267 | pub fn keys(&self) -> (u64, u64) { |
| 268 | (self.hasher.k0, self.hasher.k1) |
| 269 | } |
| 270 | |
| 271 | /// Get the key used by this hasher as a 16 byte vector |
| 272 | pub fn key(&self) -> [u8; 16] { |
| 273 | let mut bytes = [0u8; 16]; |
| 274 | bytes[0..8].copy_from_slice(&self.hasher.k0.to_le_bytes()); |
| 275 | bytes[8..16].copy_from_slice(&self.hasher.k1.to_le_bytes()); |
| 276 | bytes |
| 277 | } |
| 278 | |
| 279 | /// Hash a byte array - This is the easiest and safest way to use SipHash. |
| 280 | #[inline ] |
| 281 | pub fn hash(&self, bytes: &[u8]) -> u64 { |
| 282 | let mut hasher = self.hasher; |
| 283 | hasher.write(bytes); |
| 284 | hasher.finish() |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | impl<S: Sip> Hasher<S> { |
| 289 | #[inline ] |
| 290 | fn new_with_keys(key0: u64, key1: u64) -> Hasher<S> { |
| 291 | let mut state = Hasher { |
| 292 | k0: key0, |
| 293 | k1: key1, |
| 294 | length: 0, |
| 295 | state: State { |
| 296 | v0: 0, |
| 297 | v1: 0, |
| 298 | v2: 0, |
| 299 | v3: 0, |
| 300 | }, |
| 301 | tail: 0, |
| 302 | ntail: 0, |
| 303 | _marker: PhantomData, |
| 304 | }; |
| 305 | state.reset(); |
| 306 | state |
| 307 | } |
| 308 | |
| 309 | #[inline ] |
| 310 | fn reset(&mut self) { |
| 311 | self.length = 0; |
| 312 | self.state.v0 = self.k0 ^ 0x736f6d6570736575; |
| 313 | self.state.v1 = self.k1 ^ 0x646f72616e646f6d; |
| 314 | self.state.v2 = self.k0 ^ 0x6c7967656e657261; |
| 315 | self.state.v3 = self.k1 ^ 0x7465646279746573; |
| 316 | self.ntail = 0; |
| 317 | } |
| 318 | |
| 319 | // A specialized write function for values with size <= 8. |
| 320 | // |
| 321 | // The hashing of multi-byte integers depends on endianness. E.g.: |
| 322 | // - little-endian: `write_u32(0xDDCCBBAA)` == `write([0xAA, 0xBB, 0xCC, 0xDD])` |
| 323 | // - big-endian: `write_u32(0xDDCCBBAA)` == `write([0xDD, 0xCC, 0xBB, 0xAA])` |
| 324 | // |
| 325 | // This function does the right thing for little-endian hardware. On |
| 326 | // big-endian hardware `x` must be byte-swapped first to give the right |
| 327 | // behaviour. After any byte-swapping, the input must be zero-extended to |
| 328 | // 64-bits. The caller is responsible for the byte-swapping and |
| 329 | // zero-extension. |
| 330 | #[inline ] |
| 331 | fn short_write<T>(&mut self, _x: T, x: u64) { |
| 332 | let size = mem::size_of::<T>(); |
| 333 | self.length += size; |
| 334 | |
| 335 | // The original number must be zero-extended, not sign-extended. |
| 336 | debug_assert!(if size < 8 { x >> (8 * size) == 0 } else { true }); |
| 337 | |
| 338 | // The number of bytes needed to fill `self.tail`. |
| 339 | let needed = 8 - self.ntail; |
| 340 | |
| 341 | self.tail |= x << (8 * self.ntail); |
| 342 | if size < needed { |
| 343 | self.ntail += size; |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | // `self.tail` is full, process it. |
| 348 | self.state.v3 ^= self.tail; |
| 349 | S::c_rounds(&mut self.state); |
| 350 | self.state.v0 ^= self.tail; |
| 351 | |
| 352 | self.ntail = size - needed; |
| 353 | self.tail = if needed < 8 { x >> (8 * needed) } else { 0 }; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | impl hash::Hasher for SipHasher { |
| 358 | #[inline ] |
| 359 | fn write(&mut self, msg: &[u8]) { |
| 360 | self.0.write(msg) |
| 361 | } |
| 362 | |
| 363 | #[inline ] |
| 364 | fn finish(&self) -> u64 { |
| 365 | self.0.finish() |
| 366 | } |
| 367 | |
| 368 | #[inline ] |
| 369 | fn write_usize(&mut self, i: usize) { |
| 370 | self.0.write_usize(i); |
| 371 | } |
| 372 | |
| 373 | #[inline ] |
| 374 | fn write_u8(&mut self, i: u8) { |
| 375 | self.0.write_u8(i); |
| 376 | } |
| 377 | |
| 378 | #[inline ] |
| 379 | fn write_u16(&mut self, i: u16) { |
| 380 | self.0.write_u16(i); |
| 381 | } |
| 382 | |
| 383 | #[inline ] |
| 384 | fn write_u32(&mut self, i: u32) { |
| 385 | self.0.write_u32(i); |
| 386 | } |
| 387 | |
| 388 | #[inline ] |
| 389 | fn write_u64(&mut self, i: u64) { |
| 390 | self.0.write_u64(i); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | impl hash::Hasher for SipHasher13 { |
| 395 | #[inline ] |
| 396 | fn write(&mut self, msg: &[u8]) { |
| 397 | self.hasher.write(msg) |
| 398 | } |
| 399 | |
| 400 | #[inline ] |
| 401 | fn finish(&self) -> u64 { |
| 402 | self.hasher.finish() |
| 403 | } |
| 404 | |
| 405 | #[inline ] |
| 406 | fn write_usize(&mut self, i: usize) { |
| 407 | self.hasher.write_usize(i); |
| 408 | } |
| 409 | |
| 410 | #[inline ] |
| 411 | fn write_u8(&mut self, i: u8) { |
| 412 | self.hasher.write_u8(i); |
| 413 | } |
| 414 | |
| 415 | #[inline ] |
| 416 | fn write_u16(&mut self, i: u16) { |
| 417 | self.hasher.write_u16(i); |
| 418 | } |
| 419 | |
| 420 | #[inline ] |
| 421 | fn write_u32(&mut self, i: u32) { |
| 422 | self.hasher.write_u32(i); |
| 423 | } |
| 424 | |
| 425 | #[inline ] |
| 426 | fn write_u64(&mut self, i: u64) { |
| 427 | self.hasher.write_u64(i); |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | impl hash::Hasher for SipHasher24 { |
| 432 | #[inline ] |
| 433 | fn write(&mut self, msg: &[u8]) { |
| 434 | self.hasher.write(msg) |
| 435 | } |
| 436 | |
| 437 | #[inline ] |
| 438 | fn finish(&self) -> u64 { |
| 439 | self.hasher.finish() |
| 440 | } |
| 441 | |
| 442 | #[inline ] |
| 443 | fn write_usize(&mut self, i: usize) { |
| 444 | self.hasher.write_usize(i); |
| 445 | } |
| 446 | |
| 447 | #[inline ] |
| 448 | fn write_u8(&mut self, i: u8) { |
| 449 | self.hasher.write_u8(i); |
| 450 | } |
| 451 | |
| 452 | #[inline ] |
| 453 | fn write_u16(&mut self, i: u16) { |
| 454 | self.hasher.write_u16(i); |
| 455 | } |
| 456 | |
| 457 | #[inline ] |
| 458 | fn write_u32(&mut self, i: u32) { |
| 459 | self.hasher.write_u32(i); |
| 460 | } |
| 461 | |
| 462 | #[inline ] |
| 463 | fn write_u64(&mut self, i: u64) { |
| 464 | self.hasher.write_u64(i); |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | impl<S: Sip> hash::Hasher for Hasher<S> { |
| 469 | #[inline ] |
| 470 | fn write_usize(&mut self, i: usize) { |
| 471 | self.short_write(i, i.to_le() as u64); |
| 472 | } |
| 473 | |
| 474 | #[inline ] |
| 475 | fn write_u8(&mut self, i: u8) { |
| 476 | self.short_write(i, i as u64); |
| 477 | } |
| 478 | |
| 479 | #[inline ] |
| 480 | fn write_u32(&mut self, i: u32) { |
| 481 | self.short_write(i, i.to_le() as u64); |
| 482 | } |
| 483 | |
| 484 | #[inline ] |
| 485 | fn write_u64(&mut self, i: u64) { |
| 486 | self.short_write(i, i.to_le()); |
| 487 | } |
| 488 | |
| 489 | #[inline ] |
| 490 | fn write(&mut self, msg: &[u8]) { |
| 491 | let length = msg.len(); |
| 492 | self.length += length; |
| 493 | |
| 494 | let mut needed = 0; |
| 495 | |
| 496 | if self.ntail != 0 { |
| 497 | needed = 8 - self.ntail; |
| 498 | self.tail |= unsafe { u8to64_le(msg, 0, cmp::min(length, needed)) } << (8 * self.ntail); |
| 499 | if length < needed { |
| 500 | self.ntail += length; |
| 501 | return; |
| 502 | } else { |
| 503 | self.state.v3 ^= self.tail; |
| 504 | S::c_rounds(&mut self.state); |
| 505 | self.state.v0 ^= self.tail; |
| 506 | self.ntail = 0; |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | // Buffered tail is now flushed, process new input. |
| 511 | let len = length - needed; |
| 512 | let left = len & 0x7; |
| 513 | |
| 514 | let mut i = needed; |
| 515 | while i < len - left { |
| 516 | let mi = unsafe { load_int_le!(msg, i, u64) }; |
| 517 | |
| 518 | self.state.v3 ^= mi; |
| 519 | S::c_rounds(&mut self.state); |
| 520 | self.state.v0 ^= mi; |
| 521 | |
| 522 | i += 8; |
| 523 | } |
| 524 | |
| 525 | self.tail = unsafe { u8to64_le(msg, i, left) }; |
| 526 | self.ntail = left; |
| 527 | } |
| 528 | |
| 529 | #[inline ] |
| 530 | fn finish(&self) -> u64 { |
| 531 | let mut state = self.state; |
| 532 | |
| 533 | let b: u64 = ((self.length as u64 & 0xff) << 56) | self.tail; |
| 534 | |
| 535 | state.v3 ^= b; |
| 536 | S::c_rounds(&mut state); |
| 537 | state.v0 ^= b; |
| 538 | |
| 539 | state.v2 ^= 0xff; |
| 540 | S::d_rounds(&mut state); |
| 541 | |
| 542 | state.v0 ^ state.v1 ^ state.v2 ^ state.v3 |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | impl<S: Sip> Default for Hasher<S> { |
| 547 | /// Creates a `Hasher<S>` with the two initial keys set to 0. |
| 548 | #[inline ] |
| 549 | fn default() -> Hasher<S> { |
| 550 | Hasher::new_with_keys(key0:0, key1:0) |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | #[doc (hidden)] |
| 555 | trait Sip { |
| 556 | fn c_rounds(_: &mut State); |
| 557 | fn d_rounds(_: &mut State); |
| 558 | } |
| 559 | |
| 560 | #[derive (Debug, Clone, Copy, Default)] |
| 561 | struct Sip13Rounds; |
| 562 | |
| 563 | impl Sip for Sip13Rounds { |
| 564 | #[inline ] |
| 565 | fn c_rounds(state: &mut State) { |
| 566 | compress!(state); |
| 567 | } |
| 568 | |
| 569 | #[inline ] |
| 570 | fn d_rounds(state: &mut State) { |
| 571 | compress!(state); |
| 572 | compress!(state); |
| 573 | compress!(state); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | #[derive (Debug, Clone, Copy, Default)] |
| 578 | struct Sip24Rounds; |
| 579 | |
| 580 | impl Sip for Sip24Rounds { |
| 581 | #[inline ] |
| 582 | fn c_rounds(state: &mut State) { |
| 583 | compress!(state); |
| 584 | compress!(state); |
| 585 | } |
| 586 | |
| 587 | #[inline ] |
| 588 | fn d_rounds(state: &mut State) { |
| 589 | compress!(state); |
| 590 | compress!(state); |
| 591 | compress!(state); |
| 592 | compress!(state); |
| 593 | } |
| 594 | } |
| 595 | |